162 research outputs found

    Fusion of Images and Videos using Multi-scale Transforms

    Get PDF
    This thesis deals with methods for fusion of images as well as videos using multi-scale transforms. First, a novel image fusion algorithm based primarily on an improved multi-scale coefficient decomposition framework is proposed. The proposed framework uses a combination of non-subsampled contourlet and wavelet transforms for the initial multi-scale decompositions. The decomposed multi-scale coefficients are then fused twice using various local activity measures. Experimental results show that the proposed approach performs better or on par with the existing state-of-the art image fusion algorithms in terms of quantitative and qualitative performance. In addition, the proposed image fusion algorithm can produce high quality fused images even with a computationally inexpensive two-scale decomposition. Finally, we extend the proposed framework to formulate a novel video fusion algorithm for camouflaged target detection from infrared and visible sensor inputs. The proposed framework consists of a novel target identification method based on conventional thresholding techniques proposed by Otsu and Kapur et al. These thresholding techniques are further extended to formulate novel region-based fusion rules using local statistical measures. The proposed video fusion algorithm, when used in target highlighting mode, can further enhance the hidden target, making it much easier to localize the hidden camouflaged target. Experimental results show that the proposed video fusion algorithm performs much better than its counterparts in terms of quantitative and qualitative results as well as in terms of time complexity. The relative low complexity of the proposed video fusion algorithm makes it an ideal candidate for real-time video surveillance applications

    Object detection, recognition and re-identification in video footage

    Get PDF
    There has been a significant number of security concerns in recent times; as a result, security cameras have been installed to monitor activities and to prevent crimes in most public places. These analysis are done either through video analytic or forensic analysis operations on human observations. To this end, within the research context of this thesis, a proactive machine vision based military recognition system has been developed to help monitor activities in the military environment. The proposed object detection, recognition and re-identification systems have been presented in this thesis. A novel technique for military personnel recognition is presented in this thesis. Initially the detected camouflaged personnel are segmented using a grabcut segmentation algorithm. Since in general a camouflaged personnel's uniform appears to be similar both at the top and the bottom of the body, an image patch is initially extracted from the segmented foreground image and used as the region of interest. Subsequently the colour and texture features are extracted from each patch and used for classification. A second approach for personnel recognition is proposed through the recognition of the badge on the cap of a military person. A feature matching metric based on the extracted Speed Up Robust Features (SURF) from the badge on a personnel's cap enabled the recognition of the personnel's arm of service. A state-of-the-art technique for recognising vehicle types irrespective of their view angle is also presented in this thesis. Vehicles are initially detected and segmented using a Gaussian Mixture Model (GMM) based foreground/background segmentation algorithm. A Canny Edge Detection (CED) stage, followed by morphological operations are used as pre-processing stage to help enhance foreground vehicular object detection and segmentation. Subsequently, Region, Histogram Oriented Gradient (HOG) and Local Binary Pattern (LBP) features are extracted from the refined foreground vehicle object and used as features for vehicle type recognition. Two different datasets with variant views of front/rear and angle are used and combined for testing the proposed technique. For night-time video analytics and forensics, the thesis presents a novel approach to pedestrian detection and vehicle type recognition. A novel feature acquisition technique named, CENTROG, is proposed for pedestrian detection and vehicle type recognition in this thesis. Thermal images containing pedestrians and vehicular objects are used to analyse the performance of the proposed algorithms. The video is initially segmented using a GMM based foreground object segmentation algorithm. A CED based pre-processing step is used to enhance segmentation accuracy prior using Census Transforms for initial feature extraction. HOG features are then extracted from the Census transformed images and used for detection and recognition respectively of human and vehicular objects in thermal images. Finally, a novel technique for people re-identification is proposed in this thesis based on using low-level colour features and mid-level attributes. The low-level colour histogram bin values were normalised to 0 and 1. A publicly available dataset (VIPeR) and a self constructed dataset have been used in the experiments conducted with 7 clothing attributes and low-level colour histogram features. These 7 attributes are detected using features extracted from 5 different regions of a detected human object using an SVM classifier. The low-level colour features were extracted from the regions of a detected human object. These 5 regions are obtained by human object segmentation and subsequent body part sub-division. People are re-identified by computing the Euclidean distance between a probe and the gallery image sets. The experiments conducted using SVM classifier and Euclidean distance has proven that the proposed techniques attained all of the aforementioned goals. The colour and texture features proposed for camouflage military personnel recognition surpasses the state-of-the-art methods. Similarly, experiments prove that combining features performed best when recognising vehicles in different views subsequent to initial training based on multi-views. In the same vein, the proposed CENTROG technique performed better than the state-of-the-art CENTRIST technique for both pedestrian detection and vehicle type recognition at night-time using thermal images. Finally, we show that the proposed 7 mid-level attributes and the low-level features results in improved performance accuracy for people re-identification

    Cognitive Image Fusion and Assessment

    Get PDF

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    CamDiff: Camouflage Image Augmentation via Diffusion

    Get PDF
    The burgeoning field of Camouflaged Object Detection (COD) seeks to identify objects that blend into their surroundings. Despite the impressive performance of recent learning-based models, their robustness is limited, as existing methods may misclassify salient objects as camouflaged ones, despite these contradictory characteristics. This limitation may stem from the lack of multi-pattern training images, leading to reduced robustness against salient objects. To overcome the scarcity of multi-pattern training images, we introduce CamDiff, a novel approach inspired by AI-Generated Content (AIGC). Specifically, we leverage a latent diffusion model to synthesize salient objects in camouflaged scenes, while using the zero-shot image classification ability of the Contrastive Language-Image Pre-training (CLIP) model to prevent synthesis failures and ensure that the synthesized objects align with the input prompt. Consequently, the synthesized image retains its original camouflage label while incorporating salient objects, yielding camouflaged scenes with richer characteristics. The results of user studies show that the salient objects in our synthesized scenes attract the user’s attention more; thus, such samples pose a greater challenge to the existing COD models. Our CamDiff enables flexible editing and effcient large-scale dataset generation at a low cost. It significantly enhances the training and testing phases of COD baselines, granting them robustness across diverse domains. Our newly generated datasets and source code are available at https://github.com/drlxj/CamDiff

    Lidar-based Obstacle Detection and Recognition for Autonomous Agricultural Vehicles

    Get PDF
    Today, agricultural vehicles are available that can drive autonomously and follow exact route plans more precisely than human operators. Combined with advancements in precision agriculture, autonomous agricultural robots can reduce manual labor, improve workflow, and optimize yield. However, as of today, human operators are still required for monitoring the environment and acting upon potential obstacles in front of the vehicle. To eliminate this need, safety must be ensured by accurate and reliable obstacle detection and avoidance systems.In this thesis, lidar-based obstacle detection and recognition in agricultural environments has been investigated. A rotating multi-beam lidar generating 3D point clouds was used for point-wise classification of agricultural scenes, while multi-modal fusion with cameras and radar was used to increase performance and robustness. Two research perception platforms were presented and used for data acquisition. The proposed methods were all evaluated on recorded datasets that represented a wide range of realistic agricultural environments and included both static and dynamic obstacles.For 3D point cloud classification, two methods were proposed for handling density variations during feature extraction. One method outperformed a frequently used generic 3D feature descriptor, whereas the other method showed promising preliminary results using deep learning on 2D range images. For multi-modal fusion, four methods were proposed for combining lidar with color camera, thermal camera, and radar. Gradual improvements in classification accuracy were seen, as spatial, temporal, and multi-modal relationships were introduced in the models. Finally, occupancy grid mapping was used to fuse and map detections globally, and runtime obstacle detection was applied on mapped detections along the vehicle path, thus simulating an actual traversal.The proposed methods serve as a first step towards full autonomy for agricultural vehicles. The study has thus shown that recent advancements in autonomous driving can be transferred to the agricultural domain, when accurate distinctions are made between obstacles and processable vegetation. Future research in the domain has further been facilitated with the release of the multi-modal obstacle dataset, FieldSAFE

    Hidden Markov Model as a Framework for Situational Awareness

    Get PDF

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Single-target tracking of arbitrary objects using multi-layered features and contextual information

    Get PDF
    This thesis investigated single-target tracking of arbitrary objects. Tracking is a difficult problem due to a variety of challenges such as significant deformations of the target, occlusions, illumination variations, background clutter and camouflage. To achieve robust tracking performance under these severe conditions, this thesis proposed firstly a novel RGB single-target tracker which models the target with multi-layered features and contextual information. The proposed algorithm was tested on two different tracking benchmarks, i.e., VTB and VOT, where it demonstrated significantly more robust performance than other state-of-the-art RGB trackers. Proposed secondly was an extension of the designed RGB tracker to handle RGB-D images using both temporal and spatial constraints to exploit depth information more robustly. For evaluation, the thesis introduced a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis, on which the proposed tracker achieved the best results. Proposed thirdly was a new tracking approach to handle camouflage problems in highly cluttered scenes exploiting global dynamic constraints from the context. To evaluate the tracker, a benchmark dataset was augmented with a new set of clutter sub-attributes. Using this dataset, it was demonstrated that the proposed method outperforms other state-of-the-art single target trackers on highly cluttered scenes
    • …
    corecore