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Abstract

In this chapter we present a hidden Markov model (HMM) based framework for situational
awareness that utilizes multi-sensor multiple modality data. Situational awareness is a pro-
cess that comes to a conclusion based on the events that take place over a period of time across
a wide area. We show that each state in the HMM is an event that leads to a situation and the
transition from one state to another is determined based on the probability of detection of
certain events using multiple sensors of multiple modalities - thereby using sensor fusion for
situational awareness. We show the construction of HMM and apply it to the data collected
using a suite of sensors on a Packbot.

1. Introduction

Situational awareness (SA) is a process of conscious effort to process the sensory data to ex-
tract actionable information to accomplish a mission over a period of time with or without
interaction with the sensory systems. Most of the information is time dependent and they
usually follow a sequence of states. This is where the Markov or hidden Markov models are
useful in analyzing the data and to extract the actionable information from the sensors. To
gain better understanding, the following section would elaborate on situation awareness.

1.1 Situation Awareness

Situational awareness means different things to different people. Experience plays a great role
in the situational awareness. Based on one’s experience, the interpretation of the situation will
be different. For example, in the case of animal world, the situation assessment by the predator
and prey will be different. The predator assesses the situation based on the past experience,
circumstances, etc., and determines when to strike. Similarly, the prey assesses its situation
based on its experience and determines the best route to take to escape from the imminent
danger. The origins of SA are in the military (Smith, 2003) back in 1970’s. Initial work is done
in the area of analyzing and understanding what a pilot is observing and how he is making
decisions based on the data provided to him in the cockpit and what he/she is able to observe
outside through the windows. Some of it resulted in the design of modern cockpit and flight
training facilities. The US Army defines the SA as!:

Ihttp://www.army.mil/armyBTKC/focus/sa/index.htm
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180 Sensor Fusion and Its Applications

Situational Awareness is the ability to generate actionable knowledge through the use of
timely and accurate information about the Army enterprise, its processes, and external
factors.

Endsley and Garland (Endsley & Mataric, 2000) defines SA as “SA is knowing what is go-
ing around you". There is usually a torrent of data coming through the sensors, situational
awareness is sifting through all that data and extracting the information that is actionable and
predicting the situation ahead. The awareness of the situation ahead lets one plan the data
collection from the right set of sensors. SA allows selective attention to the information. Some
other pertinent definitions are provided here (Beringer & Hancock, 1989):

SA requires an operator to “quickly detect, integrate and interpret data gathered from the
environment. In many real-world conditions, situational awareness is hampered by two
factors. First, the data may be spread throughout the visual field. Second, the data are
frequently noisy” (Green et al., 1995).

Situation awareness is based on the integration of knowledge resulting from recurrent
situation awareness (Sarter & Woods, 1991).

“Situation awareness is adaptive, externally-directed consciousness that has as its prod-
ucts knowledge about a dynamic task environment and directed action within that envi-
ronment”(Smith & Hancock, 1995).

In a sensor world, situation awareness is obtained by gathering data using multi-modal mul-
tiple sensors distributed over an area of interest. Each modality of sensor obtains the data
within its operating range. For example video observes the data within its field of view.
Acoustic sensors record the sound within its audible (sensitive) range. In this chapter, several
sensor modalities will be considered and the data they present. Proper information from each
sensor or from a combination of sensors will be extracted to understand the scene around.
Extraction of the right information depends mostly on previous knowledge or previous situa-
tion awareness. Understanding of the contribution of each sensor modality to the SA is key to
the development of algorithms pertinent to the SA. Clearly, the information one would like to
obtain for SA depends on the mission. In order to help us better understand the functionality
of each modality, three different missions are considered as exemplars here, namely, (a) urban
terrain operations, (b) difficult terrain such as tunnels, caves, etc., and (c) battlefield.

1.1.1 Urban Terrain Operations

Since World War II, nation building after war has become a common practice, partly, to ensure
the vanquished country does not become a pariah nation or some dictator does not take hold
of the country. After World War II, Marshal plan was developed to help the countries. Re-
cently, after Iraq war, coalition partners (US and UK) stayed back in Iraq to facilitate smooth
functioning of the Iraqi government. However, the presence of foreign troops always incite
mixed feelings among some people and may become the cause for friction resulting in urban
war or operations. Moreover by year 2020, 85% of world’s population live in the coastal cities
(Maj. Houlgate, 2004) which cause friction among various ethnic groups that call for forces to
quite the upraising necessitating the urban military operations. In general, the urban opera-
tions include (Press, 1998):

* Policing operations — to deter violence
¢ Raids

www.intechopen.com



Hidden Markov Model as a Framework for Situational Awareness 181

Evacuation of embassies

Seize ports and airfields

Counter weapons of mass destruction (WMD)

Seize enemy leaders

e Sustained urban combat

From the above list of operations that may take place in an urban area, clearing of buildings
and protecting them is one of the major missions. Often, once a building is cleared, one may
leave some sensors in the building to monitor the building for intruders. Another important
operation is perimeter protection. In the case of perimeter protection, several sensors will
be deployed around the perimeter of a building or a place. These sensors detect any person
approaching the perimeter and report to the command center for further investigation and
action. Next we consider operations in difficult terrain.

1.1.2 Operations in Difficult Terrain

In general, terrorists take advantage of the rugged terrain and often hide in the caves in the
mountain range or bunkers in the ground. There are too many hiding places and one can not
just walk in to these areas without risking their own lives. The operations required in these
areas are quite different from those conducted in the urban areas. Often, one would send a
robot equipped with sensors to monitor if there is any human activity in the caves/tunnels or
to find any infrastructure, man made objects, etc.

Borders between warring nations and between rich and poor nations have become porous
for illegal transportation of people, drugs, weapons, etc. Operations in these areas include:
(a) detection of tunnels using various sensing modalities and (b) making sure that the tunnels
remain cleared once they are cleared. Detection of tunnels require different kind of sensors.

1.1.3 Operations in open battlefield

This is the traditional cold war scenario where the war is fought in an open area. Here the situ-
ation awareness requires knowing where the enemy is, how big is the enemy, where the firing
is coming from, and the type of weapons used, etc. Furthermore, one would like to know,
not only the firing location but also the impact point of the mortars and rockets. The launch
location helps in taking action to mitigate the enemy and its firing weaponry, etc., and the
knowledge of impact location helps in assessing the damage to provide the necessary medical
and other support to control and confine the damage.

Clearly, the requirements for different operations are different. To be successful in the oper-
ations, one need to have a clear understanding of the situation. Situation awareness comes
from the sensors deployed on the ground and in the air, and human intelligence. The sensor
data is processed for right information to get the correct situation awareness. The next section
presents various sensors that could be used to monitor the situation.

1.2 Sensor Suite for Situational Awareness

Traditionally, when the subject of sensors comes up, immediately, Radar, and video sensors
come to one’s mind. With the advent of very large scale integrated (VLSI) circuits, other sen-
sor modalities have been developed and used extensively in modern times. Main reasons for
development of new sensor modalities are: (a) limited capability of existing sensors, (b) high
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182 Sensor Fusion and Its Applications

power consumption by traditional sensors, (c) wide area of operation requiring many sensors,
(d) limited field of view by Radar and video and (e) new modalities offer better insight in to
the situation. Most of the sensors for situation awareness are deployed in an area of interest
and left there for days, weeks, and months before attending to them. This necessitated the
need for low power, low cost and large quantities of sensors that could be deployed in the
field.

Now, we will present some of the sensors that may be deployed in the field and discuss their
utility.

(a) (b)

Fig. 1. (a) Single microphone and (b) an array (tetrahedral) of microphones

Acoustic Sensors: While the imaging sensors (for example: camera, video) act as the eyes, the
acoustic sensors fulfill the role of ears in the sensing world. These microphones capture the
sounds generated by various events taking place in their vicinity, such as, a vehicle traveling
on a nearby road, mortar/rocket launch and detonations, sound of bullets whizzing by and
of course sounds made by people, animals, etc., to name few. These are passive sensors, that
is, they do not transmit any signals unlike the Radar, hence they can be used for stealth op-
erations. There are several types of microphones, namely, condenser, piezoelectric, dynamic,
carbon, magnetic and micro-electro mechanical systems (MEMS) microphones. Each micro-
phone has its own characteristic response in terms of sensitivity to the sound pressure and the
frequency of operation. Each application demands a different type of microphone to be used
depending on the signals that are being captured by the microphone. For example, detection
of motor vehicles require the microphones that have the frequency response equal or greater
than the highest engine harmonic frequency. On the other hand to capture a transient event
such as a shock wave generated by a super sonic bullet require a microphone with frequency
response of 100 kHz or more. When the microphones are used in an array configuration, such
as, linear, circular or tetrahedral array, the signals from all the microphones can be processed
for estimating the angle of arrival (AoA) of the target. Figure 1 shows a single microphone
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Hidden Markov Model as a Framework for Situational Awareness 183

and a tetrahedral array. The microphones in the tetrahedral array Figure 1b are covered by
foam balls to reduce the wind noise.

Seismic Sensors: These are also called geophones. These sensors are used to detect the vibra-
tions in the ground caused by the events taking place in the sensing range of the sensors. Just
as in the case of acoustic sensors, the seismic sensors are passive sensors. Typical applications
for these sensors include (a) detection of vehicles (both civilian and military vehicles) by cap-
turing the signals generated by a moving vehicles, (b) perimeter protection — by capturing the
vibrations caused by footsteps of a person walking, (c) explosion, etc. The Indonesian tsunami
in December 2004 was devastating to the people. However, several animals sensed the vibra-
tions in the ground caused by the giant waves coming to the shore and ran to the hills or
elevated areas and survived the tsunami. Figure 2 shows different seismic sensors. The spikes
are used to couple the the sensor to the ground by burying the spikes in the ground.

\

Fig. 2. Different seismic sensors

Magnetic Sensors: Magnetic (B-field) sensors can be used to detect ferromagnetic materials
carried by people, e.g., keys, firearms, and knives. These sensors may also detect the usage of
computer monitors. There are several types of magnetic sensors, namely, (a) flux gate magne-
tometer and (b) coil type magnetic sensor. The coil type magnetic sensor has high frequency
response compared to the flux gate magnetometer. One can use multiple sensors in order to
detect the flux change in all three X, Y and Z directions. The sensitivity of the magnetic sensor
depends on the type and as well as the construction of the sensor. Figure 3 shows two types
of magnetic sensors.

(9]

Fig. 3. (a) Flux gate magnetometer, (b) Coil type magnetic sensor
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184 Sensor Fusion and Its Applications

Electrostatic or E-field Sensors: These are passive sensors that detect static electric charge
built-up on the targets or any electric field in the vicinity of the sensor. Some of the sources
of the static electric charge are (a) clothes rubbing against the body, (b) combing hair, and
(c) bullet or projectile traveling in the air builds up charge on the bullet, etc. All the electric
transmission lines have electric field surrounding the lines — this field gets perturbed by a
target in the vicinity — and can be detected by E-field sensors. Figure 4 shows some of the
E-field sensors that are commercially available.

Fig. 4. E-field sensors

Passive Infrared (PIR) Sensor: These are passive sensors that detect infrared radiation by the
targets. These are motion detectors. If a person walks in front of them, the sensor generates an
output proportional to the temperature of the body and inversely proportional to the distance
between the person and the sensor. Figure 5 shows a picture of PIR sensor.

Fig. 5. Passive Infra Red sensor

Chemical Sensor: These sensors are similar to the carbon monoxide detectors used in build-
ings. Some of the sensors can detect multiple chemicals. Usually, these sensors employ sev-
eral wafers. Each wafer reacts to a particular chemical in the air changing the resistivity of the
wafer. The change in the resistivity in turn changes the output voltage indicating the presence
of that chemical.
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Infra Red Imagers: There are several IR imagers depending on the frequency band they op-
erate at, namely, long wave IR, medium wave IR, and forward looking infrared (FLIR). These
sensors take the thermal image of the target in their field of view. A typical IR imager’s picture
is shown in Figure 6.

Fig. 6. Visible and IR cameras

Visible Imagers: These are regular video cameras. They take the pictures in visible spectra
and have different resolution and different field of view depending on the lens used. Figure 6
shows a picture of a typical video camera.

In the next section, we present the description of the unattended ground sensors.

1.2.1 Unattended Ground Sensors

A typical unattended ground sensor (UGS) is a suite of multi-modal sensor package with a
processor facilitating the collection of data from all the sensors and having a capability to pro-
cess the data and extracting the information relevant to the mission. A typical UGS sensor
consists of acoustic, seismic, magnetic and both IR and visible cameras. The non-imaging
sensors are often called activity detection sensors. As the name implies, these sensors are
utilized to detect any activity within the receptive field of the sensors, such as a person walk-
ing/running, vehicle moving, etc. Once the activity sensors detect a target, they cue the imag-
ing sensors to capture a picture of the target which will be sent to the command control center.
Target/activity detection algorithms run on the processor in the UGS system. There are al-
gorithms running when to cue the imagers and which one of the pictures to transmit to the
command and control center in order to reduce the bandwidth of the communication channel.
In general activity detection sensors consume low power, hence reduce the power consump-
tion by the UGS prolonging the battery life.

UGS are in general placed in the area of interest conspicuously and left to operate for sev-
eral days or months. In general these are low power sensors that meant to last for several
days or months before replacing the batteries. There are several manufacturers that make the
UGS systems.
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186 Sensor Fusion and Its Applications

1.3 Techniques for Situational Awareness

In order to assess the situation, sensor information is needed. Based on the history of sensor
information/output when a particular event took place, one can infer same event has taken
place if similar information/output is observed. Such inference can be made using Bayesian
nets or hidden Markov model. If several events are observed in sequence, then such a se-
quence of events can be modeled using Markov or Hidden Markov chain. In the following
subsection, both Bayesian nets and Hidden Markov models will be described.

1.3.1 Bayesian Belief Networks

Bayesian belief networks (BBN) are directed acyclic graphical networks with nodes repre-
senting variables and arcs (links between nodes) representing the dependency relationship
between the corresponding variables. Quite often, the relationship between the variables is
known but can not quantify it in absolute terms. Hence, the relationship is described in prob-
abilistic terms. For example, if there are clouds then there is a chance of rain. Of course, there
need not be rain every time a cloud is formed. Similarly, if a person walks in front of a seismic
sensor, the sensor detects periodic vibrations caused by footfalls, however, if periodic vibra-
tions are observed it does not mean there is a person walking. One of the uses of BBN is in
situations that require statistical inference.

Bayesian methods provide a way for reasoning about partial beliefs under conditions of un-
certainty using a probabilistic model, encoding probabilistic information that permits us to
compute the probability of an event. The main principle of Bayesian techniques lies in the
inversion formula:

ple[H)p(H)

p(Hle) = =7

where H is the hypothesis, p(e|H) is the likelihood, p(H) is called the prior probability, p(H|e)
is the posterior probability, and p(e) is the probability of evidence. Belief associated with the
hypothesis H is updated based on this formula when new evidence arrives. This approach
forms the basis for reasoning with Bayesian belief networks. Figure 7 show how the evidence
is collected using hard and soft methods.

Nodes in Bayesian networks (Pearl, 1986; 1988) represent hypotheses, and information is
transmitted from each node (at which evidence is available or belief has been updated) to
adjacent nodes in a directed graph. Use of Bayesian rule for large number of variables require
estimation of joint probability distributions and computing the conditional probabilities. For
example, if no assumption on the dependencies is made, that is, all variables are dependent
on each other, then

p(A,B,C,D,E) = p(A[B,C,D, E) p(BIC, D, E) p(C|D, E) p(DIE) p(E) M

If the dependencies are modeled as shown in Figure 8, then the joint probability distribution
is much simpler and is given by

p(A,B,C,D,E) = p(A|B) p(BI|C, E) p(C|D) p(D) p(E) @

Let G(V,E) is a directed acyclic graph with a set of vertices V = {vq,vp,--- ,v,} and a set
of edges E = {61,2,61,3, e ,e,-,]-}, withi # j € {1,2,---,n}. Note that the directed edge €
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Fig. 7. Evidence Collection for Situational Awareness
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Fig. 8. Node dependency in a BBN

connects the vertex v; to vertex v; and it exists if and only if there is a relationship between
nodes v; and v;. Node v; is the parent of node v; and v; is the descendant of node v;. Let us
denote the random variable associated with the node v; by Xy,. For simplicity, let us denote
X; = Xy,. Let pa(v;) denote the parent nodes of the node v;. For a Bayesian belief network the
following properties must be satisfied:

¢ Each variable is conditionally independent of its non-descendants

¢ Each variable is dependent on its parents
This property is called the local Markov property. Then the joint probability distribution is given
by

n

p(Xi,Xo,- -, Xn) =[] p(Xi| pa(X;)) 3)
=1
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Now it is possible to associate meaning to the links in the Bayesian belief network and hence
what we need to specify to turn the graphical dependence structure of a BBN into a proba-
bility distribution. In Figure 8 the nodes labeled ‘sound” and ‘human voice” are related. The
node ‘sound’ is the parent node of ‘human voice” node since without sound there is no human
voice. The link shows that relation. Similarly nodes in Figure 8 are related to others with cer-
tain probability. Each node in the BBN represents a state and provides the situation awareness.

A closely related process to BBN is a Markov process. Both Markov and Hidden Markov
process are presented in the next section.

1.3.2 Markov & Hidden Markov Models (HMM)
In probability theory, people studied how the past experiments effect the future experiments.
In general, the outcome of the next experiment is dependent on the outcome of the past ex-
periments. For example, a student’s grades in the previous tests may affect the grades in the
final test. In the case of student grades, a teacher might have specified a particular formula
or weightage given to each test for assessing the final grade. However, if the experiments are
chance experiments, prediction of the next experiment’s outcome may be difficult. Markov
introduced a new chance process where the outcome of the given experiment only influences
the outcome of the next experiment. This is called the Markov process and is characterized
by:

P(Xn| Xn—1,Xn—2," " 1X1) = p(Xn| Xn—l) (4)
In real world situations, the Markov process occurs quite frequently, for example, rain falls
after clouds are formed.

One of the important application of Markov model is in speech recognition where the states
are hidden but the measured parameters depend on the state the model is in. This important
model is called the hidden Markov model (HMM). A more detailed description of the model
is presented in the next section.

2. Hidden Markov Model

Consider a scenario, where there are several sensors deployed along a road as shown in Fig-
ure 9. These sensors could be acoustic, seismic, or video sensors. For the sake of discussion,
let us assume they are acoustic sensors. In the case of a tracked vehicle, for example, a tank,
the track makes slap noise as each segment (shoe) of the track slaps the road as it moves. The
engine of a vehicle has a fundamental frequency associated with the engine cylinder’s firing
rate and its harmonics will be propagated through the atmosphere. The tires make noise due
to friction between the road and the tire. These sounds will be captured by the sensors. The
sound level decreases inversely proportional to the distance R between the vehicle and the
sensor. Moreover, there is wind noise that gets added to the the vehicle sound. As a result
each sensor records the vehicle sound plus the noise as voltage; generated by the microphone
associated with the sensor. Let us assume that each sensor is capable of recording ‘M’ discrete
levels of voltage V = {vy,vp,---,vp} where V is called the alphabet. In this experiment,
let us assume only one vehicle is allowed to pass at a time. After the first vehicle completes
its run, the second vehicle is allowed to pass, and so on till all the vehicles complete their
runs. Let the experiment consist of using some random process for selecting initial sensor.
An observation is made by measuring the voltage level at the sensor. A new sensor is se-
lected according to some random process associated with the current sensor. Again another
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Fig. 9. Vehicle Identification

observation is made. The process is repeated with other sensors. The entire process gener-
ates a sequence of observations O = O1,0,,---,0)p;, where O; € V. This is similar to the
urn and ball problem presented in (Rabiner, 1989). One of the problems could be; given the
observation sequence, what is the probability that it is for car, truck or tank?

An HMM in Figure 10 is characterized by (Rabiner, 1989):

a;
S \Y E ] S S
1 aﬂ J N

Fig. 10. An hidden Markov model

1. The number of states N. Let S denote the set of states, given by, S = {S1,52,--- ,Sn}
and we denote the state at time t as q; € S.

2. Size of the alphabet M, that is, the number of distinct observable symbols
V= {01/02/' o rvM}'

3. The state transition probability distribution A = {ai]-} where

aij:P[th:Sth:Si]r1§i'f§N' ®)
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4. The probability distribution of each alphabet v} in state j, B = {bj(vk) }, where
bj(vk):P[vkatht:Sj],1§j§N;1§k§M. ©6)

5. The initial state distribution 77 = {7r;} where
mi=Plgp=5], 1<i<N. 7)

Clearly, the HMM is completely specified if N, M, A, B, 7t are specified and it can be used to
generate an observation sequence O = 01,03, - - - ,Or (Rabiner, 1989). Three questions arise
with HMMs, namely,

* Question 1: Given the observation sequence O = 01,0, - ,0T, and the model A =
{A, B, t}, how does one compute the P (O | A), that is, the probability of the observa-
tion sequence,

* Question 2: Given the observation sequence O = O1,0,,---,0r, and the model A,
how does one compute the optimal state sequence Q = 414> - - - g7 that best explains
the observed sequence, and

* Question 3: How does one optimizes the model parameters A = {A, B, 7t} that maxi-
mizes P (O | A).

Getting back to the problem posed in Figure 9, we will design a separate N-state HMM for
each vehicle passage. It is assumed that the vehicles travel at near constant velocity and the
experiment starts when the vehicle approaches a known position on the road. For training
purposes the experiment is repeated with each vehicle traveling at different positions on the
road, for example, left, right, middle or some other position. Now, for each HMM a model has
to be built. In section 3.4 we show how to build an HMM. This is same as finding the solution
to the question 3. Answer to question 2 provides the meaning to the states. Recognition of the
observations is given by the solution to the question 1.

2.1 Solutions to the questions
In this section we will provide the answer to question 1 as it is the most important one that

most of the practical situations demand. The answers to the other questions can be found in
reference(Rabiner, 1989) or books on HMM.

Solution to Question 1: Given the observation sequence O and the model A, estimate P(O | A).
Let the observed sequence is
O =01,0---,07

and one specific state sequence that produced the observation O is

Q: q1,92,° -, 49T

where ¢, is the initial state. Then

T
P(O[QA)=]]P(O:]guA 8)
t=1
Invoking (6) we get
p (O | Q//\) = bﬂh(ol> ' bQZ<OZ) e bQT(OT)' (9)
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The probability of the state sequence Q can be computed using (5) and (7) and is given by

p (Q | A) = 712919299295 " * * Aqr_1q7- (10)
Finally, the probability of the observation sequence O is obtained by summing over all possible
Q and is given by
PO]A)= ¥ P(O]QA) PQ|A) (1)
all Q
There are efficient ways to compute the probability of the observation sequence given by (11)
which will not be discussed here. Interested people should consult (Rabiner, 1989).

3. HMM framework for Situational Awareness

One of the advantages of using multiple sensors with multiple modalities is to detect vari-
ous events with high confidence. Situational awareness is achieved based on the sequence of
events observed over a period of time. These events may take place in a closed area or on a
wide area. In the case of wide area, one would require multiple sensors distributed over the
entire region of interest. Situational awareness leads to better response in a timely manner
either to mitigate the situation or to take appropriate action proactively rather than reactively.
Since the situational awareness is achieved based on the sequence of events observed - hid-
den Markov model (HMM) (Rabiner, 1989) is ideally suited. Researchers used HMM for sit-
uational awareness for traffic monitoring (Bruckner et al., 2007) and learning hand grasping
movements for robots (Bernardin et al., 2003).

Sensor fusion is supposed to lead to a better situational awareness. However fusion of multi-
modal data is a difficult thing to do as there are few joint probability density functions exist for
mixed modalities. Fusion mostly depends on the application at hand. The problem is further
complicated if one has to fuse the events that take place over a period of time and over a wide
area. If they are time dependent, relevance of the data observed at different times become an
issue. We opted to do fusion of information, that is, probability of detection of an event. In
a majority of the cases Bayesian networks (Singhal & Brown, 1997; 2000) are used for fusion.
In this chapter we use Dempster-Shafer fusion (Hall & Llinas, 2001; Klein, 2004) for fusion of
multi-modal multi-sensor data.

3.1 Example scenario for Situational Awareness in an urban terrain

Some of the situational awareness problems that may be of interest are discussed here. In
a situation where we are monitoring a building (Damarla, 2008), we would like to know if
there is any activity taking place. In particular, we placed a robot inside an office room (in
stealth mode, various sensors will be placed and camouflaged to avoid detection) as shown
in Figure 11.

Figure 12 shows the robot with 4 microphones, 3-axis seismic sensor, PIR, chemical sensor, 3
coil type magnetometer (one coil for each axis X, Y and Z ), three flux gate magneto meter,
3-axis E-field sensor, visible video and IR imaging sensors. The goal is to assess the situation
based on the observations of various sensor modalities over a period of time in the area cov-
ered by the sensor range. We enacted the data collection scenario with several features built-in
to observe the happenings inside the office room and assess the situation.
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Robot with sensors

Path.---~~

Fig. 11. Robot full of sensors monitoring activities in an office room

Fig. 12. Robot with different sensors

Data Collection Scenario:

* A person walks into the office room - this triggers PIR, B & E-field and seismic sensors.
* She occasionally talks - the acoustic sensor picks up the voice.
* She sits in front of a computer.

¢ She turns on the computer.
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— B & E-field sensors observe the power surge caused by turning on the computer.
— Acoustic sensors observe the characteristic chime of Windows turning on.
— The person’s movements are picked up by the PIR sensor.

— Visible video shows a pattern on the computer screen showing activity on the
computer.

— The IR imager picks up the reflected thermal profile of the person in front of the
monitor.

* She types on the keyboard - sound is detected by the acoustic sensor.

* She turns off the computer.

- Windows turning off sound is observed by the acoustic sensor.

— The power surge after shutdown is observed by the B-field sensor.

In the next section we present the data from various sensors and show the events detected by
each sensor and also present some of the signal processing done to identify the events.

3.2 Processing of sensor data for information

We process the data from sensors in order to extract the features corresponding to various
events - depending on the situation and application these extracted features will be different
even for the same sensor, e.g., voice versus chime.

Acoustic sensor data analysis: In the case of acoustic sensors, we try to look for any hu-
man or machine activity - this is done by observing the energy levels in 4 bands, that is, 20 -
250Hz, 251 - 500Hz, 501 - 750Hz and 751 - 1000Hz corresponding to voice indicative of human
presence. These four energy levels become the feature set and a classifier (Damarla et al., 2007;
2004; Damarla & Ufford, 2007) is trained with this feature set collected with a person talking
and not talking. The algorithm used to detect a person is presented in the references (Damarla
et al., 2007; 2004; Damarla & Ufford, 2007) and the algorithm is provided here.

Classifier: Let X = [X1,Xp, -, XN]T is a vector of N features, where T denotes the trans-
pose. Assuming they obey the normal distribution, then the multi-variate normal probability
distribution of the pattern X is given by

1

PO = s e {1200 T (X},

where the mean, M and the covariance matrix X are defined as

M= E{X} = [my,my, - ,mn]"

011 012 - UIN
T=E{(X-Mmx-mTp=| 7 2N
ON1 ON2 -°* OUNN

and 0y = E {(xp —mp) (xg — mq)T} , 1,9 =1,2,---,N. We assume that for each category

i, wherei € {1,---,R}, R denotes the number of classes (in our case R = 2, person present
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and person not present), we know the a priori probability and the particular N-variate normal
probability function P {X | 7). That is, we know R normal density functions. Let us denote the
mean vectors M; and the covariance matrices X; fori = 1,2, - - , R, then we can write

) 1 1 _
p (X | 1) = (27T)N/2 |Z"1/2 exp {_E (X - Mi)Tz‘j ! (X - Mz)} (12)

where M; = (mj,mjp, -+ ,m;N). Let us define Hy and H; as the null and human present
hypotheses. The likelihood of each hypothesis is defined as the probability of the observation,
i.e., feature, conditioned on the hypothesis,

iy (Xs) = p (Xs | Hy) (13)

forj =1,2and s € S, where S ={acoustic, PIR, seismic}. The conditional probability is mod-
eled as a Gaussian distribution given by (12),

p (Xs | Hj) =N (Xs;yslj, USZJ) . (14)

Now, (13)-(14) can be used to determine the posterior probability of human presence given a
single sensor observation. Namely,

. B In, (Xs) p (Hy)
p(Hi| Xs) = I, (Xs) p (Ho) + g, (Xs) p (H1)

where p(Hp) and p(Hj) represent the prior probabilities for the absence and presence of a
human, respectively. We assumes an uninformative prior, i.e., p(Hp) = p(Hy) = 0.5.

(15)

In the office room scenario, we are looking for any activity on the computer - the Windows
operating system produces a distinct sound whenever a computer is turned on or off. This
distinct sound has a 75-78Hz tone and the data analysis looks for this tone. The acoustic data
process is depicted in the flow chart sown in Figure 13 and Figure 14 shows the spectrum of
the acoustic data when a person is talking and when Windows operating system comes on.
The output of the acoustic sensor is P;, i = 1,2,3, corresponding to three situations, namely,
(i) a person talking, (ii) computer chime and (iii) no acoustic activity.

Voice, - Human
Man-made | Energyin Probability of | Activity
sound different spectral 4
human activity
bands

Acoustic
data

Remove
Background/
Platform noise

— Computer
Noise 76 - 78 Hz Probability of On/Off
Machine
signature
Training Set

Fig. 13. Flow chart for acoustic sensor data analysis
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Fig. 14. Spectrum of voice and computer chime

Seismic Sensor Data Analysis: We analyze the seismic data for footfalls of a person walking.
The gait frequency of normal walk is around 1-2Hz. We use the envelope of the signal instead
of the signal itself to extract the gait frequency (Damarla et al., 2007; Houston & McGaffigan,
2003). We also look for the harmonics associated with the gait frequency. Figure 15 shows the
flow chart for seismic data analysis. We use the 2-15Hz band to determine the probability of
person walking in the vicinity. The seismic sensor provides two probabilities, (i) probability
of a person walking and (ii) probability of nobody present.

Footfalls,
man-made
vibrations
Human
— ‘Remove Cait Prob. of Activity
date B_ackgruundf Analysis Human
Platform noise {2-15Hz) aCtWItV
Noise Spec. Tralnlng set

Fig. 15. Flow chart for seismic sensor data analysis

PIR sensor data analysis: These are motion detectors, if a person walks in front of them, they
will give an output proportional to the temperature of the body and inversely proportional to
the distance of the person from the sensor. Figure 16 shows the PIR sensor data collected in the
office room. Clearly, one can see a large amplitude when a person walked by the sensor. The
smaller amplitudes correspond to the person seated in the chair in front of the computer and
moving slightly (note that the chair is obstructing the full view of the person) and only part
of the body is seen by the PIR sensor. In order to assess the situation, both seismic and PIR
sensor data can be used to determine whether a person entered the office room. The seismic
sensor does not require line of sight unlike the PIR sensor - they complement each other.
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PIR DATA IN OFFIGE ROOM
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Fig. 16. PIR sensor output

Magnetic sensor (B-field sensor) Data Analysis: We used both Flux gate and coil magne-
tometers. The former has low frequency response while the coil magnetometer provides high
frequency response. A total of six sensors: three flux gate magnetometers, one for each direc-
tion X, Y, and Z and three coil magnetometers were used. The coil magneto-meters are placed
in X, Y, and Z axes to measure the magnetic flux in respective direction. Figure 17 shows
clearly the change in magnetic flux when a computer is turned on and off. Similar signals are
observed in Y and Z axes.

E-Field Sensor data analysis: We used three E-field sensors - one in each axis. The output
of X-axis E-field sensor data is shown in Figure 18. A spike appears when the computer is
turned on in the E-field sensor output, however, we did not observe any spike or change in
amplitude when the computer is turned off.

Visible and IR imaging sensors: Several frames of visible and IR images of the office room
and its contents are taken over a period of time. In this experiment, the images are used to
determine if the computers are on or off and if anybody is sitting in front of the computer
to assess the situation. Due to limited field of view of these sensors, only a partial view of
the room is visible — often it is difficult to observe a person in the room. Figure 19 shows a
frame of visible image showing only the shoulder of a person sitting in front of a computer.
Figure 20 shows an IR frame showing a thermal image of the person in front of the computer
due to reflection. Most of the thermal energy radiated by the person in front of the computer
monitor is reflected by the monitor and this reflected thermal energy is detected by the IR
imager. The IR imager algorithm processes the silhouette reflected from the monitor — first
Hough transform (Hough, 1962) is used to determine the line patterns of an object and then
using elliptical and rectangular models to detect a person (Belongie et al., 2002; Dalal & Triggs,
2005; Wang et al., 2007) in front of the monitor and provide the probability of a person being
present in the room. The visible imager algorithm determines the brightness of the monitor
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Fig. 18. E-field sensor output in X

and varying patterns and provides the probability that the computer is on. In the next section

we present the framework for HMM.

In the next section 3.3, we present an HMM with hypothetical states and how they can be

reached based on the information observed. Although we present that these states are deter-

mined based on the output of some process, hence making them deterministic rather than the
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Fig. 20. IR image frame showing thermal reflection of person in front of the computer

hidden states, it is shown like this for conceptual purposes only. In section 3.4 we present the
HMM where the states are hidden and can be reached only by particular observations.

3.3 Relation between HMM states and various states of Situational Awareness
Based on the situation we are interested in assessing, the HMM is designed with four states
as shown in Figure 21. The states are as follows:

e S, denotes the state when there is no person in the office room,
0 P
¢ 51 denotes the state when a person is present in the office room,
* 5, denotes the state when a person is sitting in front of a computer and

¢ 53 denotes the state when a computer is in use.
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The above mentioned states are just a sample and can be extended to any number based on
the situation one is trying to assess on the basis of observations using multi-modal sensors.
We now discuss how each state is reached, what sensor data is used and how they are used.
This also illustrates that the HMM also achieves the sensor fusion as each state transition is
made on the observations of all or a subset of sensors.

O
CER R E S

No person Person Person Computer
in the Office in the Office sitting in in use
front of
computer

Fig. 21. Various states of HMM

State Sy: This is the initial state of the HMM. We use acoustic, seismic, PIR and visible video
data to determine the presence of a person. Each sensor gives probability of detection, prob-
ability of no detection and confidence level denoted by (Pd, Pnd, Pc) as shown in Figure 22.
These probabilities are fused using the Dempster-Shafer (Hall & Llinas, 2001; Klein, 2004) fu-
sion paradigm to determine the overall probability. There will be transition from state Sy to
S, if this probability exceeds a predetermined threshold otherwise it will remain in state Sy.
The Dempster-Shafer fusion paradigm used is presented here.

AC data Prob. of
Voice ;
analysis eean
(P»Ca)
T
; — % % 2
Sei. data | Foot - falls Prob. of 2
— Analysis — Person — 2 Prob. of
Gait Freq. (Ps,C.) 2 Person
£
PIR data [ amplitude Prob. of =
— above —+ Person —*+ 3§
threshold (Pp.Cp) 3
a
Video data Prob. of
Motion :
Detection e
\—/ (PV’CV)

Fig. 22. Data processing in state Sy

Dempster-Shafer fusion rule: To combine the results from two sensors (s and s;), the fusion
algorithm uses the Dempster-Shafer Rule of combination (Hall & Llinas, 2001; Klein, 2004):
The total probability mass committed to an event Z defined by the combination of evidence
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represented by s1(X) and s, (Y) is given by

512(2) =s1(Z) ®52(Z) =K ) s1(x)s2(Y) (16)
XAY=Z

where © denotes the orthogonal sum and K the normalization factor is:

Kh=1- Y s1(X)s(Y) (17)
XNY=¢

This is basically the sum of elements from the set of Sensor 1 who intersect with Sensor 2 to
make Z, divided by 1 minus the sum of elements from s; that have no intersection with s,.
The rule is used to combine all three probabilities (Pd, Pnd, Pc) of sensors s; and s,. The re-
sultant probabilities are combined with the probabilities of the next sensor.

State Sq: This is the state when there is a person in the room. There are three transitions
that can take place while in this state, namely, (1) transition to state Sy, (2) transitions back to
state Sg and (3) stays in the same state.

AC data Petection of) [ Prob.of )
Chime [—{Comp. turn—+
(75-78H2)J L on (Pa,Ca))

L

)\ 4 3
Mag. dataDetection of Prob. of .E
—| shiftin [ Comp. turn— 5 Prob. of
field ] |on(P,Cy)) 5 Person
- N ~ 'S in front of
E-field. etection of Prob. of T Comp.
= spikein [+ Comp. turn [ =
data field y Lon (Pesce)J ‘g
) ~ 'S A E
Video. SiEaihGE Prob. of g

Comp. turn —

windows
Lon (P,,C,) )

A

data

i

. ™\ 4 N
IR image Petection of Prob. of
profile of [—+Comp. turn —

aperson ) | on(P,C) | \__J

i)

data

Fig. 23. Data processing in state S;

Transition to S; happens if any one of the following takes place: (a) if the computer turn on
chime is heard, (b) if magnetic and E-field sensors detect flux change and E-field by the re-
spective sensors, (c) if the IR imager detects an image on the monitor and (d) if the visible
imager detects changing images that appear during the windows turning on process.

Transition to Sg takes place if there is no activity on any of the sensors.
The HMM remain in state S; if there is activity in the PIR, acoustic or seismic but not any

of the events described for the case of transition to S,. Figure 23 shows the data processing in
each sensor modality.
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State S;: This is the state where a person is in front of the computer. The transition from this
state either to S3 or to S; depends on the following: (a) there is keyboard activity or the IR
imager detects a hand on the keyboard and the PIR detects slight motion. S, to Sy takes place
when the computer is turned off - as detected by acoustic and magnetic sensors.

MY
ACdata [ Y ( Prob.of ) £
e— | £ =
Kgﬁ:?t;d — Comp.use [— g
\ J L fP.,C) E
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| e L T |8
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Fig. 24. Data processing in state Sy

State S3: This is the state where the computer is in use. As long as keyboard activity is de-
tected using acoustic and IR imagers the state remains in state S3, if no keyboard activity is
detected, it will transition to S,.

Data processing in state S is shown in Figure 24. Data processing in S3 is straight forward.

We discussed what processing is done at each state and how the probabilities are estimated.
The transition probabilities of HMM are generated based on several observations with people
entering into the computer room, sitting in front of the computer, turning it on, using it for a
period of time, turning it off and leaving the office room.

Data processing of various sensors depends on the state of the machine and the confidence
levels of various sensor modalities are also changed based on the state of the HMM. For ex-
ample, in state S, the PIR sensor output monitoring a person in a chair produces small am-
plitude changes as shown in Figure 16 - in normal processing those outputs will not result
in high probability — however in this case they will be given high probability. In state S3 the
acoustic sensor determines the tapping on the keyboard, this sound is often very light and the
sensor is given high confidence levels than normal. In order to accommodate such varying
confidence levels based on the state — it is necessary the state information should be part of
the processing in a deterministic system. In a HMM where the states are automatically transi-
tion based on the outputs of sensor observations. In the next section 3.4 an HMM is built for
the above problem.
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3.4 Generation of HMM for the Example Scenario
In the previous section, we showed how the states could be set up based on the outputs of
various sensor processes. The processes used are:

Process Output random variable
Acoustic data analysis for human voice Xq
Acoustic data analysis for computer chime X5
Seismic data analysis for footstep detection X3
PIR data analysis Xy
Magnetic sensor data analysis X5
E-field sensor data analysis Xe
Motion detection in imagers X7
Detection of image in IR data Xg

Clearly some processes can be combined to reduce the number of variables. For example,
acoustic and seismic data can be processed together for detection of human presence. Less
number of variables simplify the code table needed to train the HMM. Or one can use the
output of process in Figure 22 as one variable, output of process in Figure 23 as another vari-
able and so on. Let us assume that each variable gives a binary output, that is, in the case of
acoustic data analysis X; = 0 implies no human voice, X; = 1 implying the presence of hu-
man voice. At each instant of time we observe X = {X1, Xp, - - - , Xg} which can take 28 — 256
different values. Each distinct vector X is an alphabet and there are 256 alphabets.

The data collection scenario in section 3.1 is enacted several times and each enactment is made
with some variation. While enacting the scenario, for each time step t, we make an observa-
tion O' = {O},0%,---,0L}, where O; = X;. Each observation O’ is associated with a state
S;, fori € {0,1,2,3,4} based on the ground truth. For example, let the observation at time
step t is Ot = {0,0,1,0,0,0,0,0} is associated with state Sy if there is no person present or
it is associated with state S; if there is person in the room. This is the training phase. This
association generates a table of 9 columns, first 8 columns corresponding to the observations
and the 9" column corresponding to the states.

This table should be as large as possible. Next, the HMM model A = {A, B, 7} will be devel-
oped.

3.5 Computation of transition probabilities for HMM
In this section we estimate the model parameters 71, A, and B. The number of states N = 4 by
design. The number of alphabet, the different possible observations, M = 256.

Estimation of i: 7 = {m;},Vi € {1,2,---,N}, where 7; is the initial state probability dis-
tribution (7) for the state S;, thatis, 77; = p [g1 = S;]. This can be computed by counting how

many times S; has appeared as an initial state. Let this number is denoted by n! and dividing
it by the total number of experiments #,. Then

o
=t (18)
e
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O1 Oy O3 04 O5 0O 0O; Og | State

0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1
1 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 1 2
0 0 0 1 0 0 1 1 3

0 0 1 0 0 0 0 0 0
Table 1. Exemplar observations and the state assignment

Estimation of A: A is the state transition probability distribution A = {aij} where

”ijzp[qu:Sth:Si], 1<i,j<N

In order to compute ajj, we need to estimate how many times the state S; to S i in the Table 1,
let this number is denoted by 7;;. Note that n;; need not be equal to 7;. Then

4 = I (19)
1] - nT
where nt denotes the total number of rows in the Table 1.

Estimation of B: B is the probability distribution of each alphabet vy in state j, B = {b]-(vk) },

where
bj(vk):p[vkattyqt:sj}, 1<j<N;1<k<M.

In order to compute b;(vy), first we count the number of times 7; the state S; has occurred
in Table 1. Out of these count the number of times the pattern vy = {O1,0,,---,0s} has
occurred and denote this number by 7,. Then

n
i) = (20)
Now we have showed how to compute the model A = {A, B, r} and it can be used to de-
termine the state and hence the situation when a new pattern is observed. It is worth noting
several educational institutes have developed HMM packages for the MATLAB programming

language and are available on the Internet HMM Toolbox.
In this chapter we showed how the HMM can be used to provide the situational awareness

based on its states. We also showed how to build a HMM. We showed that fusion happens in
HMM.
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