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ABSTRACT

This thesis investigated single-target tracking of arbitrary objects. Tracking is a difficult

problem due to a variety of challenges such as significant deformations of the target, occlu-

sions, illumination variations, background clutter and camouflage. To achieve robust tracking

performance under these severe conditions, this thesis proposed firstly a novel RGB single-

target tracker which models the target with multi-layered features and contextual information.

The proposed algorithm was tested on two different tracking benchmarks, i.e., VTB and VOT,

where it demonstrated significantly more robust performance than other state-of-the-art RGB

trackers. Proposed secondly was an extension of the designed RGB tracker to handle RGB-D

images using both temporal and spatial constraints to exploit depth information more robustly.

For evaluation, the thesis introduced a new RGB-D benchmark dataset with per-frame anno-

tated attributes and extensive bias analysis, on which the proposed tracker achieved the best

results. Proposed thirdly was a new tracking approach to handle camouflage problems in highly

cluttered scenes exploiting global dynamic constraints from the context. To evaluate the tracker,

a benchmark dataset was augmented with a new set of clutter sub-attributes. Using this dataset,

it was demonstrated that the proposed method outperforms other state-of-the-art single target

trackers on highly cluttered scenes.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Tracking is a fundamental task in computer vision with numerous applications, e.g. motion

analysis, event detection, scene understanding, human-computer interaction, augmented real-

ity and robot navigation. This has motivated extensive research in recent years to improve the

efficiency of automatic target tracking from video sequences [14]. Despite the publication of

numerous tracking algorithms over the last three to four decades [2, 3], visual object track-

ing remains an open and active research area with several remaining unsolved problems, e.g.

significant target deformation, field of view change, illumination variation, background clut-

ter, camouflage and occlusion, which motivates the work of tackling the single-target tracking

problems for arbitrary objects. In the following three subsections, we will present detailed mo-

tivations in three demanding scenarios: tracking arbitrary objects in RGB images; extension to

tracking in RGB-D images; and tracking in scenes where many other objects or image regions

share similar appearance with the target.

1.1.1. A single target tracker in RGB images.

After several decades of visual tracking research, even the most sophisticated trackers are

still prone to failure in challenging scenarios, including clutter and camouflage in one or more

feature modalities, rapid and erratic target motion, occlusions, and targets which change their

shape and appearance over time [1], shown in figure 1.1. These severe tracking conditions
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predominantly result in failures in three fundamental aspects of the tracking algorithms [15]: 1)

the algorithm’s model of the appearance of the target; 2) the mechanisms for matching model

parts to image regions; 3) the mechanism for automatic model adaptation, when the target

changes its appearance over time. Therefore, to tackle such problems in RGB images, it is

important to design a tracker while keeping these three key aspects in mind.

Figure 1.1: Tracking challenges including target significant deformation, illumination change,
motion blur, scale change and occlusion.

1.1.2. A single target tracker in RGB-D images.

To further improve tracking performance, recent work has tried to incorporate additional

features [16, 17]. Due to the proliferation of the affordable depth sensors, like Microsoft Kinect,

Asus Xtion and PrimeSense etc., depth information is attracting growing interest [5]. However,

while RGB features can be comparatively invariant to target motion, depth information can vary

rapidly during target motion. For this reason, many state-of-the-art RGB-D methods [18, 19,

11] rely mainly on RGB data for target tracking, and reserve depth information primarily for

occlusion reasoning. However, in such methods, rapid target motion towards the camera can

be easily mistaken for an occlusion, leading to tracking failure, shown in figure 1.2. Therefore,

how to exploit the depth information in a robust way is an essential but unsolved problem for a

RGB-D tracker.

1.1.3. A single target tracker with scene distractors

Using previously mentioned tracking components (target model, matching method and model

adaptation), a properly designed single target tracker can overcome many conventional chal-

lenges, e.g. significant deformation, illumination change, fast movement etc. However, to
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Figure 1.2: RGB-D tracking of target with large depth variation. Red, blue, green bounding
boxes represent our proposed tracker and the state-of-the-art trackers DS-KCF [10] and PT
[20] respectively. In frame 80, following rapid target depth change, PT [20] falsely reports
“occluded” status (bounding box disappears). In frame 159, DS-KCF [10] falsely reports “oc-
cluded” status, while PT [20] has completely failed and drifted onto background clutter because
of rapid depth change. It is essential to exploit the depth information in a more robust way.

robustly handle occlusion, ambiguity and camouflage problems in highly cluttered scenes, the

tracker should “interact” with contextual information to help differentiate the target from the

background. A particularly difficult problem is how to track a target which moves through

scenes featuring several other very similar objects, or which moves past extremely cluttered or

camouflaged image regions, shown in figure 1.3. In these situations, it is difficult to distinguish

the target using the appearance information solely obtained from the target bounding box. Ad-

ditional information, such as dynamic models of the target and nearby distracting image regions

in the scene, may be useful to support robust tracking.

1.2 Objectives

To tackle the above mentioned problems, we aim at: 1) designing a robust tracker in RGB im-

ages which could adaptively fuse and update multiple features to overcome a variety of difficult

tracking problems, e.g significant target deformation, rapid and erratic target motion, illumina-

tion change and viewpoint change; 2) extending the proposed RGB tracker to handle RGB-D
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Figure 1.3: Sequences with many distractor objects, used in our experiments. Bounding box is
the single target we want to track. It is extremely difficult to distinguish one true target out of
many identical contextual regions.

images by showing how depth information can be robustly combined with RGB information

during tracking; 3) exploiting the contextual information which could handle camouflage prob-

lems in the highly cluttered scenes and providing a deeper analysis of the tracking performance

under those severe situations.

1.3 Contributions

In the light of the objectives in section 1.2, we propose three novel methods which address these

problems: 1) we build multi-layer appearance models, and combine them with clustered deci-

sion trees to tackle the single target tracking problem in RGB images; 2) we extend this RGB

tracking approach to also handle RGB-D data, by exploiting the depth feature with embedded

common-sense knowledge to handle highly dynamic depth feature variation; 3) we show how to

exploit contextual information, by detecting, learning and tracking distractors, to support single

target tracking in extremely cluttered scenes.

We first build a single target tracking algorithm, which achieves state-of-the-art robustness

by addressing the problems in three fundamental areas: target representation, matching method-

ology, and model adaptation. The target is represented at three different layers: pixel layer,

local-parts layer and target layer, shown in figure 1.4. A novel “Adaptive Clustered Decision
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Figure 1.4: Block diagram of the proposed tracking process. 1- tracker propagation by the top
layer foreground information matching; 2- middle layer (target part) matching with clustered
decision tree; 3- update the top layer model; 4- feed back the bottom layer (pixel) feature; 5-
re-sample drifting parts at the middle layer model [1].

Tree” method is proposed to enable robust matching between successive frames by dynami-

cally selecting the minimum combination of necessary features, thereby providing robustness

with computational efficiency. The target model is updated through a closed loop with cross-

constraints between different model layers. We test the tracker using two different tracking

benchmarks [2, 3], based on two different test methodologies, and show it to be more robust

than all other state-of-the-art methods from those tracking challenges while also demonstrating

competitive tracking precision [1].

We extend the proposed 2D RGB tracker to 3D RGB-D images exploring a more robust way

of applying the depth information. Note that the depth information encodes the latent physical

constraints of the object layout which can provide a unique feature for RGB-D tracking, which

is unavailable for RGB tracking. Therefore, a physical constraint of the target with respect to

other objects in the depth context is exploited, to adaptively estimate the range interval occupied

by the target. This physical constraint encodes common-sense knowledge that the target parts

cannot move behind background regions or in front of occluder. Despite the availability of sev-

eral high quality benchmark datasets for RGB tracker evaluation [3, 21, 22, 23], those available

for RGB-D tracker evaluation are far more limited. Therefore, we also construct a new RGB-D
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dataset with extensive bias analysis to facilitate the evaluation in RGB-D images.

We exploit contextual information to solve the problem of tracking a single target which

is camouflaged against scenes containing a large number of similar non-target entities, which

we call distractors. We first propose a multi-level clustering method for online detection and

learning of multiple distractors. To distinguish the target from these distractors, we use global

dynamic constraints (derived from target and distractor information) to optimize the estimated

target trajectory. To gain a deeper understanding of tracker performance on cluttered scenes, we

propose a new set of sub-attributes to describe different kinds of cluttered scenes, and augment

publicly available benchmark data by per-frame annotating all frames of all sequences with

all sub-attributes. Using this dataset, we show that our proposed method outperforms the best

ranked state-of-the-art single target trackers on highly cluttered scenes. We also show that the

proposed method outperforms state-of-the-art multi-target trackers, in scenes where the true

target moves among many other similar objects, even though the multi-target methods are given

significant additional a-priori information about distractors.

For clarity, we itemise the contributions in terms of the tracking algorithms and datasets

below:

A. Tracking algorithms

• An RGB tracker using adaptive clustered decision trees and dynamic multi-layer appearance

models (chapter 3).

• An RGB-D tracker exploiting multi-feature local-global spatio-temporal consistency (chapter

4).

• Distractor-supported single target tracking under extremely cluttered scenes (chapter 5).

B. Tracking datasets

• A new RGB-D benchmark dataset with extensive bias analysis (chapter 4).

• An augmented RGB tracking benchmark dataset with proposed sub-attributes for the clut-

tered scenes (chapter 5).
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1.4 Publications arising from this work

A. Peer-reviewed full-length papers(first-author)

• J. Xiao, R. Stolkin, M. Oussalah, A. Leonardis. Context based model adaptation for tracking

with online weighted color and shape feature. IEEE sensors journal, 2016. (related to

chapter 3)

• J. Xiao, M. Oussalah. Performance Evaluation of Particle Filter Based Visual Tracking.

Journal of Intelligent and Fuzzy Systems, 2016. (related to chapter 3)

• J. Xiao, R. Stolkin, A. Leonardis. Single target tracking using adaptive clustered decision

trees and dynamic multi-level appearance models. CVPR , Boston, U.S.A, 2015. (related

to chapter 3)

• J. Xiao, M. Oussalah. Collaborative Tracking for Multiple Objects in the Presence of Inter-

occlusions. IEEE Transactions on Circuits and Systems for Video Technology, 2015.

(related to chapter 5)

• J. Xiao, R. Stolkin, A. Leonardis. Multi-target tracking in team-sports videos via multi-level

context-conditioned latent behaviour models. BMVC , U.K., 2014. (related to chapter 5)

• J. Xiao, M. Oussalah, Robust model adaptation for tracking with online weighted color and

shape feature, 4th IEEE International Conference on Image Processing Theory, Tools and

Applications, France, 2014. Best poster award in BMVA summer school. (related to

chapter 3)

• J. Xiao, R. Stolkin and A. Leonardis, An enhanced adaptive coupled-layer LGTracker ++,

ICCV Visual Object Tracking Workshop. 1-8 December, Sydney, Australia, 2013. IEEE

PAMI TC Conference Travel Award. (related to chapter 3)

• J. Xiao, M. Oussalah, Scale Modification through Particle Distribution in Colour Based

Tracking, The 10th European Conference on Visual Media Production. 6-7, November,

London, UK, 2013. (related to chapter 3)
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B. Peer-reviewed full-length papers(co-author)

• N. Marturi, V. Ortenzi, J. Xiao, M. Adjigble, R. Stolkin and A. Leonardis, A real-time track-

ing and optimised gaze control for a redundant humanoid robot head, IEEE-RAS Inter-

national Conference on Humanoid Robots, 2015. (related to chapter 3)

• H. Haggag, M. Hossny, S. Haggag, J. Xiao, S. Nahavandi, D. Creighton, LGT/VOT track-

ing performance evaluation of depth images. 9th International Conference on System of

Systems Engineering, 2014. (related to chapter 4)

• M. Kristan et al, The visual object tracking VOT2013 challenge results, ICCV workshop,

2013. (related to chapter 3)

1.5 Overview of the dissertation

The organisation of the thesis is as follows:

Chapter 2 presents a literature survey, covering RGB tracking algorithms, RGB-D tracking

algorithms, tracking benchmark datasets and dataset bias analysis. This chapter reviews RGB

trackers first in terms of target representation, matching methodology, and model adaptation.

For RGB-D trackers, we mainly analyse the different ways of utilizing depth information in

the literature. The representative tracking benchmark datasets are also summarized here, while

bias analysis is provided since it can significantly effect conclusions drawn from performance

evaluation of tracking methods.

Chapter 3 presents a new single target tracker with multi-layer appearance model. An adap-

tive clustered decision tree method is proposed to select the minimum combination of features

necessary to sufficiently represent each target part, thereby providing robustness with computa-

tional efficiency. Based on two different evaluation protocols, we have tested the tracker using

two different tracking benchmarks [2, 3] with total 70 sequences and comparing against more

than 50 other trackers from the literature. The proposed tracker is demonstrated to be signif-

icantly more robust than the state-of-the-art methods, while also offering competitive tracking
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precision [1].

Chapter 4 focuses on single target tracking in RGB-D images, where an adaptive multi-

feature local-global target model with both temporal and spatial constraints is proposed. In the

bounding box layer, temporal consistency is used to adaptively fuse information from both RGB

and depth images to find a candidate target region. In frames where one or more features are

temporally inconsistent, this global candidate region is further split into local candidate regions

for matching to target parts. We derive a physical constraint from the depth context, which ro-

bustly accommodates large target depth variation, while still enabling accurate reasoning about

occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame

annotated attributes and extensive bias analysis. Our tracker is evaluated using two different

methodologies [2, 3] and in both cases it outperforms other state-of-the-art RGB-D trackers.

Chapter 5 shows how distracting contextual regions can be detected, learned and explicitly

exploited to support the single target tracker under conditions of extreme clutter and camou-

flage, including frequent occlusions by objects with similar appearance to the target. A multi-

level clustering method is proposed for online detection and learning of multiple target-like

regions, called distractors, when they appear near to the true target. To distinguish the target

from these distractors, we use global dynamic constraints (derived from target and distractor

information) to optimize the estimated target trajectory. To evaluate our tracker, we have aug-

mented publicly available benchmark videos, by proposing a new set of clutter sub-attributes,

and annotating these sub-attributes for all frames in all sequences. Using this dataset, we show

that our proposed method outperforms other state-of-the-art single target trackers on highly clut-

tered scenes. We also show that our proposed method outperforms state-of-the-art multi-target

trackers, in scenes where the true target moves among several other similar objects.

Chapter 6 summarizes the contributions of this thesis, points out the problems of existing

methods and discusses the potential avenues for future work.

9



CHAPTER 2

LITERATURE REVIEW

Single target tracking, as an important component in the tasks of motion-based recognition, au-

tomotive surveillance and vehicle navigation, has been extensively studied in recent decades [24].

Even though great effort has been paid in this area, visual object tracking is still a challenging

task, because of background clutter, occlusion, fast movement, illumination changes, object

scale change and deformation. Therefore, this chapter provides a survey of the research that

has already been published in relation to the single target tracking in RGB images (section 2.1),

RGB-D images (section 2.2), and highly cluttered scenes where need proper context understand-

ing (section 2.3). The state-of-the-art tracking benchmark datasets for algorithm evaluation are

also reviewed (section 2.4).

2.1 RGB trackers

Based on the prior information about the target category, the tracking algorithms are usually

classified as category-free methods, like KCF [9], Struck [25], LGT [6], and category-based

methods, like pedestrian tracking [26], vehicle tracking [27], hand tracking [28]. Category-free

tracking methods are usually initialized using a single bounding box/ellipse in the first frame

without any other pre-trained information, while the category-based tracking methods usually

require a training process for one particular object category. As the category-free tracking

methods are acknowledged for the simple initialization and easy generalization among different
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object categories, our work also focuses on tackling the problems in this particular tracking

research branch - category-free tracking methods.

Although significant progress has been made in this area [2, 3], the most sophisticated track-

ers are still prone to failure in challenging scenarios, including environmental clutter and cam-

ouflage in one or more feature modalities, rapid and erratic target motion, occlusions, significant

appearance changes and shape deformation over time. In general, a robust tracking system con-

sists the following three parts [1]: 1) the appearance model of the target; 2) the mechanism

for matching model parts to image regions at each frame; 3) the mechanism for continuously

relearning or updating models of targets which change their appearance over time. Therefore,

we review the related works with respect to the target representation, matching methodology

and model updating method accordingly.

A. Target representation

A crucial component of a tracker is the target model that represents the object status during

tracking, i.e. position, scale, and speed etc. Based on the different representations, tracking

methods are usually categorized as: point tracking, kernel tracking, and silhouette tracking [29],

shown in figure 2.1.

Figure 2.1: Different representations of a target: a) point tracking; b) kernel tracking; c) silhou-
ette tracking.

For point tracking [30, 31, 32, 33], a moving object is represented by some feature points

detected across consecutive frames during the tracking. The problem here is formulated as

matching the point correspondence between each frame. Usually, the point tracking methods

are quite sensitive to noise and are easily distracted under conditions of background clutter. To

achieve better performance, kinematic constraints are often imposed in some particular applica-

tions [34]. Although this enables good performance in particular conditions, such trackers have
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difficulties to be generalised to other tracking conditions, e.g. the kinematics built for a human

cannot be used for a snake.

Silhouette [35, 36, 37, 38, 39] tracking provides the accurate shape description (contour)

for the target in each frame. Usually, those methods iteratively evolve the initial contour by

minimizing the contour energy using gradient descent, which is applied to track the deformable

targets including animals and human hands etc.

Kernel [40, 41, 42, 43, 44] is a region-based representation, which can be a rectangular or

an elliptical template with an associated histogram, usually referring to the target shape and

appearance. Kernel based tracking is conducted by computing the motion of the kernel that

explicitly defines the target region in the next frame.

In this thesis, we utilize a bounding box to represent the target and focus on solving the

prior information free tracking problems. Therefore, we mainly review the related works of

kernel based tracking methods. Based on the image data inside the target kernel, the algorithm

converts the raw data into some more informative features for tracking [15], which can include:

• Colour features. The colour of an object is a widely used descriptor for target represen-

tation, which can be defined differently according to the various colour spaces, namely

RGB, Log-RGB, Lab, HSV and HSL [45]. As the colour is influenced by spectral power

distribution of the illumination and the surface of reflectance properties of the object,

these colour spaces are sensitive to stray light and are also vulnerable to the changes of

the lighting conditions [29].

• Haar-like features. A Haar-like feature [46, 47], i.e. edge feature, line feature and center-

surrounded feature, encodes the existence of oriented contrasts between adjacent rectan-

gular regions at a specific location in a detection window. It sums up the pixel intensities

inside each region, where these sums are used to calculate the difference between re-

gions. Haar-like features are acknowledged for their good trade-off between speed and

accuracy [48].

• Binary pattern features. Local Binary Pattern (LBP) is a simple but very efficient texture
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operator which utilizes a non-parametric kernel (3*3 kernel) to summarize the spatial

structure of an image [49, 50]. LBP operator utilizes the greyscale of the central pixel

to label its neighbourhood pixels with 0 or 1, where that central pixel is represented by

a binary string from its neighbours, which provides both computational simplicity and

discriminative power (robustness) to monotonic gray-scale changes caused, for example,

by illumination changes [51, 52].

• HOG features. The histogram of gradients (HOG) feature, proposed by [53], uses a distri-

bution of gradient intensities in terms of edge directions to represent object shape. The

candidate region is divided into small connected cells (regions) with the following steps:

gradient computation, orientation binning, and descriptor blocks. Since HOG feature

operates on the local cells, it is invariant to geometric and photometric transformations.

• SIFT features. Scale Invariant Feature Transform (SIFT) feature is composed of the follow-

ing four steps: 1) convolve the image with Gaussian filters at different scales, where the

candidate interest points are selected from the minima and maxima of the Difference-of-

Gaussians (DoG) images across scales; 2) update the candidate location by interpolating

the color information of neighbourhood pixels; 3) eliminate low contrast candidate points;

4) assign orientations to the remaining interest points due to the peaks in the histograms

of gradients.

• Bag of words features. Bage of words (BoW) model is a sparse vector of occurrence counts

of independent image features (words) [54]. Extracting the BoW features from images

usually includes the following steps: 1) detect key point based features, i.e. SIFT fea-

tures; 2) compute local descriptors over those key point based features; 3) quantize the

descriptors into words to generate the visual vocabulary, and 4) construct a histogram

of word occurrences in the image (codebook), which contains the presence or absence

information of each visual word.

• Sparse features. The goal of sparse coding is to approximate input signals by a linear com-

bination of weighted bases(atoms), which is applied to learning over-complete dictionary
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of atoms which captures high-level patterns in the input data [55, 56]. However, to learn

the over-complete dictionary and solve the corresponding optimization problems is still a

significant challenge with respect to the computational cost [57, 58].

• CNNs features. A Convolutional Neural Networks (CNNs) is comprised of small neuron

collections across multiple layers [59, 60], where those neuron collections are tiled in

each layer with the shared weights to better represent the original image. As the same

filter is used for each pixel in the layer, the CNNs features can tolerate image translation.

Some ways to train CNNs include filter shape, the number of filters, and max pooling

shape.

The above features are extracted from the particular kernel for matching during track-

ing. In terms of the kernel scale, the target representation methods are categorized into three

groups: holistic [61, 62, 63, 64, 65, 66], local [67, 68, 40, 69, 70], and hybrid [6, 71, 72, 7, 73,

74, 75]. A holistic representation reflects the overall statistical characteristics of the target in a

simple and computationally efficient model. However, the holistic template based trackers have

difficulty in handling significant appearance changes and deformations of the target. In con-

trast, a local feature representation provides more flexibility for deforming target matching but

usually with increased computational cost. Recent works use both holistic and local templates

to represent the target in a hybrid way which compensates the disadvantages of holistic or local

representations.

B. Matching methodology

To estimate the state of the target, the algorithm must match observations from a candidate

image region to the target representation model [1]. Here, we denote the candidate feature

vector as qcan while the reference feature vector as qref . The common methods of comparing

the candidate feature to the reference feature are reviewed below:

• Bhattacharyya distance. The Bhattacharyya distance measures the dissimilarity of two

probability distributions (feature vector or histogram) bin-by-bin [76, 77]. The distance

DB(qcan, qref ) is computed by: DB(qcan, qref ) =
√

1−
∑m

ξ=1

√
qcan(ξ)qref (ξ), where
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m is the number of the bins inside the corresponding feature vector.

• Euclidean distance. The Euclidean distance DE(qcan, qref ) between candidate feature qcan

and the reference feature qref is the length of the line segment connecting them [78]. A

generalized term for the Euclidean norm is the L2 norm or L2 distance, computed by

DE(qcan, qref ) =
√∑m

ξ=1(qcan(ξ)− qref (ξ))2.

• Earth movers distance. Earth Movers distance (EMD) was defined by Rubner et al. [79] as

the minimal cost that must be paid to transform one feature vector into the other feature

vector, which is cross-bin similarity measurement computed by: DEMD(qcan, qref ) =∑m
ξ1=1

∑m
ξ2=1 d(ξ1,ξ2)f(ξ1,ξ2)∑m

ξ1=1

∑m
ξ2=1 f(ξ1,ξ2)

, where f(ξ1, ξ2) denotes the flows. Each f(ξ1, ξ2) represents the

amount transported from bin ξ1 supply to the bin ξ2 demand, f(ξ1, ξ2) = |qcan(ξ1) −

qref (ξ2)|. d(ξ1, ξ2) is called the ground distance between different bins, d(ξ1, ξ2) = |ξ1 −

ξ2|. All above, ξ1, ξ2 ranges from [1,m], while m is the number of bins.

• Correlation filters. Correlation filters measure the similarity between the image template

and the image candidate region to produce the correlation peaks for the target regions

while low response for the background [80]. Correlation filters take advantage of the fact

that the correlation operations of two image regions could be conducted by element-wise

multiplications using Discrete Fourier Transform, and have proved to be competitively ef-

ficient at hundreds of frames-per-second [81]. Correlation output is transformed back into

the spatial domain as a spatial confidence map using the inverse Fast Fourier Transform,

where the region with the maximum value indicates the position of the target.

• Logistic regression. Logistic regression (LR) [82] is a statistical method to analyse a (train-

ing) dataset and find the best fitting model with independent variables that determine

an outcome (matching probability). During tracking, given the features of a candidate

region, LR computes the region’s probability of being a target according to the logit

transformation (trained fitting model).

• Adaptive Boosting. Adaptive Boosting [83] involves starting with a single weak classi-
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fier, and recursively adding the opinions of additional weak classifiers, with confidence

weights for each successive classifier being chosen to minimise the overall error with

respect to ground-truthed training data. [84, 85] use individual bins of a feature vector

as “weak classifier” and employ Adaboost as a way of creating a weighted combination

of these classifiers which best discriminates between target and surrounding background

regions at each frame.

• Decision tree classifiers. Probabilistic Boosting Trees [86] have been used for classification,

recognition, tracking and clustering problems, which are binary discriminative classifiers.

Each node of the tree combines weaker classifiers (lower nodes), yielding a top node

which outputs an overall posterior probability (of matching) by integrating the conditional

probabilities gathered from its sub-trees.

• Support vector machine. Mapping the original finite dimensional space into a higher di-

mensional space makes the data classification easier. Support Vector Machines (SVM)

try to find a hyperplane that has the largest distance (functional margin) to the nearest

training-data point. The vectors that define the hyperplanes are linear combinations with

parameters of images feature vectors [87]. Given the training data, an SVM algorithm

builds the model to determine whether the candidate region contains the target.

In the early tracking literature, tracking was often conducted using only a single feature [64,

64, 88, 66], which was not sufficient to handle large appearance variations. More recent

works [89, 90, 91, 74] increasingly exploited combinations of multiple features. Based on

the method of feature fusion, matching methods can be divided into two categories: generative

methods [92, 93, 94, 95, 96] and discriminative methods [97, 98, 61, 99, 100, 90, 91]. The

generative methods treat the features in a homogeneous way. Simplistic approaches of merely

multiplying the contributions of each feature modality, i.e. as a product of probabilities (or a

product of experts [101]) will be prone to failure in scenes where one or more of the feature

modalities is challenged by clutter of similar appearance to the target. This is for the simple

reason that multiplication of feature weights can cause a false negative detection by a poorly
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performing feature. In contrast, the discriminative methods aim at distinguishing highly in-

formative features and maximising the separability between the object and background with a

weighted combination of multiple features, which often improves the tracking efficiency and

robustness.

C. Model adaptation

For robust tracking, it is essential to continuously update or relearn the target model to cope

with appearance changes. An appropriate target model should enable the tracker to overcome

errors in the relearning process which might corrupt the target model, and support long term

tracking without drifting [1, 63]. In general, the model adaptation methods can be categorized

as autoregressive adaptation and template replacement.

• Autoregressive adaptation. Works such as [64, 67, 7, 71] updated the model as a simple

linear combination of the previous model and the most recent estimation of the target

region in the current image.

• Template replacement. For those classifier based tracking algorithms [40, 25, 73], the pos-

itive or negative samples used in the training stage are replaced by the new observations,

where those observations are often chosen in terms of matching probability or discrim-

inability.

In early work [64], the model adaptation was solely based on the target observation. Without

additional methods for precise delineation of the target parts or background, if a few background

pixels are erroneously learned into the target model, then tracking will deteriorate, resulting in

even more erroneously relearned pixels, and exponentially increasing tracking instability [1].

In MIL [102] and other trackers such as OB [103] and SB [84] updating of the target model

is performed by an evolving boosting classifier that tracks image patches and learns the ob-

ject appearance. Interestingly, OB [103] can be regarded as a non-Bayesian approximation to

the simpler Bayesian ABC method [66] but which enables continuous relearning of the target

model. However, online boosting requires that the data be independent and identically dis-

tributed, which is a condition not satisfied in most real video sequences, where data is often
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temporally correlated [89]. A more robust updating mechanism is achieved by [6], which forms

a cross constraint paradigm to stably constrain the relearning of a two-layer target model - global

(bounding region) and local (parts based) models are used to constrain (and thereby stabilise)

each others’ online relearning. However, this method (and most earlier methods e.g. [64]) up-

dates target appearance models at a fixed rate, regardless of the confidence (or lack of) in current

target observations. We summarize the most recent published representative tracking work in

table 2.1.

Based on the literature study, we have proposed a novel method for RGB target tracking in

chapter 3, comprising a multi-layer target model and an adaptive clustered decision tree method

for both matching and relearning middle layer target parts at successive image frames.

2.2 RGB-D trackers

To further improve tracking performance, recent works have tried to incorporate additional

features [16, 73] , with depth information attracting growing interest [5]. While RGB features

can be comparatively invariant to target motion, depth information can vary rapidly. To exploit

the depth information in a robust way, prior information about the target model is employed for

category-based tracking [113, 114, 115, 116, 117]. However, such methods still have difficulty

in robustly modelling the depth information for deformable targets, i.e. deformable objects,

which limits its popularity for the category-free tracking research.

Chen et al. [19] proposed an RGB-D object tracking algorithm by applying kernel partial

least squares analysis to learn the discriminative appearance model of the target. The depth

information was used to detect occlusion during tracking. They first assumed that the object

depth dominated the bounding box. Then, the occlusion was confirmed when the mean depth

of the detected bounding box exhibits a sudden change. Intuitively, the tracker fails when the

target scale is not precisely estimated or the target rapidly moves towards or away from the

camera.

Cao et al. [18] proposed an RGB-D tracker with a patch-based appearance model. They
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Table 2.1: Functional comparison of tracking algorithms. Features: IH: intensity histogram;
OP: optical flow; CE: convex envelope; BP: binary pattern; HOG: Histogram of oriented gra-
dients; SR: sparse representation; BRISK: Binary robust invariant scalable keypoints; CNN:
convolutional neural networks. Matching: BC: bhattacharyya coefficient; BI: bayesian infer-
ence; EMD: earth movers distance; CF: correlation filter; NNC: nearest neighbour classifier;
SSVM: structure output SVM. Model adaptation:TR: Template replacement; AU: autoregres-
sive update; IU: incremental update; EM: error minimization.

Template Tracker Features Matching Model adaptation

Local

Frag [69] IH EMD N/A
BHMC [67] IH BI AU
SOWP [40] IH,HOG SSVM TR (budget based)
DLR [98] SR L0 regularization TR (time based)

RANSAC [104] BRISK, OP ED AU
OLF [89] SIFT NNC TR (ranking based)

RPT [105] HOG, motion BI
TR (distribution,

computation, likelihood)
PACF [106] HOG CF AU

Holistic

KCF [9] HOG CF AU
MKCF [107] HOG,IH CF AU
LKCF [108] HOG,IH CF AU

CPF [88] IH BC AU
IVT [109] covariance matrix BI IU
Struck [25] Haar SSVM TR (budget based)
TLD [110] BP NNC P-N learning

DCMT [111] IH BI AU
L1 [112] SR L1 regularization TR (ranking based)

Hybrid

LGT [6] IH, OP, CE BI Lobal-glocal interaction
SCM [7] SR L1 regularization TR (ranking based),AU

FCNT [72] CNN L1 regularization EM
HCNT [71] CNN CF AU
SST [73] SR L2,1 regularization TR (ranking based)
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designed a robust estimator to fuse the votes from the local patches (for target location) by fil-

tering the most similar and dissimilar candidate patches. As their method simply partitioned the

holistic template by fix grid to form the local patches, it has difficulty handling the object with

significant deformation. Additionally, their method relied on RGB data for target estimation,

while using depth information solely for reasoning about occlusions. The target can become

mislabelled as an occluding object if it moves rapidly towards the camera.

Sophisticated RGB-D work was carried out by Song et al. [20]. They proposed several

different RGB-D trackers, using both 2D and 3D models, to evaluate the extent to which the

addition of depth information could improve overall tracking performance. In their work, the

best tracking performance was achieved by using an RGB-D HOG feature detector and a point

cloud feature detector. The detection results of each feature are summed and adjusted with 3D

iterative closest point tracking for the final tracker estimation. [20] propose that occlusions be

detected when the target region depth histogram develops a newly rising peak with a smaller

depth value than the target. Similar to the problems of [19, 18], this heuristic only holds true

when the target estimation is highly accurate and the depth information is relatively stable.

Due to the success of Kernelized Correlation Filters (KCF [9]) in RGB tracking with re-

spect to high accuracy and processing speed, Camplani et al. [10] applied kernel correlation

filters to RGB and depth maps respectively. They modelled the target depth distribution with a

Gaussian distribution, where changes in depth were utilised to adapt the scale and infer occlu-

sion. This holistic template based tracker has difficulty handling significant target deformations.

Moreover, relying solely on depth data for occlusion reasoning can cause failures.

Meshgia et al. [11] proposed an “occlusion aware” particle filter in a probabilistic frame-

work to handle complex and persistent occlusions in RGB-D images, which employs a latent

variable representing an occlusion flag for each particle. Seven features were fused to measure

the similarity between the candidate and the target model. However, it uses a pre-defined depth

threshold which has difficulty tracking targets which exhibit significant depth variation. Also,

they fused all the features in a homogeneous way, where one poorly performing feature can

damage the overall tracking performance.
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The common problem of mentioned works such as [19, 18, 10, 11, 20] is that they rely on

the depth information solely for occlusion reasoning in a simple way, either by measuring depth

changes in mean value or in Gaussian distribution of the target depth. Intuitively, rapid motion

of the target towards or away from the camera can easily lead to failure. Therefore, it is essential

to exploit depth feature in a robust way.

Note that rather than just treating depth information as an image feature, it also reflects the

physical constraint (layout) in the spatial world. Instead of the heuristic assumptions about sta-

bility of depth information, the method proposed in chapter 4 encodes common-sense knowl-

edge that target parts cannot be located behind background regions or in front of occluding

objects, which robustly accommodates large target depth variation while still enabling accurate

reasoning about occlusions.

2.3 Tracking by exploiting scene distractors

Figure 2.2: Target moves past extremely cluttered or camouflaged image regions, called “dis-
tractors”. Target and the distractors have identical appearance, where it is hard to distinguish
the target solely based on the appearance. Red bounding box: the real target; yellow bounding
boxes: distractors.

Based on the initialized bounding box and later target observation, a well designed tracker

can overcome some conventional challenges, like significant target deformation, illumination

change and fast motion. A particularly difficult problem is how to track a target which moves
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through scenes featuring several other very similar objects, or which moves past extremely

cluttered or camouflaged image regions, shown in figure 2.2. In these situations, it is difficult

to distinguish the target using only target appearance information [13], since the background

regions of the image may share similar appearance information. To achieve successful tracking,

the tracking algorithm needs to go beyond the target information and “interact” with the context

in a sophisticated way, understanding where is the potential distraction in the scene, which we

call “distractors”. Note that detecting distracting image regions before they come close and

distract the tracker can actually support robust tracking by modelling the dynamic behaviour of

such regions. Therefore, in this thesis, we try to exploit additional contextual information to

solve the problem of tracking a single target which is camouflaged against scenes containing a

large number of similar non-target entities.

In scenes with clutter and camouflage, the method proposed in this thesis detects multiple

target-like regions and explicitly associates one region to the target, which may at first sight

appear analogous to the data association approach in multi-target tracking. However, note that

our proposed method is not a multi-target tracker (figure 2.3): i) it only identifies the location of

a single target at each frame; ii) it does not assign individual IDs to multiple other objects; iii)

it is initialised with only a single target bounding box, and must automatically detect and learn

any other target-like objects (distractors) on-the-fly.

We first review work on single-target tracking in highly cluttered scenes, which explicitly

exploit the contextual information. We also review some multi-target tracking literature, since

our proposed method (global dynamic constraints) for handling distractors, is somewhat related

to the data association methods used in multi-target tracking.

• Context based single-target tracker. To track a single target robustly against clutter, the

tracker should learn and exploit contextual information. [118, 119] observed that non-

target objects, known as supporters, may sometimes be associated with a target and can

be used to help infer its position. However, in highly cluttered scenes, it may not be

possible to find supporters that persistently move around the target with strong motion

correlation. [120, 121, 122] detected distractor regions with similar appearance to the tar-
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Figure 2.3: Relationship between single target trackers, multi-target trackers and our proposed
tracker. Single target trackers do not explicitly model information about distractor objects.
Multi-target trackers model and identify multiple target regions, exploiting additional initialized
prior knowledge. In contrast, our tracker is initialised the same as single-target trackers, while
detecting and tracking other distractor objects on-the-fly.

get. However, their tracking accuracy heavily depends on the pre-defined spatial density

of samples, where sparse sampling cannot adequately distinguish adjacent objects, and

dense sampling is computationally expensive. Even with dense sampling, such meth-

ods can still fail to distinguish adjacent or overlapping objects. Note that such meth-

ods [120, 121, 122] maintain multiple image regions as target candidates, but do not

specifically decide which region is the target at each frame. [8] tried to distinguish the

target from distractors by using an appearance matching score. However, such algorithms

are prone to failures when the target is camouflaged, occluded or undergoing deforma-

tion, when appearance matching methods can cause the tracker to erroneously fixate on

clutter. [111] recently proposed a distractor-aware target model to select salient colours

in single target tracking. In contrast, our work addresses video sequences that are so ex-

treme that target and distractors may have identical appearance (illustrated in figure 2.2),

and cannot be disambiguated by any appearance features. Moreover, [111] distinguishes

the target from distractors based on spatial distance between the current observations (k

frame) and the previous target estimate (k − 1 frame). This spatial distance method can

fail when the camera itself undergoes significant motion. In contrast, we propose a global
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dynamics model for the target and nearby distractors, and show that this enables robust

tracking even in sequences filmed from moving cameras.

• Data association in multi-target tracker. Our proposed global dynamics model is related

to, but distinct from, the problem of data association discussed in the multi-target tracking

literature. Berclaz et al. [123] reformulated the data association problem as a constrained

flow optimization convex problem, solved using a k-shortest paths algorithm. However,

the computational cost of generating k paths is quite high, especially for our problem

of finding a single target at each frame. Moreover, this method first obtains detections

for every frame throughout an entire video sequence, and then mutually optimises the

target IDs over all frames. Such post-processing methods cannot be used for online tar-

get tracking. Shitrit et al. [124] also relaxed the data association problem as a convex

optimization problem which explicitly exploited image appearance cues to prevent erro-

neous identity switch. However, appearance cues are not sufficiently discriminating to

distinguish between the target and distractors in the extremely challenging videos, i.e. a

target moves through scenes featuring several other very similar objects, or which moves

past extremely cluttered or camouflaged image regions, which we aim to tackle in this

work. [13] utilized motion dynamics to distinguish targets with similar appearance, in or-

der to reduce instances of target mislabelling and recover missing (occluded) data. How-

ever, their algorithm requires the number of targets to be known a-priori. In contrast, our

method handles the situation where the number of distractors is unknown and has to be

learned on the fly during tracking. [125] proposed a constrained sequential labelling to

solve the multi-target data association problem, which utilized learned cost functions and

constraint propagation from captured complex dependencies. However, their approach is

only designed to handle the case of piece-wise linear motion. [12] developed an online

multi-target tracker which extended the single target tracker of [25] by using global data

association. However, their proposed candidate regions must be densely sampled which

can be extremely computationally expensive. Moreover, their global identity-aware net-

work flow graph depends heavily on target appearance models, which have difficulty in
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handling highly cluttered scenes, especially where both target and distractors share iden-

tical appearance. Our early work [126] learned and exploited the global movement of

sports players to inform strong motion priors for key individual players. Information

from the global team-level context dynamics enabled the tracker to overcome severe situ-

ations such as inter-player occlusions. However, this context-conditioned latent behavior

model do not readily generalise to non-sports tracking situations.

In this work, we further encode the contextual information in chapter 5 to support the single-

tracker that goes beyond the target itself, which perceives distractors and models (understands)

their dynamics in the scene, shown in figure 2.4.

Figure 2.4: The proposed framework using contextual information. The red bounding box/dot
represents the target while the green colour indicates the distractors. The algorithm simulta-
neously track the target and distractors, where the information is built in the global dynamic
constraint to further improve the single target tracker.

2.4 Dataset construction and annotation

Benchmark datasets have played a leading role in advancing tracking research by facilitating the

evaluation process. For persuasive comparisons of visual tracking algorithms, constructing test

data should consider two questions: which situations should be included and how should the

algorithms be tested to reach a convincing conclusion [127]. After several decades of efforts,

25



several benchmark datasets have been created for category-free trackers. Here, we first review

the related work with respect to the dataset construction and attributes annotation. Since the

bias of the dataset significantly affects the algorithm evaluation, we also analyse the existing

methods for bias analysis.

2.4.1. Dataset construction and attributes annotation.

To build a test dataset for category-free single-target trackers, it is essential to include scenes

broadly and comprehensively that represent the world. One representative work is that of

Smeulders et al. [128] who constructed an RGB tracking dataset ALOV++ with 314 sequences

and evaluated the algorithms by survival curves, Kaplan Meier statistics, and Grubs testing, with

the evaluation metrics F-score and object tracking accuracy (OTA) score. Since ALOV++ has

no attributes annotations, it cannot explain tracker strength or weakness for particular functional

conditions, such as occlusion, illumination change etc. A landmark RGB benchmark, VTB, ini-

tially contained 50 videos [23], later extended to 100 videos [129] with per-sequence binary

attributes labels according to the intuition of human annotators. They proposed to test the al-

gorithms in terms of temporal robustness (initialize trackers from different frames) and spatial

robustness (initialize trackers with varying degrees of added spatial error). The performance

was compared according to the Area Under Curve (AUC) score of the two trade-off plots, i.e.

success ratio versus overlap threshold and success ratio versus center error threshold. Later,

Li [22] constructed an even larger RGB dataset NUS-PRO, featuring 365 videos of pedestrians

and rigid objects. They followed the evaluation metrics used in [23, 129]. For RGB-D tracking,

Song et al. [20] generated a dataset with 100 sequences. However, a common problem of

these large datasets is that their attributes are per-sequence annotated rather than per-frame an-

notated, and all attributes are assigned based on the intuition of human annotators. This makes

it hard to accurately categorise the tracker performance within different attributes. For example,

per-sequence annotated attributes (e.g. “occlusion”) do not last throughout the entire sequence

[21]. It is preferable to evaluate each tracker with respect to attributes annotated on a per-

frame basis, for a more accurate and meaningful analysis. Note that constructing a very large

dataset does not guarantee diversity in its visual attributes, while it significantly slows down the

26



Table 2.2: Comparison of benchmark datasets. BL: binary label (human intuition based anno-
tation).

Type Name Num.
Attributes
Unit Tag

RGB

ALOV++ 314 N/A N/A
VTB1.0 50 per-sequence BL
VTB2.0 100 per-sequence BL
NUS-PRO 365 per-sequence BL
VOT2013 16 per-frame BL
VOT2014 25 per-frame BL
VOT2015 70 per-frame BL

Infrared VOT2015TIR 20 per-frame BL
RGB-D PTB 100 per-sequence BL

process of evaluation (by increasing the computational burden of each tracker trial). A better

approach is to annotate each sequence with the visual attributes occurring in that sequence, and

then perform clustering to reduce the size of the dataset, while still maintaining its diversity

[130]. Based on this approach, Kristan et al. [3] organised the Visual Object Tracking (VOT)

workshop associated with the ICCV/ECCV conferences. Note that based on the previous pro-

posed evaluation protocol [23, 129, 20, 22], if a tracker fails early in a sequence, it will show a

low success ratio, but if it fails late in a sequence, it may show high success ratio. Therefore,

the VOT evaluation protocol re-initializes trackers when failure is detected, which avoids the

sequential position of failure will eventually damage the evaluation among different trackers.

However, their work annotated all attributes using human annotators which almost unavoidably

constains some subjective errors. We summarize some recent benchmark datasets in table 2.2.

Despite the availability of several high quality benchmark datasets for RGB tracker evalua-

tion [3, 21, 22, 23], those available for RGB-D tracker evaluation are far more limited, viewed

in table 2.2. The benchmark dataset PTB, created by Song et al. [20], contains 100 sequences.

However, we observe many sequences where the RGB and depth image pairs are significantly

un-synchronised, shown in figure 2.5. This can cause ambiguities in annotated ground-truth,

and performance evaluation. Therefore, this thesis presents a new RGB-D dataset with cor-

rectly synchronised RGB and D channels to test our approach in a consistent and unbiased

way.
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Figure 2.5: Some examples from Princeton RGB-D benchmark tracking dataset [20] which
clearly show that RGB images and depth images are not synchronized.

2.4.2. Bias analysis.

Torralba et al [131] has proposed a fundamental question about “whether the datasets are

measuring the right thing”. Unlike datasets in machine learning, where the dataset is the world,

computer vision datasets are supposed to represent the world [131]. Therefore, the bias inside

the dataset can significantly affect the evaluation results. Good tracking performance might just

indicate that the algorithm better fits the dataset bias. Ponce et al [132] pointed out that (i) some

algorithms exploit some restrictions, but will fail when the restrictions do not apply; and, related

to this, (ii) the images are not sufficiently challenging for the benefits of more sophisticated

algorithms (e.g., scale invariance) to make a difference. Note that over half the PTB dataset [20]

is devoted to pedestrian tracking and the camera is almost always stationary, which can bias the

results of evaluating generic target trackers, see figure 2.6. To test a category-free tracker, it is

important to build a dataset consisting of various object categories. Additionally, since motion

of the RGB-D camera often causes significant depth variation, it is essential to evaluate how the

tracker performs with camera motion.

Therefore, it is important to measure the dataset bias somehow to reduce difference between
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Figure 2.6: Different images representing different testing sequences, which actually captured
the same or very similar scenes. A large dataset (100 test sequences) does not have a meaningful
impact on diversity if many of those sequences are the same or very similar.

the datasets and the real world. Torralba et al [131] suggested the potential sources of the bias

are selection bias, capture bias and negative bias. Khosla et al [133] proposed a discriminative

framework that directly exploits dataset bias, where the model learns two sets of weights: (1)

bias vectors associated with each individual dataset, and (2) visual world weights that are com-

mon to all datasets, which are learned by undoing the associated bias from each dataset. Based

on the study of dataset bias, we establish some criteria that could better guide the unbiased

dataset construction, which is presented in this thesis (chapter 4).
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CHAPTER 3

RGB TRACKER

This chapter proposes a new single target tracker for 2D RGB image sequences, under various

kinds of difficult tracking conditions. The proposed method achieves state-of-the-art robustness

by addressing the problems in three fundamental areas: target representation, matching method-

ology, and model adaptation [1]. The target is represented at three different layers: pixel layer,

local-parts layer and target (bounding box) layer. A novel “Adaptive Clustered Decision Tree”

method is proposed to enable robust matching at the part layer between successive frames,

which dynamically selects the minimum combination of necessary features, thereby providing

robustness with computational efficiency. The target model is updated through a closed loop

with cross-constraints between different model layers. We test the tracker using two differ-

ent tracking benchmarks [2, 3], based on two different test methodologies, and show it to be

more robust than all other state-of-the-art methods from those tracking challenges while also

demonstrating competitive tracking precision.

This chapter is organized as follows. The proposed method is described in section 3.1,

where the model representation is first introduced, followed by the work of model matching

and adaptation. Section 3.2 evaluates the proposed method using two benchmark datasets and

demonstrates state-of-the-art performance. Additionally, the contribution of each key com-

ponent of the tracker to overall performance is also evaluated. The chapter is concluded in

section 3.3.
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3.1 Proposed method

Following the conventions of [3] and [23], our method initialises its target model using only a

given bounding box in the first frame, without any prior information about the target category.

3.1.1 Multi-layer target representation

The target is modelled hierarchically at three different layers: the pixel (bottom) layer, parts

(middle layer, constructed from super-pixel) layer, and the target (top or overall representa-

tion) layer [1], see figure 3.1. Following the logic of the model construction and the order of

model updating, this section first introduces the middle layer model, since the initial features

are extracted from this layer. Later, we introduce the top layer followed by the bottom layer.

Figure 3.1: 1-use top layer propagation to find a candidate image region, and segment it into
super-pixels; 2-match middle layer parts, update old parts, learn new parts, use updated parts
to relearn top layer; 3-use new top layer to assign likelihoods to bottom layer pixels in the new
frame.

3.1.1.A. Notation

We precede the model descriptions with a brief overview of notation. In principle, our method

can be used with any combination of features:

Fk = {f1
k, ..., f

i
k, ..., f

Nf
k } (3.1)

where Fk denotes a set of Nf feature modalities exploited by the tracker at the kth video frame.

Note that the number of feature modalities in each of the target layers (explained later) may be
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different, and fik denotes a particular kind of feature, provided that all such features, fik, satisfy

the following conditions.

Firstly, it should be possible to associate any image pixel with a feature value:

Ik(x) 7→ fi(x)
k (3.2)

where Ik(x) denotes the pixel at location x in the kth image, Ik. Clearly, certain kinds of

features, e.g. texture, must be calculated from a region surrounding an individual pixel, but

such feature values can still be associated with the central pixel’s location.

Secondly, in the ith feature modality, the set of feature values fi(x∈Rq
k)

k of any image region,

R q
k, can be used to create a model:

R q
k 7→M i(q)

k ≡M i(x∈Rq
k)

k (3.3)

where M i(q)
k is a model of the qth region’s pixels’ feature values, which could for example be a

probability distribution or some other kind of collective representation.

Thirdly, for the ith feature modality, a suitable likelihood function L̂
i(p,q)

k exists for compar-

ing the similarity of any pair of models, M i(p)
k ,M i(q)

k , representing any pair of image regions,

R p
k and R q

k:

{M i(p)
k ,M i(q)

k } 7→ L̂
i(p,q)

k (3.4)

Where such feature models are in the form of distributions, then corresponding likelihood

functions are typically based on divergence measures, such as [77, 134, 135, 79]. However, in

general, other kinds of useful likelihood functions can be formed for other kinds of models.

Fourthly, for each kind of feature model M i(q)
k , another likelihood function L̃

i(x,q)
exists for

evaluating the consistency of any pixel’s feature value, fi(x)
k , with the model. Intuitively, we can

regard the set of such likelihoods:

L̃ (x,q)

k ≡ {L̃1(x,q)

k ... L̃
i(x,q)

k ... L̃
Nf (x,q)

k } (3.5)
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as the set of opinions of each feature modality as to the likelihood of such a pixel value belong-

ing to the part of the target object projected as the qth image region, R q
k, in the kth frame. In

cases where the feature models are in the form of distributions, then such likelihoods may be

conveniently posed in the form of conditional probabilities.

3.1.1.B. Middle layer target representation

The middle layer consists of a set of feature models (in the sense of equation 3.3), extracted

from the image regions corresponding to parts of the target, which we detect as super-pixels.

Using super-pixels as the basis for middle layer model extraction offers several advantages over

randomly selecting square “patches” as in previous methods [6, 136]. Firstly, a super-pixel is

much more likely to correspond to a distinct and homogeneous part of the target. In contrast,

randomly (or uniformly) selected patches are likely to contain pixels from two or more dissimi-

lar (e.g. in terms of colour) parts of the target, which can lead to matching ambiguity. Secondly,

when patches are randomly (or uniformly) selected from an initial bounding box, many patches

are likely to contain information about both target and background pixels, and this also can

negatively impact tracking performance. In contrast, due to the homogeneous nature of super-

pixels, the pixel models extracted from these regions are much more likely to include either

purely target pixels, or purely background pixels. Once tracking begins, those super-pixels

which erroneously correspond to background regions are rapidly detected and eliminated from

the middle layer target representation, leaving only those super-pixels which truly belong to

target parts [1]. We use the Simple Linear Iterative Clustering (SLIC) super-pixel segmentation

method [137], because it offers the following advantages: the number of super-pixels can be

known in advance; the super-pixels have uniform size; the compactness can be defined, which

enables us to use squares representing the superpixels; and the algorithm has high computa-

tional efficiency. Then, the middle layer target representation, ζmidk , consists of Nmid feature

models (of the form equation 3.3), for each of Ns super-pixels, representing Ns target parts,

denoted as:
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ζmidk = {{M 1mid(1)
k ... M imid(1)

k ... MNmid(1)
k },

..., {M 1mid(q)
k ... M imid(q)

k ... MNmid(q)
k },

..., {M 1mid(Ns)
k ... M imid(Ns)

k ... MNmid(Ns)
k }} (3.6)

where M imid(q)
k is a feature model in the ith feature modality for the qth super-pixel, representing

the qth target part, at frame k.

3.1.1.C. Top layer target representation

The top layer of the target representation is denoted as ζtopk which includes overall information

about the target’s bounding box region, RT
k , and also a ring-shaped local contextual region, RC

k ,

which surrounds the target region (see figure 3.2), in the form of a set of models for each region

in each feature modality:

ζtopk = {M itop(T )
k ,M itop(C)

k }itop=1...Ntop (3.7)

where T and C indicate a target region and a contextual region, respectively. The top layer

target models, {M 1top(T )
k ... M itop(T )

k ... MNtop(T )
k }, are computed from the middle layer target

parts models as:

M itop(T )
k =

1

Ns

Ns∑
q=1

M imid(q)
k (3.8)

where {M imid(q)
k }q=1...Ns are the middle layer feature models for each of Ns target parts, as de-

fined in equation 3.6. The top layer local contextual models, {M 1top(C)
k ...M itop(C)

k ...MNtop(C)
k },

are computed directly from the pixels occupying the ring-shaped local contextual region sur-

rounding the target:

Mitop(C)
k ≡ Mitop(x∈RC

k )

k (3.9)
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where RC
k is determined by enlarging the target’s bounding box area by multiplying both width

and height by a scale factor, λ (value 1.2) , as shown in figure 3.2.

Figure 3.2: Target, RT
k , and ring-shaped local contextual, RC

k , region. h and ω is the height and
width of the bounding box, respectively. The scaling factor is λ.

3.1.1.D. Bottom layer target representation

The bottom layer representation, ζbotk , comprises individual pixels, each associated with a set

of likelihoods, according to each feature modality, that the pixel belongs to the target object:

ζbotk = {l1bot(x)
k ..., l

ibot(x)
k ..., l

Nbot(x)
k }x∈(RT

k ∪RC
k ) (3.10)

where libot(x)
k denotes the discriminative likelihood of a pixel x belonging to the target with

respect to the ibotth feature modality, computed as:

l
ibot(x)
k =

λtopL̃
itop(x,T )

k

λtopL̃
itop(x,T )

k + (1− λtop)L̃
itop(x,C)

k

(3.11)

where L̃
itop(x,T )

k denotes the likelihood of a pixel value, Ik(x), with respect to the top layer

model, M itop(T )
k , of the target region, RT

k ; L̃
itop(x,C)

k denotes the likelihood of the pixel value

with respect to the top layer model, M itop(C)
k , of the target’s local contextual region, RC

k ; λtop is

the expected ratio of the top layer target area to the top layer contextual area. For simplification,

it is computed as: λtop = (λ− 1)/2, approximately.
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3.1.2 Tracker propagation and matching

An overall schematic for the tracker is shown in figure 3.3. The tracker is first propagated

by information matching at the top layer, which generates a candidate image region for the

middle layer. Next, this candidate region is segmented, into equally sized super-pixels. We

next propose a continuously-adaptive clustered decision tree method, which efficiently asso-

ciates middle layer target parts (learned from super-pixels in the previous frame), onto candi-

date super-pixels in the new frame, using the minimum number of features for each part [1].

Lastly, to cope with target deformation and appearance changes, well matched parts are adap-

tively updated, while parts which cannot be satisfactorily matched are deemed to no longer be

visible (e.g. due to occlusion) and are temporarily “switched off”, but stored in memory, from

the mid-layer model. The severely drifting parts, defined as those which drift far from the main

body of the target, will be replaced by new candidates. In this case, another decision tree is then

used to choose the best super-pixels for creating new middle layer parts to replace those drifting

parts [137].

Figure 3.3: Block diagram of the proposed tracking process. 1- tracker propagation by the top
layer target information matching; 2- middle layer (target part) matching with clustered decision
tree; 3- update the top layer model; 4- feed back the bottom layer (pixel) feature; 5- re-sample
drifting parts at the middle layer model [1].
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3.1.2.A. Top layer propagation

In the top layer, we obtain a set of uniformly distributed samples {R̂T

k (j)}j=1...NR to represent

the posterior density function of the target, with associated weights.

R̂
T

k (j) = RT
k−1 + VT

k (j) (3.12)

where R̂
T

k (j) represents the hypothetical state (region) of the target computed from the previous

tracker state RT
k−1 with a uniformly assigned moving velocity VT

k (j).

We follow the conventional methods, e.g. [64], to estimate the overall target position using

the expectation operator over the set of samples, which can be denoted as:

RT
k =

NR∑
j=1

R̂
T

k (j)p(R̂
T

k (j)|RT
k−1) (3.13)

where R̂
T

k (j) represents the hypothetical state (region) of the target, referred to jth sample at k

frame, with associated normalized weight p(R̂
T

k (j)|RT
k−1) such that

∑NR
j=1 p(R̂

T

k (j)|RT
k−1) = 1

andNR is the number of the samples. Here, the associated weights of the underlying samples are

computed from the similarity between target top layer models and candidate regions’ models.

For one specific model i of the sample j, the corresponding weight can be denoted as:

p(R̂
itop

k (j)|R itop
k−1) = exp{

L̂
itop
k (M̂

itop(T )

k (j),M itop(T )
k−1 )2 − 1

σ2
itop

} (3.14)

where M̂
itop(T )

k (j) is the ith observed target model of sample j in top layer, while M itop(T )
k−1 is the

corresponding reference model. σitop is the standard deviation and L̂itopk is the same likelihood

function in equation 3.4. Our later proposed adaptively clustered decision trees could be used

for fusing the weights computed from different models of the same sample.

3.1.2.B. Middle layer matching with adaptive clustered decision tree

After propagating the top layer to give a candidate bounding box region, this is further enlarged

to form a broader search region, which we then segment into super-pixels [137], which provide
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a pool of candidate image regions for matching to middle layer target parts, using our proposed

adaptive clustered decision tree method. Typically, the structures of decision trees are generated

offline during training, e.g. [75, 86], but such static trees would be unsuitable for tracking targets

with dynamically changing appearances, against changing background scenes. Instead, we

propose an adaptive tree structure, which is relearned online for each new image, by explicitly

considering contextual information.

Figure 3.4: Clustered decision tree. Each tree-level represents a feature modality (e.g. color,
motion etc.). The feature values of superpixels form leaves on a tree-level. If any two leaves are
sufficiently similar in feature value then they are merged into a cluster. A new tree-level (using
the next feature modality) is then used to try to disambiguate the members of such clusters. The
tree continues growing (by adding more tree-levels of more features), until all target parts have
been assigned to a unique choice of superpixel. Any remaining unmatched parts are assumed to
have become occluded and are temporarily switched off [1].

The proposed adaptive clustered decision tree method is illustrated in figure 3.4. The objec-

tive of the decision tree is to find the corresponding super-pixel which best matches each middle

layer target part, while adaptively selecting the minimum combination of features needed to do

this robustly in each frame [1]. The first tree-level is initialised by selecting a primary feature

from the set of all features, and labelling all candidates (constructed from super-pixels) as in-

dividual leaves. Next, all leaves are compared for similarity in the primary feature modality.

Similar candidates are grouped into clusters according to a label map:
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C
imid(ps,qs)
k =


1, L̂

imid(ps,qs)
k > T imidk

0, others

(3.15)

where L̂imid(ps,qs)
k is the similarity measurement for imidth feature model between candidates ps

and qs and T imidk is a clustering threshold (relearned online as described later). The clustering

process is conducted at each tree-level except at the bottom tree-level.

Next, each terminating leaf and cluster is compared against the part in the middle layer

target model for which a match is sought.

p̂s = arg max L̂
imid(ps,qt)
k s.t. L̂

imid(ps,qt)
k > 0 (3.16)

where qt indicates the target part, ps is the candidate leaf or cluster. When ps represents a cluster,

its associated feature model is denoted by the mean value of the constituent candidates. L̂imidk is

the similarity score of feature model imid.

If any candidate super-pixel is both i) distinct enough from others that it forms its own leaf

and does not lie inside a cluster (e.g. S6 or SN in figure 3.4) and ii) matches the target part with

a relatively high similarity score (above the threshold used in equation 3.16), then the decision

tree ceases splitting and the middle layer target part is labelled as matching that candidate local

region. However, if the best match ps for middle layer part qt is one of the clusters, then this

suggests that the primary feature is not sufficiently discriminating to enable qt to be matched

to a unique super-pixel. We therefore grow a new tree-level, based on a second feature, i.e.

the cluster grows a new child leaf for each of its constituent candidates (e.g. S1 or S2 on

second row in figure 3.4), where each leaf in the new tree-level is modeled using the secondary

feature modality. This tree extending procedure continues (by adding additional tree-levels for

additional features) until a unique patch-to-leaf correspondence is found, e.g. S4 or SN−1 in

figure 3.4. Once all the middle layer parts have been matched to new locations in the current

image, the boundary of their spatial extent is used to output a new bounding box position, and

the top layer target models are updated accordingly [1]. The proposed matching algorithm is a
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greedy method, and the clustered decision trees need to be recomputed on each frame.

Occasionally, some parts in the model will fail to find a strongly matching candidate, even

after exhausting all possible image features (corresponding to all possible tree levels). In such

cases, it is inferred that the part is no longer visible and it is temporarily switched off. Other

methods in the literature (e.g. [6]) remove unmatched patches, and thus lose parts of the model

during occlusions, which cannot later be recovered. In contrast, our proposed approach of tem-

porarily switching off the unmatched parts provides a powerful tracking memory that automati-

cally handles occlusion situations without the need for special additional occlusion routines [1].

Note that the threshold, T imidk , has an important and useful effect on the extent to which

each feature is used in the mid-layer patch matching procedure. High values of T imidk reduce

the amount of clustering on the respective tree-level, ensuring that most candidate local regions

will be represented as individual leaves, i.e. the algorithm will distinguish most candidates us-

ing this feature alone [1]. In contrast, low values of T imidk make it likely that this tree-level will

grow many clusters, with the effect that the overall algorithm will make less use of this partic-

ular feature for matching, and will rely on later features (lower levels on the tree) to provide

discrimination. In other words, the choice of T imidk can actually be regarded as a measure of

confidence in the discriminating ability of a feature.

Consequently, we would like to set high values of T imidk for those features that are highly

discriminatory in the current frame, and low values of T imidk for poorly performing features (e.g.

those modalities for which the target is camouflaged against the context in the present frame).

We therefore propose a method by which T imidk is continuously relearned for each feature at each

frame, based on evaluating the feature’s discriminating ability relative to the current contextual

information. T imidk is computed online as:

T imidk = L̂
itop(T,C)
k (3.17)

where L̂itop(T,C)
k indicates the similarity score of models M itop(T )

k , M itop(C)
k which are the top

layer target and ring-shape models defined in equation 3.7, and equation 3.17 is therefore a

measure of similarity between the target and the local context (i.e. a measure of camouflage) in
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the respective feature modality.

The advantages of the adaptive decision tree are: firstly, its structure is adaptively generated

online, which overcomes the over-fitting of offline generated classifiers; secondly, rather than

using all features in all frames, the adaptive tree efficiently exploits only the minimum number

of necessary features, ensuring sufficient robustness for minimal computational cost; thirdly,

the decision tree adaptively weights in favour of the most discriminating features, dynamically

responding to changing amounts of camouflage in different feature modalities.

3.1.2.C. Model updating

For robust tracking, it is necessary to continuously update the target model as it changes its

appearance with time. The proposed tracker does this via two mechanisms: adapting the old

middle and top layer target models, and adding new models of new middle layer target parts

(derived from super-pixels) [1].

• Learning new target parts

At each frame, we examine all the matched middle layer target part models and detect those

which are drifting (moving too far from the target centroid) [136]. The algorithm first searches

the maximum non-zero interval of the marginal distribution according to the matched parts.

The region outside the maximum non-zero interval becomes regarded as a potential drifting

region and is then chosen as a candidate for additional drift checking according to the following

criteria: 1) only a small group of parts, which are separated from the majority cluster; 2) the

distribution density of the drifting patches should be very small [136]. To replace those middle

layer target parts that were detected as drifting, we select the “available” candidate local regions,

i.e. those which are not yet matched to a target part, and rank them in order of their likelihood

of representing target parts. A second kind of adaptive clustered decision tree is used to perform

this ranking as follows.

We begin by using the primary feature modality to generate the leaves of the first level of the

decision tree, according to a ranked (descending order) list of unmatched candidate likelihoods
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L
imid(ps)
k (explained later in the experiment section). We then cluster those candidates (super-

pixels) which share similar likelihoods, according to:

C
imid(ps,qs)
k =


1, ‖Limid(ps)

k − Limid(qs)
k ‖ < λrankσall

0, others

(3.18)

where λrank is a pre-defined parameter while σall is the standard deviation of all candidates’

expected likelihoods. ps and qs is the index of candidate local regions.

Figure 3.5: Rank the candidate local regions with clustered decision trees (descending or-
der). Rank1 ranks the candidates only using primary feature (equivalent to the first tree-layer);
Rank2 re-ranks the candidates by adding additional feature (equivalent to the second tree-layer).

Once again, a cluster suggests that the feature for this tree-level is not sufficiently discrim-

inating to achieve a robust ranking [1]. Therefore, a secondary feature is chosen and used to

rank all constituent candidates within the cluster, forming a second tree-level. The tree is grown

(by adding successive tree-levels, using successive features), until a unique ranking has been

assigned to a sufficient number of available candidate local regions, in order to replace those

target parts (which were removed due to being identified as drifting) by the candidates with

highest rank.

• Updating old target parts

For those middle layer target parts that were matched strongly onto candidates in the new

frame, the feature models are updated according to new observations. Note that any kind of tar-

get model relearning is potentially dangerous, since even small tracking errors can easily cause

background pixels to be learned into the target model, leading to instability with exponentially
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increasing errors. Early colour particle filter work [64], and recent state-of-the-art patch-based

methods [6], perform model relearning at a fixed update speed. In contrast, we continuously re-

compute individual update speeds for each middle layer target part at each frame. Our premise

is that parts can be relearned rapidly when there is a high confidence in their matching, whereas

the relearning rate should be reduced under conditions of uncertainty [1]. We therefore up-

date each patch, using a continuously relearned parameter, µimid(pt)
k , according to the following

update rule:

M imid(pt)
k = (1− µimid(pt)

k )M imid(pt)
k−1 + µ

imid(pt)
k M imid(pt)

obs (3.19)

µ
imid(pt)
k = L̂(M imid(pt)

k−1 ,M imid(pt)
obs ) (3.20)

where M imid(pt)
k−1 is the model of the ptth target part, in the ith feature modality, at frame k − 1,

while M imid(pt)
obs is the observed model of the corresponding matched super-pixel in the current

frame. Again, L̂(.) is a similarity score for the ith feature modality, as defined in equation 3.4.

• Updating the top layer target representation

At each frame, once all middle layer target parts have been either switched off, updated, or

replaced, then the top layer target model is updated according to equation 3.8, as described in

section 3.1.1.C.

3.1.2.D. Handling occlusions

The proposed tracker utilises a memory which memorises the latest tracker state, including all

middle layer target part models [1]. As described in section 3.1.2.B, partial occlusion is handled

by temporarily switching off poorly matching middle layer parts, but retaining these in memory

and reacquiring them once occluded target parts reappear in later video frames. The tracker is

regarded as being in a special state of full occlusion if a large proportion of patches (defined by

a threshold parameter) remain unmatched after the matching procedure of section 3.1.2.B:
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Ok =


1, No/Ns > To

0, others

(3.21)

where Ok is occlusion status (1. occlusion; 0. non-occlusion), No is the number of the occluded

parts andNs is the total number of all parts. To is the threshold to check the full occlusion status.

In the full occlusion state, the target model updating (at all model layers) stops, and the top layer

sample propagation scope VT
k (j) in equation 3.12 is enlarged (twice) to handle an increased de-

gree of uncertainty. After finding the best candidate region from the equation 3.13, the algorithm

performs the procedure in section 3.1.2. The tracker returns to the normal (non-occlusion) state

once a sufficient proportion of middle layer parts (similarly defined using equation 3.21) are

matched strongly to candidate local regions (super-pixels).

3.2 Experimental results and analysis

In this section, we first test the performance of our tracker on sequences from the publicly

available benchmark datasets VOT 2013, VOT 2014 and VTB 2013 benchmark datasets [3, 23],

which together comprise 70 sequences in total. These datasets are currently considered state-of-

the-art benchmarks in the 2D visual object tracking community. More details of the datasets can

be found from the webpages of [3] and [2]. Note that the VOT and VTB benchmarks [3, 23],

also represent two different evaluation methodologies. VTB [23] runs each tracker throughout

each sequence without reinitialisation following failures while VOT [3] re-initialises trackers

whenever a failure is detected. We show that the proposed tracker is significantly more robust

than the state-of-the-art methods from both of those tracking challenges, while also offering

competitive tracking precision.

Next, we carry out a decomposition analysis to understand which parts of the novel tracker

contribute to this strong performance. The key elements of the tracker include i) the clustered

decision tree, ii) the use of super-pixels to define middle-layer target parts or patches, iii) the use

of an adaptive target re-learning rate, which re-learns faster during periods of high confidence,
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and slows down target re-learning during periods of greater uncertainty. We decompose the

performance by evaluating the tracker with and without each of these novel elements. The

contribution of the clustered decision tree is evaluated, by replacing it with a more conventional

parts matching method from the literature and comparing performance. The contribution of

super-pixels for determining mid-layer target parts is evaluated by replacing it with a more

conventional method from the literature (random assignments of target regions to be mid-layer

parts). The contribution of the variable adaptive re-learning rate is evaluated by replacing it

with a fixed (mid-range) re-learning rate (as in most of the comparable literature). In each case,

all other parts of the algorithm are kept constant.

3.2.1 Implementation

The proposed adaptive clustered decision tree structure is designed to handle, in principle, ar-

bitrarily many features in a robust and efficient manner. For proof of principle, we demonstrate

the performance of the method on RGB images by implementing a tree with just two features,

however this already delivers strongly competitive performance on benchmark test data [1].

For our primary (top of the tree) feature in the middle layer parts matching, we use simple

pixel RGB colour values, i.e. f1mid(x)
k returns the RGB value of pixel Ik(x). For the primary

feature model, M 1mid(p)
k , we use a simple colour histogram:

M 1mid(p)
k (b) =

∑
x∈Rp

k

δ[b, f1mid(x)
k ]/Npixel (3.22)

where δ is the Kronecker delta function, b is the bin in the feature model and Npixel is the

number of the pixels inside the region R p
k.

For this colour feature, we use a likelihood function between target part qt and candidate

image region (superpixel) ps, L̂
1mid(ps,qt)

k , computed from the Bhattacharyya coefficient [77]:

L̂
1mid(ps,qt)
k =

Nb∑
b=1

√
M 1mid(ps)

k (b) ∗M 1mid(qt)
k (b) (3.23)

45



where Nb is the number of the bin.

For the secondary feature, we imply a motion feature, where candidate local regions are

assigned high matching likelihoods if they imply a small frame-to-frame motion for the part

being matched, which can be denoted as:

L̂
2mid(ps,qt)
k = ‖X ps

k − X qt
k ‖ (3.24)

where X ps
k is the center of the candidate local region ps while X qt

k is the center of target part qt.

In the model updating (in section 3.1.2.C), to form the 1st level of the trees for drifting parts

replacement, we use the 1st feature modality to calculate, for every unmatched candidate, the

primary expected likelihood L1mid(ps)
k (in equation 3.18) of that candidate’s constituent pixels

belonging to the target, which is computed as:

L̂
1mid(ps)
k =

1

Nps

∑
x∈Rps

k

l
1bot(x)
k (3.25)

where L1mid(ps)
k is the expected likelihood of the psth candidate local region belonging to the tar-

get, Nps is the number of pixels in the psth candidate, and l1bot(x)
k is as defined in equation 3.11.

For the secondary feature for updating, we utilize a dense feature to assign an additional

likelihood to the clustered candidate local regions:

L̂
2mid(ps)
k = eps(−‖X ps

k − X c
k‖) (3.26)

where X ps
k is the center of candidate local region ps while X c

k is the center of the matched parts.

The tracking algorithm has been implemented on an Intel Core i5-3570 CPU, using Matlab

code (linked also to some C++ components). This unoptimised implementation achieves near-

to-real-time performance of 8fps. The key parameters initialised in the first frame are listed in

the table 3.1.
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Table 3.1: Values of key algorithmic parameters
Section Equation Value

Initialization λbot in equation 3.11 0.1
Decision tree λrank in equation 3.18 0.1

Occlusion To in equation 3.21 40%

3.2.2 Performance evaluation on RGB benchmark data sets

We first evaluate our tracker using the ICCV2013 [23] and ECCV2014 [3] “VOT challenge”

testbeds, which use the following methodology: stochastic trackers are run 15 times and re-

sults are averaged; whenever a tracking failure is detected (bounding box has zero overlap with

ground truth), the tracker is re-initialised. Table 3.2 compares the performance of our tracker

against the best 4 VOT trackers, out of around 30 trackers that those challenges evaluated.

Results are shown in terms of robustness (total number of failure instances) and accuracy (per-

centage overlap between each tracker’s output bounding box and the ground truth bounding

box) averaged over all frames.

The accuracy at frame k is defined as a bounding box overlap ϕk, using the tracker-output

bounding box RT
k and ground-truth bounding box RG

k in equation 3.27:

ϕk =
|RT

k ∩ RG
k |

|RT
k ∪ RG

k |
(3.27)

where ∩ and ∪ represent the intersection and union of two regions and | • | is the region size

measured by pixels number.

For robustness, the protocol sets a threshold for overlap to indicate tracking success. The

number of correctly tracked frames is divided by the total number of frames, equation 3.28, for

a more comparable evaluation.

Pτ (T,G) =
||{k|ϕk > τ}Nk=1||

N
(3.28)

where τ denotes the threshold of the overlap, and N is the number of total frames. A failure of

one frame is identified when overlap (computed in equation 3.27) is below the defined threshold

τ (zero in experiment). The normalised number of correctly tracked frame is used to represent
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Table 3.2: Visual object tracking challenge results in 2013 (associated with ICCV) and 2014
(associated with ECCV) [3]: comparing against the corresponding best 4 trackers. Fail.: failure.
Acc.: accuracy.

VOT 2013 (16 sequences)
Ours PLT13 [138] LGT++ [136] EDFT [139] FoT [140]

Fail. 0 0 1.53 14 22
Acc. 0.59 0.58 0.57 0.58 0.63

VOT 2014 (25 sequences)
Ours PLT14 [138] DGT [141] DSST [142] SAMF [143]

Fail. 1 4 25 29 32
Acc. 0.52 0.56 0.58 0.62 0.61

the robustness of a tracker.

In terms of robustness, our tracker has zero failures in VOT2013 and only one failure in

VOT2014. The next best algorithm is PLT which also achieved zero failures in VOT2013.

However, note that the version of PLT tested in VOT2013 used a fixed bounding box size.

Therefore this algorithm was unable to adapt to targets which change their size during tracking

(e.g. due to range changes). However, since most objects in most test sequences luckily stayed

roughly the same size in the VOT2013 benchmark videos, this rigid size constraint helped the

algorithm to achieve an (arguably artificially) high robustness score. For VOT2014, a different

version of PLT was submitted, which did enable adaptation to changing target size. In this case,

PLT’s robustness worsened to four failures [1].

Note that the “accuracy” scores can be highly misleading. In the VOT testing methodology,

ground truth is used to re-initialise trackers (with perfect accuracy) after every tracking failure.

Therefore, trackers which fail very often will show high accuracy scores, even if they are not

“good” trackers. Hence, the accuracy score is only meaningful when comparing two trackers

which have the same robustness score. In VOT2013 our accuracy is better than the only other

algorithm (PLT) which shares the same robustness, while in VOT2014 no other tracker was able

to achieve the same robustness [1].

For more extensive comparison, we also combine the VOT test sequences with all those from

the VTB 2013 tracking benchmark data set [23]. Using this 70-sequence dataset, we compared

our method against the publicly available trackers which have shown strong performance in
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Figure 3.6: The success ratio versus overlap threshold curve in 70 sequences.

either the VOT or the VTB tracking challenges, namely: Struck [25], SCM [7], LGT++ [136],

CSK [144], IVT [109], L1 [112], and PF [64]. Note that this experiment is complementary

to the previous VOT testing, since the VTB benchmark system [23] uses a different evalu-

ation methodology. In particular, since this dataset contains instances of full occlusions, the

evaluation is conducted without re-initialization after tracking failures. We show the results as

trade-off curves as suggested by [23].

As shown in figure 3.6, our tracker achieves significantly better robustness in accuracy

ranges up to 0.4. We assert that robustness is the most important of these metrics: firstly,

these methods are intended for highly deformable targets (e.g. people) for which it is hard

to meaningfully interpret the “accuracy” of a rectangular bounding box which includes many

non-target pixels even during good performance; secondly, provided that a tracker is robust,

accuracy can always be further improved by incorporating additional prior knowledge about a

specific target [142].
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Figure 3.7: The success ratio versus overlap threshold curve in 19 sequences with deformation.

To further evaluate the performance, we also show the trade-off curves for those test videos

identified in the benchmark challenges as containing the categories of: significant target defor-

mations, figure 3.7; severe illumination changes, figure 3.8; and occlusions, figure 3.9. Our

tracker significantly outperforms the other methods in tracking of highly deforming targets.

We attribute this performance under deformation conditions to the flexibility of the clustered

decision tree approach to online model relearning. The tracker also achieves competitive re-

sults in illumination change and occlusions scenarios. We attribute the strong performance

under illumination changes to the robustness of the cross-constrained multi-layer target model.

We attribute the results of the occlusion tests to the generality and adaptability of the pro-

posed method. When a method is designed to be robust against dramatic target appearance and

shape changes, it may not always be possible to distinguish between appearance changes and

occlusions, hence our method sacrifices some accuracy in favour of robustness in such circum-

stances [1].
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Figure 3.8: The success ratio versus overlap threshold curve in 18 sequences with illumination
change.

Figure 3.10 shows examples of our method handling vidoes which feature extremely de-

forming targets (e.g. gymnast) and very strong clutter (e.g. diver).

3.2.3 Performance contributions of tracker sub-components

The previous section has shown that our proposed tracker performs extremely robustly in com-

parison to the best state-of-the-art trackers from the literature. However, our tracker relies on

several key components which differ from other tracking methods. This section investigates the

extent to which each of these components contributes to the overall strong performance of the

tracker. To demonstrate the effect of each novel component, we evaluate performance while

replacing that component with a conventional method from the literature, but keeping all other

parts of the algorithm the same. Firstly, we remove our proposed use of super-pixels for deter-

mining mid-layer target parts, and replace it with the well-known method of [6], which selects
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Figure 3.9: The success ratio versus overlap threshold curve in 22 sequences with occlusion.

Figure 3.10: visualization of results on sequences: Torus, Iceskating, Diving, Gymnastics,
showing extreme target deformations and significant clutter. Yellow bounding boxes: the esti-
mated targets; (small) blue bounding boxes: matched local parts.
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random target regions to be mid-layer patches. Secondly, we remove our proposed adaptive

clustered decision trees (which adaptively combine different features according to their impor-

tance) and replace them with a standard homogeneous feature fusion method, as in [6] and

much of the feature fusion literature, wherein the likelihoods of different features are simply

multiplied. Thirdly, we remove our proposed adaptive model re-learning speed, and replace it

with a fixed re-learning speed of 0.5 in equation 3.20. Figure 3.11 compares the performance

of the complete proposed tracker, with performance of the tracker when each sub-component is

removed and replaced by a conventional method from the literature.
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Figure 3.11: Success ratio versus overlap threshold curve, for 70 sequences. Comparison of
proposed tracker versus modified tracker with each of three key components replaced by con-
ventional methods from the literature.

Figure 3.11 suggests that the adaptive re-learning speed does have a significant impact on

performance. However, even without the adaptive re-learning speed, the tracker is still able to

deliver comparable performance to the state-of-the-art trackers analysed in figure 3.11. In con-

trast, removing either the super-pixels mid-layer parts representation or the clustered decision
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tree matching method, causes a larger degradation in performance. It appears that the super-

pixels representation and the clustered decision tree method contribute equally to the overall

performance of the tracker, and that their contribution is more important than the effect (still

significant) of the adaptive re-learning rate.

As discussed also in earlier sections, we suggest the following possible reasons for the

effects of these techniques on overall performance. Firstly, because superpixel segmentation

results in homogeneous image regions, it is more likely to lead to mid-layer patches which

contain purely target pixels or purely background pixels. Target patches which erroneously

contain background pixels will then be rapidly eliminated from the target model by other parts

of the algorithm, leaving mid-layer patches which reliably adhere only to the target pixels, and

this supports robust and stable tracking. Additionally, without super-pixel segmentation, the

matching routine must exhaustively search all possible local candidate regions, as in [6], to

achieve a robust match. One strong benefit of the clusterd decision tree, is that it adaptively

weights in favour of whichever features are most discriminating for any particular patch, at

any given frame. In contrast, conventional feature fusion (by multiplying feature likelihoods)

enables a poorly performing feature (e.g. where the background is similar to the target in that

feature modality) to damage the good performance which might be achieved by another feature

that happens to be more discriminating in the current frame.

3.3 Summary

In this chapter, we have proposed a novel method for 2D RGB target tracking, comprising a

multi-layer target model and an adaptive clustered decision tree method for both matching and

relearning middle layer target parts at successive image frames. The adaptive decision tree:

1) is generated online, overcoming the overfitting of offline generated classifiers; 2) efficiently

exploits only the minimum number of features needed for each target part at each frame; 3)

adaptively weights in favour of the most discriminating features, responding dynamically to

changing amounts of camouflage in different feature modalities. We test the tracker using two
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different tracking benchmarks [2, 3], based on two different test methodologies, namely VOT

and VTB. In VOT2013 tracking challenge, we achieve the best performance considering both

robustness (no failure) and accuracy (0.59). In VOT2014 tracking challenge, we achieve the

best robustness (one failure) and comparable accuracy (0.52). In VTB tracking benchmark,

we achieve overall best success ratio up to the overlap with 0.4. To further evaluate the per-

formance, we also show the trade-off curves for those test videos identified in the benchmark

challenges as containing the categories of: significant target deformations; severe illumination

changes; and occlusions. Our tracker significantly outperforms the other methods in track-

ing of highly deforming targets while still achieves competitive results in illumination change

and occlusions scenarios [1]. We further investigate the extent to which each of the designing

components, e.g. super-pixels based local parts, adaptive clustered decision trees and adaptive

updating speed, contributes to the overall strong performance of the tracker. The experiment

shows that the adaptive re-learning speed does have a significant impact on the performance.

However, even without the adaptive re-learning speed, the tracker is still able to deliver compa-

rable performance to the state-of-the-art trackers. In contrast, removing either the super-pixels

mid-layer parts representation or the clustered decision tree matching method, causes a larger

degradation in performance. It appears that the superpixels representation and the clustered de-

cision tree method contribute similarly to the overall performance of the tracker, and that their

contribution is more important than the effect (still significant) of the adaptive re-learning rate.
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CHAPTER 4

RGB-D TRACKER

Due to the proliferation of affordable depth sensors, such as Microsoft Kinect, Asus Xtion and

PrimeSense etc., depth information has attracted growing interest for target tracking. However,

while RGB-based features can be comparatively invariant to target motion, depth information

varies rapidly when the target moves towards or away from the camera. Therefore, this chapter

presents a new RGB-D tracker which exploits spatio-temporal consistency of the features in

RGB and depth images for adaptive fusion in the multi-layer target model. A physical con-

straint of the target with respect to other objects in the depth context is exploited, to adaptively

estimate the range interval occupied by the target. This physical constraint encodes common-

sense knowledge that the target parts cannot move behind background regions or in front of

occluding objects.

Despite the availability of several high quality benchmark datasets for RGB tracker evalua-

tion [3, 21, 22, 23], those available for RGB-D tracker evaluation are far more limited. There-

fore, we have constructed a new RGB-D dataset which i) ensures maximum diversity with min-

imum size/cost through a rigorous bias analysis; ii) incorporates complete per-frame annotation

for every frame in every sequence; iii) includes human annotation of three binary attributes, as

well as statistical evaluation of seven more objective numerical attributes, for every frame; iv)

includes videos from both moving and stationary cameras for every scene, which is necessary

for disambiguating failures due to camera motion from other causes. All of the attributes are

per-frame annotated to help: i) ensure unbiased dataset construction; ii) aid functional under-
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standing and explanations; iii) assist researchers in choosing parameter values.

This chapter is organized as follows. The proposed RGB-D tracker is described in sec-

tion 4.1 while the constructed dataset for evaluation is presented in section 4.2. Section 4.3

applies the proposed RGB-D tracking method to the newly proposed dataset, demonstrating

state-of-the-art performance. The chapter is concluded in section 4.4.

4.1 Proposed method

Our proposed RGB-D tracker also represents the target with a multi-layer model: top layer

(bounding box), middle layer (target parts) and bottom layer (pixels), derived from proposed

the RGB tracker in chapter 3. The top layer propagates the overall target to candidate image

regions (defined by candidate bounding boxes) and measures the confidence of each candidate

by checking the temporal consistency of multiple features, including depth and colour. The

middle layer matches smaller parts of the target to local regions within the bottom layer, and

judges the saliency of each target part by comparing feature statistics of the target region and

surrounding contextual region. Unlike earlier work [6, 7, 1] on coupled-layer RGB models,

our method: 1) fuses multiple features within the top layer, and automatically triggers the use

of the middle layer if ambiguity is detected in the top layer; 2) matches the local parts with

cross-constrained likelihood, including local-part, global-target, and contextual information; 3)

proposes a physical constraint of the target with respect to other objects in the depth context, to

adaptively estimate the range interval occupied by the target.

4.1.1 Top layer tracking based on temporal consistency

The tracker first propagates a set of samples, using the top layer features, to find candidate

target regions in both RGB and depth images. The candidate regions generated by each feature

modality are adaptively fused to give an overall target estimation in the top layer.

A. Feature modalities
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In RGB images, we extract colour attributes [145] defined as linguistic colour labels with

eleven basic colour terms, namely black, white, brown, green, grey, orange, pink, purple, red,

blue and yellow, which have been shown to perform well in object detection, tracking and

recognition [146]. In depth images, we use depth HOG as the top depth feature. We apply those

two features using kernelised correlation filters (KCF) for tracking [9], which are acknowledged

for their high computational efficiency with the use of Fast Fourier transforms, explained below.

Correlation filters measure the similarity between the template and the image region to pro-

duce the correlation peaks for the target regions while low response for the background [80].

First, correlation filters are trained with the initialised image region (in our work, it is one

bounding box). The algorithm extracts the features from the initialised region and often applies

a cosine window to smooth the boundary effects. At the successive frames, correlation filters are

conducted between the template and image candidate region using element-wise multiplications

in Fourier domain instead of exhausted convolutions in Spatial domain [147]. This significantly

improves the computation efficiency. Then, the correlation output is transformed back into the

spatial domain as a spatial confidence map using the inverse Fast Fourier Transform. At last,

the region with the maximum value indicates the new position of the target. More details could

be found in [9].

In our work, we first apply the features extracted from RGB images and depth images with

KCF [9], where the top target layer (bounding box) estimations at frame k are denoted as

RT
rgb,k and RT

d,k respectively. Their corresponding matching scores are denoted as p̂(RT
rgb,k)

and p̂(RT
d,k).

B. Temporal consistency based regression models

Based on the estimated target positions, RT
rgb,k and RT

d,k, we distinguish two different track-

ing situations: “ambiguous” and “unambiguous” situations. A high overlap ratio between RT
rgb,k

and RT
d,k indicates unambiguous tracking situations [148], and a low overlap ratio indicates an

ambiguous situation.

In unambiguous situations, RT
rgb,k and RT

d,k represent similar target regions. They are used

to estimate the final target region in the top layer, by assigning equal weights to p(RT
rgb,k) and
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p(RT
d,k). These matching scores of the colour feature p̂(RT

rgb,k) and depth feature p̂(RT
d,k) are

then used to train regression models, later used for measuring temporal consistency. These

temporal consistency measures can then be used to robustly (adaptively) fuse RT
rgb,k and RT

d,k in

ambiguous situations. More specifically, we first describe the procedure in the RGB image and

denote its matching score as frgb,k = p̂(RT
rgb,k). The temporal history of a feature’s matching

scores in unambiguous frames is denoted as Frgb = {frgb,1, .., frgb,k−1}. It is used to train a

linear regression model f̂rgb,k = αk + α0, to get α, α0 online.

During ambiguous situations, training is switched off. The difference between the feature

matching score in current frame frgb,k and a predicted score f̂rgb,k from the regression model, is

used to measure temporal consistency. Feature weights are assigned by equation 4.1 where a

feature with higher consistency score will be assigned a higher weight.

p̂(frgb,k|Frgb) = exp(−|frgb,k − f̂rgb,k|) (4.1)

In depth images, the weight p̂(fd,k|Fd) of the used HOG feature is obtained in a similar way

as the feature used in RGB images (equation 4.1). The final weights for fusion are computed by

considering the temporal consistency of both RGB and depth features:

 p(RT
rgb,k) =

p̂(frgb,k|Frgb)
p̂(frgb,k|Frgb)+p̂(fd,k|Fd)

,

p(RT
d,k) =

p̂(fd,k|Fd)

p̂(frgb,k|Frgb)+p̂(fd,k|Fd)
.

if RT
rgb,k ∩ RT

d,k > λ∆O (4.2)

whereO is the target size, λ∆ = 0.9 is a threshold to measure the ambiguity of RT
rgb,k and RT

d,k.

Here the value of λ∆ is explicitly chosen to avoid the template drifting. In practice, when the

estimation difference between tracker and ground-truth bounding box exceeds this value, the

tracker’s template will drift to the background after the model adaptation.

C. Estimation

The final estimate RT
k for the top layer is obtained as a weighted linear combination of

RT
rgb,k and RT

d,k:

RT
k = p(RT

rgb,k)RT
rgb,k + p(RT

d,k)RT
d,k

(4.3)

59



Large differences between RT
rgb,k and RT

d,k indicate an “ambiguous” situation, where at least

one feature is likely to be erroneous.

4.1.2 Parts-based tracking with spatial context

Once an “ambiguous” situation is detected, the algorithm will progress to the second (middle)

layer for more accurate tracking. The top layer target region is enlarged, and then broken down

into a set of local candidate regions (using [137]) for target parts matching.

A. Matching metrics

To match target parts to local image regions, we use three matching metrics in the previously

proposed clustered decision trees, considering middle layer parts information, top layer target

information and contextual information.

Middle layer colour based likelihood of target part qt is the similarity between its colour

histogram M cm(qt)
rgb,k and that of local candidate image region ps. To match target part qt, local

candidate regions are searched according to the criterion:

p̂s = argmax L̂
cm(qt,ps)
rgb,k , L̂

cm(qt,ps)
rgb,k = B(M cm(qt)

rgb,k ,M
cm(ps)
rgb,k )

s.t. L̂cm(qt,ps)
rgb,k > λrgbp̂(frgb,k|Frgb)

(4.4)

where L̂cm(qt,ps)
rgb,k represents the colour likelihood and B(, ) is the Bhattacharayya similarity co-

efficient [76]. The purpose of λrgb is to restrict the value L̂cm(qt,ps)
rgb,k to lie within a reasonable

interval. In the RGB literature, matching likelihood L̂cm(qt,ps)
rgb,k is often used to indicate occlu-

sion, if the best matching score is lower than a threshold. Previous methods [64, 1] set a fixed

(minimum) likelihood threshold to determine occlusion, which may fail under variable tracking

conditions, e.g. illumination changes. Therefore, we propose a temporal consistency-based fea-

ture weight, p̂(frgb,k|Frgb) in equation 4.1, to adaptively compute the constraint in equation 4.4.

Top layer colour based likelihood is obtained by applying top layer colour histogram to

distinguish a pixel x in the estimated target region from its contextual pixels in RGB images

[111], while suppressing distraction from background clutter. Let M ct(Ω)
rgb,k (bxrgb) be the bxrgb bin

of the RGB histogram computed from (top layer) region R Ω
k ∈ Irgb,k, where Irgb,k represents the

60



RGB image and Irgb,k(x) 7→ bxrgb,k. Given a rectangular target region RT
k and contextual back-

ground RC
k (illustrated in figure 3.2), we apply Bayes law to obtain the top layer colour based

likelihood of pixel x as (similar definition as the bottom layer (pixel) model in equation 3.11):

l
ct(x)
k ≈

L̂(bxrgb|x ∈ RT
k )L̂(x ∈ RT

k )∑
RΩ
k=RT

k ∪RC
k

L̂(bxrgb|x ∈ R Ω
k )L̂(x ∈ R Ω

k )
(4.5)

where L̂(bxrgb|x ∈ RT
k ) ≈ M ct(T )

rgb,k (bxrgb) while L̂(x ∈ RT
k ) ≈ |RF

k |
|RT
k |+|R

C
k |

where |.| represents the

region size. The notations with R Ω
k and RC

k have similar definitions to those with symbol RT
k .

Thus, the top layer colour based likelihood L̂ct(ps)rgb,k of the candidate part ps considers all pixels

inside local region R ps
k , which is searched according to:

p̂s = argmax L̂
ct(ps)
rgb,k , L̂

ct(ps)
rgb,k =

∑
x∈Rps

k

l
ct(x)
k (4.6)

Top layer depth based likelihood is obtained from the depth histogram in a similar manner

to the top layer colour based likelihood. Note that, due to target motion, target depth can change

relatively fast (compared to colour), therefore the depth histogram used to compute likelihoods

is continually re-estimated online. Here, we exploit physical constraints on the motions of

the targets and other objects (e.g. a target cannot move deeper than background objects or

come closer to the camera than an occluding object) in the depth context, to estimate the target

histogram.

We first seek a depth interval in which the target might be located. [10, 20] computed this

depth interval solely from the observed target depth histogram in frame k − 1, which tightly

constrains the target, figure 4.1, to lie between target foreground and background constraints

(Df
T,k−1 and Db

T,k−1). Instead, we propose a physical constraint on the target pose wrt clutter

objects, which allows us to relax those two constraints, enabling the proposed tracker to cope

with large target depth variations.

We denote the observed target and contextual depth histograms at the k − 1th frame as

MT
d,k−1 and MC

d,k−1 respectively. Defining a narrow depth interval for the target may fail to
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Figure 4.1: Depth histogram. Df
T,k−1 and Db

T,k−1 represent foreground and background con-
straints respectively, computed from the target depth histogram. ConstraintsDf

C,k−1 andDb
C,k−1

are computed from the contextual depth histogram.

handle target motion in the depth direction (equivalent to over-fitting wrt depth). Using too

wide an interval could be regarded as under-fitting, and risks confusing target and background

information causing matching difficulties. To overcome these issues, we initially compute the

foreground and background depth constraints from depth histograms of both target and context

separately, figure. 4.1. Between constraints Df
T,k−1 and Db

T,k−1 of the target’s depth histogram,

is a narrow interval which should contain a large proportion of target pixels. Between the

context histogram constraints, Df
C,k−1 and Db

C,k−1, is a larger interval which we hope contains a

small proportion of background pixels. We define information loss (proportion of pixels missing

from a depth interval) as:

ITd,k−1 = 1−
∑DbT,k−1

bd=DfT,k−1

MT
d,k−1(bd)

ICd,k−1 = 1−
∑DbC,k−1

bd=DfC,k−1

MC
d,k−1(bd)

(4.7)

where ITd,k−1 and ICd,k−1 denote information loss for depth intervals obtained from the target

MT
d,k−1(bd) and contextual MC

d,k−1(bd) depth histograms respectively.

We seek an optimal depth interval which minimizes target information loss but maximizes
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contextual information loss, computed by:

(D̂f
T,k−1, D̂

b
T,k−1) = argmin


ITd,k−1,

Dbf
T,k−1.

s.t.


ITd,k−1 < λd,

Dbf
T,k−1 > 0.

(4.8)

(D̂f
C,k−1, D̂

b
C,k−1) = argmax


ICd,k−1,

Dbf
C,k.

s.t.


ICd,k−1 > 1− λd,

Dbf
C,k > 0.

(4.9)

whereDbf
C,k = Db

C,k − Df
C,k and Dbf

T,k−1 = Db
T,k−1 − Df

T,k−1.λd is a threshold parameter to

ensure that the target depth interval contains sufficient pixels. Equation 4.8 and equation 4.9

are a multi-objective optimization problem which we solve by combinatorial search, to yield an

adaptive depth interval:

Df
A,k−1 =

DfT,k−1+
∑
φ∈{b,f}H(DfT,k−1−D

φ
C,k−1)DφC,k−1

1+
∑
φ∈{b,f}H(DfT,k−1−D

φ
C,k−1)

s.t. Df
T,k−1 > Df

C,k−1

Db
A,k−1 =

DbT,k−1+
∑
φ∈{b,f}H(DbT,k−1−D

φ
C,k−1)DφC,k−1

1+
∑
φ∈{b,f}H(DbT,k−1−D

φ
C,k−1)

s.t. Db
T,k−1 < Db

C,k−1

(4.10)

where H is the Heaviside step function [149]. This ensures that, even if the context-based

depth interval locates completely on one side of the target-based depth interval, both constraints

can still be combined to generate an overall adaptive depth interval, defined by Db
A,k−1 and

Df
A,k−1. This adaptive depth interval achieves robustness by encoding common-sense physical

knowledge, that targets cannot recede beyond background, or approach closer to the camera

than occluding objects. If these common-sense conditions are not met (Df
T,k−16D

f
C,k−1 or

Db
T,k−1>D

b
C,k−1) then an ambiguity situation in the depth modality is detected and the corre-

sponding constraint becomes invalid.

In frame k, we regard any top layer pixels (those inside the 2D bounding box), which also

lie within the adaptive depth interval, as belonging to the target. Mean depth D̄k of those
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target pixels is now used to position-shift the target depth histogram to the new expected target

position:

M̂
T

d,k−1(bxd) = MT
d,k−1(bxd + D̄k − D̄k−1) (4.11)

where MT
d,k−1 is the target depth histogram observed at frame k − 1. Id,k(x) 7→ bxd is the bxd bin

in the depth histogram, corresponding to pixel x in image Id,k. D̄k−1 is the mean depth of target

pixels at frame k − 1.

Note that a conventional target depth histogram cannot be used for tracking (e.g. in the same

way as a colour histogram), because it is not a motion-invariant target feature. By position-

shifting with respect to expected target motion, we have effectively created a range-invariant

target depth histogram, M̂
T

d,k−1, which we can then use for tracking by generating likelihoods

for target parts.

Next, the position-shifted target depth histogram in equation 4.11 and the contextual depth

histogram MC
d,k−1 are used in a similar way as the target and context colour histograms are used

in equation 4.5 and equation 4.6, to compute a top layer depth-based likelihood L̂dt(ps)d,k which

can be used for matching the psth target-part. Using this depth likelihood we can now search

for target parts matches according to the criterion:

p̂s = argmax
∑
x∈Rps

k

L̂
dt(ps)
d,k s.t. Df

A,k−1 <

∑
x∈Rps

k
Id,k(x)∑

x∈Rps
k

< Db
A,k−1 (4.12)

B. Estimation

Our tracker applies the three matching metrics (middle layer colour, top layer colour and

depth based likelihoods, equation 4.4, equation 4.6 and equation 4.12) to three levels of a clus-

tered decision tree (see chapter 3), enabling matching of target parts qt to local image regions

ps. The clustered decision tree initially attempts to match a part using a single feature (first

level on the tree), and then progresses to additional features (deeper levels of the tree), if the

initial feature (first level) yields several candidate regions ps (a “cluster”) which share similar
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likelihoods to the best candidate pbests :

Ci,k(ps) =


1, if |L̂i(ps)k − L̂i(p

best
s )

k | ≤ σi,k

0, otherwise
(4.13)

where L̂i(ps)k is ith feature likelihood of candidate local region ps and σi,k is the corresponding

standard deviation. Ci,k(ps) denotes whether or not region ps is added to the cluster. For a

particular target part, if the matching likelihood of any region ps is sufficiently close to that of

the best matching region pbests , then Ci,k(ps) is set to 1, and region ps is clustered with region

pbests . Ci,k(ps) = 1 indicates that the current level of the decision tree (corresponding to use of a

particular image feature) has failed to confidently match the target part to a unique image region.

The tree then progresses to its next level (using an additional feature), to try and disambiguate

candidate regions that remain clustered. When the target part finds a unique matching candidate

region (σi,k becomes zero), then the clustered decision tree algorithm terminates.

If no successful matching region can be found, then that target part is regarded as occluded.

The final target position is computed from the distribution of all matched local parts. Each local

part, associated with a clustered decision tree, also contributes a strong classifier for occlusion

reasoning, by computing the ratio of matched local parts:

Vk = Nmatched,k/Nall (4.14)

where Nmatched,k is the number of matched local parts and Nall is the number of all target parts.

Vk can then be used as a “visibility” metric. When Vk becomes zero, then the target is fully

occluded.

4.1.3 Model updating

It is crucial to update the target model to accommodate appearance changes, learn newly ap-

pearing information, and delete old information. The proposed tracker does this via two mech-
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anisms: adapting the old middle and top layer target models, and adding new models of new

middle layer target parts (derived from super-pixels), which is the same as explained in sec-

tion 3.1.2.C.

Derived from proposed the RGB tracker in chapter 3, the proposed RGB-D tracker also

represents the target with a multi-layer model: top layer (bounding box), middle layer (target

parts) and bottom layer (pixels). Besides the novelties mentioned in chapter 3, the RGB-D

tracker explicitly checks the temporal consistency of features in RGB images and depth images

to predict the potential target region in the top layer, automatically triggering the use of the

middle layer if ambiguity is detected. In addition, a physical constraint of the target (the target

parts cannot move behind background regions or in front of occluding objects) with respect to

other objects in the depth context is proposed to adaptively estimate the range interval occupied

by the target, which improves the robustness of using depth information during tracking.

4.2 Dataset construction and bias analysis

Due to the limitations of currently available RGB-D benchmarks with respect to quality and

quantity (as explained in section 2.4), we have created a new dataset to evaluate our proposed

method. It consists of 36 video sequences with average 300 frames per sequence, shown in

figure 4.2.

4.2.1 Dataset construction

4.2.1.A. Hardware set-up

There are a variety of options for choosing RGB-D sensors from the market (shown in fig-

ure 4.3), e.g. Microsoft Kinect and Asus Xtion etc. For depth images, Microsoft Kinect and

Asus Xtion are similarly accurate for close ranges up to 3.5m with linear increased noise while

noise increases quadratic in far ranges [151]. Microsoft Kinect offers various reliable hardware

models and a remotely controllable motor is provided for device positioning. However, Kinect
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Figure 4.2: The constructed RGB-D tracking dataset. 36 video sequences (18 scenes) in total
and each scene was captured with both a moving camera and stationary camera.

is relatively big (12” x 3” x 2.5”) and heavy (3.0 lb), while an additional AC-DC power supply

is required. In contrast, Asus Xtion is more compact (7” x 2” x 1.5”) and lighter (0.5 lb). In

addition, it does not need additional power supply and still provides better RGB image qual-

ity [150]. Considering some of the videos need to be captured outdoor, this makes Asus Xtion

more convenient with high quality image data for our dataset construction.

Since motion of the RGB-D camera often causes significant depth variation, the moving

camera brings more tracking challenges compared to the stationary camera. Therefore, in the

experiment, two ASUS Xtion RGB-D sensors were used to collect data. For each scene, one

sensor was fixed and the other sensor was moved continuously (by hand) to explicitly evaluate

the performance of trackers under conditions of arbitrary camera motion. Note that the depth

67



Figure 4.3: Different types of RGB-D cameras. The left one is Asus Xtion RGB-D sensor and
the right one is Microsoft Kinect.

information is obtained by an embedded infrared projector in Xtion. Since the infrared will

become saturated under conditions of direct sunlight, most sequences were recorded indoors

with depth ranging from 0.5 to 8 meters. To ensure the diversity of the scenes and to investigate

extreme tracking circumstances [152], some outdoor scenes were collected during the night.

Note that even with the OpenNI2 synchronous function, RGB images and depth images are

not always well synchronised [153], similar to problems in PTB [20] explained in section 2.4.

Therefore, time stamps were used to drop asynchronous image pairs. Here, we calculated the

difference of the time stamps between the RGB and depth image pairs. Once this time interval is

higher than a threshold, we considered the RGB and depth images were unsynchronised. In the

experiment, the threshold for time interval was set as 0.02s, where no apparent vision difference

was visible to the human eye between the corresponding frames in the collected data.

4.2.1.B. Bounding box annotation

Human annotators were asked to manually select the minimum size of bounding box which

fully contains the target object. As the dataset is designed for testing tracking algorithms (not

for detection algorithms), the target objects were always fully or partially visible in every frame.

In the case of partial occlusion, the bounding box covers both the visible and the (human-

estimated) occluded region of the target object, as recommended by VOT [3].
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Table 4.1: The descriptions of annotated attributes.

Attibutes Description
Annotation

method

IV
Illumination variation – RGB intensity change of
all pixels inside the bounding box (mean value).

Computational
statistics

DV
Depth variation – depth change of all pixels inside
the bounding box (mean value).

SV
Scale variation – scale change of the bounding
box (relatively ratio).

CDV
Color distribution variation – RGB distribution
change of the bounding box.

DDV
Depth distribution variation – depth distribution
change of the bounding box.

SDC
Surrounding depth clutter – depth similarity
between the target and ring-shaped contextual
region (mean value).

SCC
Surrounding color clutter – RGB intensity
similarity between the target and ring-shaped
contextual region (mean value).

BCC
Background color camouflages – if the object
in the background shares the similar color as
the target (binary value).

Human
intuitionBSC

Background shape camouflages – if the object
in the background shares the similar shape as
the target (binary value).

PO
Partial occlusion – if the target is partially
occluded (binary value).

4.2.1.C. Attributes annotation

“Attributes” define various challenging factors of tracking, and can provide a qualitative or func-

tional interpretation of the characteristics of each sequence. To thoroughly analyse the dataset

bias, we provide two categories of attributes annotations for each frame: binary and statistical,

shown in table 4.1. The former are decided by human annotators based on intuition and in-

clude background colour camouflage (BCC), background shape camouflages (BSC) and partial

occlusion (PO). The latter are calculated from the statistical properties of features within the

annotated bounding boxes, including illumination variation (IV), depth variation (DV), scale

variation (SV), colour distribution variation (CDV), depth distribution variation (DDV), sur-

rounding depth clutter (SDC), and surrounding colour clutter (SCC).

69



4.2.2 Bias analysis

4.2.2.A. Tracking performance limits

To evaluate bias in the dataset [131], we first compute upper-limits and lower-limits that a

tracker could achieve in each sequence, represented by overlap ratio between the bounding

boxes of the tracker and the ground truth.

Upper-limits (green column heights in figure 4.4) represent ideal tracking performance (per-

fect match to ground truth). Since some tracking methods are not designed with scale adapta-

tion, another upper-limit (red column heights in figure 4.4) is computed for a tracker which

matches the true target centroid position but with the initialized (first-frame) target scale.

Lower-limits (blue columns in figure 4.4) represent the performance that can be achieved by

a “dumb” tracker, defined as the best performing out of setting the bounding box: i) permanently

in the image centre; ii) fixed at the initialisation location; iii) positioned randomly.

Sequences with high lower-limit should be avoided to avoid dataset bias [131], since arbi-

trary tracking algorithms tested on those sequences could achieve similarly good performance.

Trackers without scale adaptation are best evaluated on sequences with high red column heights

in figure 4.4, since those sequences have larger test range and the evaluation focuses on the

center error not the scale adaptation. Also, for those trackers without scale adaptation, com-

paring their results to this upper-limit (red column height) is more objective and informative

(compared to green column height). This is because no matter how accurate a tracker’s position

is, its tracking performance cannot exceed red column height (upper-limit). In contrast, trackers

with scale adaptation are better tested on sequences with low red column heights, so that the

scale adaptation of a tracker could significantly affect the tracking performance.

4.2.2.B. Attributes statistic

We first calculate the number of frames for each binary attribute, including background colour

camouflage (BCC), background shape camouflages (BSC) and partial occlusion (PO), shown in

figure 4.5. To avoid bias, the dataset should have a wide spread of attributes, which is shown as
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Figure 4.4: Limits of tracking performance in each sequence. Blue, green and red column
heights correspond to lower limits and upper limits with/without scale adaptation, respectively.

different colour sections in bars. It can be seen that over half of the scenes have the attributes

of BCC and BSC, which often last a long time. In contrast, partial occlusion happens more

often across different scenes but just lasts a few frames. This supports our argument that the

sequences should be per-frame annotated since the annotated attributes do not last throughout

the entire sequence. It is preferable to evaluate each tracker with respect to attributes annotated

on a per-frame basis, for a more accurate and meaningful analysis. Then, we use the number

of attributes per frame to evaluate the tracking difficulties. To appreciate how challenging our

dataset is, as shown in figure 4.6, the majority of image frames in the dataset contain either one

or two challenging attributes, and a few frames are extremely challenging (containing all binary

attributes).
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Figure 4.5: Number of frames for each binary attribute, including background colour camou-
flage (BCC), background shape camouflages (BSC) and partial occlusion (PO). Different colour
sections represent different sequences.
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Figure 4.6: Proportions of dataset frames which contain various numbers of challenging (bi-
nary) attributes, including BCC, BSC, PO.

Statistical attributes, such as IV, DV, SV, CDV, DDV, SCC and SDC are computed from

all frames in all sequences. For IV and DV, we compute the mean value of all pixels inside the

bounding box in terms of intensity and depth. The differences of those values between succes-

sive frames are used to represent those two statistical attributes. For CDV and SCC, we use

(intensity or depth) value of all the pixels inside the bounding box to compute the distribution

which is compared (by using Bhattacharyya coefficient) to the distribution in the next frame to

represent CDV or DDV. SCC and SDC compute the (intensity or depth) distributions of the pix-

els inside the bounding box and ring-shaped regions (figure 3.2) at the same frame, respectively.

Then, we compare the distributions between bounding box and ring-shaped regions with Bhat-

tacharyya coefficient, which is used to present SCC/SDC. SV used the scale of the bounding

box between successive frames. The changes of the target scale are normalized by the absolute

value of the bounding box scale.
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Figure 4.7: The statistical attributes of constructed dataset. Colour sections denote different
ranges of severity of each attribute. IV, DV are measured by absolute value change (depth
normalized 0 to 255). CDV, DDV, SBC, SCC are based on histogram while SV measures scale
change ratio, defined in table 4.1.
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Figure 4.7 suggests that there is a good spread of different attributes, and each has a good

spread of severities, over the frames of the dataset. These statistical attributes are useful to: 1)

guide unbiased dataset construction; 2) provide functional explanations of tracking failures; 3)

help researchers choose optimal algorithm parameters.

4.3 Experiments

We have tested our RGB-D tracker on our new dataset using two (currently competing) state-

of-the-art evaluation protocols, VTB [23] (runs each tracker throughout each sequence without

reinitialisation following failures), and VOT [3] (re-initialises trackers whenever a failure is

detected). Our tracker is compared against the top three [5] ranked RGB-D trackers: PT

tracker [20], SD-KCF tracker [10], and OAPF tracker [148]. Test results are presented for

i) the entire dataset; ii) stationary vs. moving camera; iii) frames corresponding to particular

attributes.

4.3.1 VTB evaluation protocol

For VTB evaluation [21], there is no re-initialisation after tracking failures. [23] suggests area

under curve (AUC) of the overlap ratio curve, or centre-error distance curve for evaluation. The

centre-error measure (distance between tracker and groundtruth centroids) includes all frames,

even after total tracking failure, which does not reflect the true performance of the tracker [154].

Moreover, centre-error is sensitive to subjective human bounding box annotation which can be

significantly variable. Therefore, we compare each tracker in terms of overlap ratio curve.

Table 4.2 shows the AUC performance of each tracker. Our proposed tracker demonstrates best

overall performance, as well as best performance in all attribute sub-sets. PT [20] ranks second

overall, while SD-KCF [10] outperforms PT and OAPF in the subsets of moving cameras,

IV, DV, SV, DDV and SDC. OAPF ranks at bottom according to the VTB protocol. The DV

severity at tracking failure frames is 6.4 for the proposed tracker and OAPF, and 5.9 and 5.7 for
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Table 4.2: AUC of overlap curve in VTB evaluation protocol. (red: best performance; blue:
second best performance)

Ours PT [20] SD-KCG [10] OAPF [11]
Overall 8.34 7.45 7.17 5.24

Stationary 9.57 8.54 7.52 6.00
Moving 7.18 6.43 6.85 4.54

IV 5.78 4.15 5.50 3.19
DV 7.53 6.71 6.97 4.45
SV 5.05 2.95 3.20 3.09

CDV 5.11 0.43 1.43 3.22
DDV 7.64 3.54 4.17 3.70
SDC 7.99 6.83 7.79 4.99
SCC 9.51 8.25 8.09 6.12
BCC 6.67 5.74 4.82 3.79
BSC 7.13 5.81 4.99 4.81
PO 7.74 6.16 6.03 5.81

DS-KCF and PT respectively. The tracking performance of the trackers in some severe scenes

is visualized in figure 4.8.

4.3.2 VOT evaluation protocol

VOT evaluation [3] is based on two independent metrics: accuracy (overlap ratio between

tracker and ground truth bounding boxes); and robustness, measured according to the frequency

of tracking failure (when overlap ratio becomes zero). Whenever failures occur, the tracker is

accurately reinitialised to continue tracking.

Failure rates and accuracy scores are shown in Tab. 4.3. Our proposed tracker ranks first

in robustness, with competitive accuracy, while SD-KCF [10] ranks second in robustness (with

seemingly better accuracy). Note that accuracy scores can be misleading. Since ground truth is

used to re-initialise trackers (with perfect accuracy) following every tracking failure, less robust

trackers (many failures) are likely to exhibit artificially higher accuracy scores. Therefore,

the accuracy metric is only meaningful when comparing two trackers which have the same

robustness score. Our method’s robustness score significantly exceeds all others, while having

a somewhat smaller accuracy score than competitor DS-KCF [10]. Meanwhile, PT [20] fails

significantly and the accuracy of OAPF [11] ranks bottom. When failure happens, the average
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Figure 4.8: Visualization of results on sequences: Athlete, Backpack, Face, Trolley, showing
extreme target deformations and depth variation.

DV severity for our proposed tracker is 9 (normalised depth ranges from 1-255) while OAPF

closely follows with 8.9. PT and DS-KCF are approximately 8.5 and 7, respectively.

4.3.3 Overall tracker evaluation: VTB vs VOT

The proposed tracker significantly and consistently performs best, on both VTB and VOT eval-

uation protocols. However, note that the performance of PT [20] changes dramatically between

protocols (worst in VOT but second best in VTB). This is because PT often loses the target and

then successfully re-captures it later, while VOT anyway re-initialises all trackers immediately

following failures. Therefore, we suggest VOT is less suitable than VTB for testing trackers

which are good at automatically recovering from failures. However, in VTB, success ratio can

75



Table 4.3: VOT protocol evaluation results. (red: best performance; blue: second best perfor-
mance)

Ours PT [20] SD-KCF [10] OAPF [11]
Fail. Acc. Fail. Acc. Fail. Acc. Fail. Acc.

Overall 2.11 0.52 10.61 0.64 3.36 0.56 5.78 0.35
Stationary 1.56 0.54 8.61 0.63 3.00 0.56 3.72 0.37
Moving 2.67 0.50 12.61 0.64 3.72 0.57 7.83 0.33

IV 0.11 0.41 0.33 0.53 0.08 0.50 0.19 0.25
DV 0.5 0.49 3.14 0.65 0.64 0.56 1.42 0.32
SV 0.19 0.41 1.42 0.55 0.28 0.48 0.50 0.25

CDV 0 0.46 0.19 0.60 0.03 0.54 0.11 0.22
DDV 0.25 0.47 1.03 0.65 0.31 0.58 0.61 0.27
SDC 0.97 0.52 5.78 0.62 1.39 0.55 2.75 0.35
SCC 0.22 0.52 2.33 0.62 0.92 0.52 1.36 0.36
BCC 1.17 0.49 4.31 0.64 1.56 0.53 2.61 0.32
BSC 0.67 0.50 3.83 0.63 1.47 0.51 1.86 0.35
PO 0.5 0.46 3.61 0.57 1.11 0.54 1.47 0.33

be dramatically affected by the sequential positions of failures. If a tracker fails early in a se-

quence, it will show a low success ratio, but if it fails late in a sequence, it may show high

success ratio. Therefore, we evaluate our tracker with both VOT and VTB methodologies, and

it shows superior performance in both.

4.4 Summary

This chapter has presented a novel method for RGB-D target tracking, and also presented a new

benchmark dataset. The proposed tracker extends the original RGB multi-layered target model,

which robustly combines both RGB and depth information. In the top layer, the algorithm

exploits temporal consistency to adaptively fuse features for candidate region searching. The

global candidate region is then split into a set of local candidate regions for robust matching

to local target parts. Parts matching is robustified by considering both top layer feature statis-

tics and contextual information. A physical constraint is extracted from the depth context to

accurately estimate an adaptive target depth interval.

To evaluate our tracker, we developed a new RGB-D benchmark dataset with per-frame
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annotated attributes. We compute upper-limits and lower-limits that a tracker could achieve in

each sequence to analyse the bias in dataset. We provide two categories of attributes annota-

tions for each frame: binary and statistical. The former are decided by human annotators based

on intuition, and the latter are calculated from the statistical properties of features within the

annotated bounding boxes. We calculate the distribution of different attributes over the frames

of the dataset, which suggests that there is a good spread of different attributes, and each has

a good spread of severities. These attributes are useful to: 1) guide unbiased dataset construc-

tion; 2) provide functional explanations of tracking failures; 3) help researchers choose optimal

algorithm parameters.

Our tracker is evaluated using two different state-of-the-art evaluation protocols [3, 23]. The

proposed tracker significantly and consistently performs best, on both VTB and VOT evaluation

protocols. For VTB protocol, our proposed tracker demonstrates best overall performance, as

well as best performance in all attribute sub-sets. The depth variation severity at tracking failure

frames is 6.4 for the proposed tracker, which is equally good as OAPF. For VOT protocol, the

proposed tracker ranks first in robustness, with competitive accuracy. When a failure happens,

the average depth variation severity for our proposed tracker is 9 (normalised depth ranges from

1-255), which accommodates largest depth range compared to the other trackers.
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CHAPTER 5

TRACKING BY EXPLOITING SCENE
DISTRACTORS

Previous proposed work built the tracker by focusing on modelling and reasoning about the

tracked object itself. This chapter proposes that, to achieve robust tracking under severe track-

ing conditions, the tracking algorithm needs to go beyond the target information and “interact”

with the context in a sophisticated way, by locating and modeling multiple regions in each image

which share similar appearance with the target. We call such image regions distractors. There-

fore, in this chapter, we present a novel method for single target tracking in RGB images under

conditions of extreme clutter and camouflage, including frequent occlusions by objects with

similar appearance to the target. We first propose a multi-level clustering method for online de-

tection and learning of multiple distractors. Section 5.1 explains our proposed method. To dis-

tinguish the target from these distractors, we use global dynamic constraints (derived from target

and distractor information) to optimize the estimated target trajectory. Section 5.2 presents per-

formance evaluations of our method, and comparisons against other state-of-the-art algorithms.

To evaluate our tracker, we have augmented publicly available benchmark videos, by proposing

a new set of clutter sub-attributes, and annotating these sub-attributes for all frames in all se-

quences. Using this dataset, our proposed method outperforms the best ranked state-of-the-art

single target trackers on highly cluttered scenes. Furthermore, for tracking one out of many

identical entities, our method outperforms state-of-the-art multi-target trackers, when they are

given additional prior knowledge (initialised with all distractors as separate targets in the first
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frame). Section 5.3 summarises this work and provides concluding remarks.

5.1 Proposed method

The proposed method consists of two steps. The first step uses coarse-to-fine multi-level clus-

tering to find candidate image regions for target and/or distractors (the regions that share similar

appearance with the target). The second step aims to distinguish the target from the distractors

by using a global dynamic constraint based on the motion history of both tracker and distractors.

5.1.1 Coarse-to-fine multi-level clustering

Our proposed tracking algorithm first propagates a set of samples drawn from the region around

the target position estimated at the preceding frame. We then propose a multi-level clustering

method to find regions that are similar to the target in the new frame. Multiple feature modal-

ities and spatial information are used, level by level, in a coarse-to-fine sampling manner to

incrementally achieve better results, shown in figure. 5.1. This approach resolves the contradic-

tion between robustness and tracking speed, by first performing sparse sampling to find initial

candidates, and later applying dense sampling to a small subset of image regions (identified by

the sparse sampling) where needed.

The algorithm begins by propagating only a sparse set of samples, and colour features are

initially used to compute matching scores for each sample. First, clustering is carried out ac-

cording to colour matching scores to classify the samples into foreground and background sets

(level 1 clustering), defined as those with high and low matching scores respectively. Next, the

spatial distribution of level 1 foreground samples is used to sub-cluster neighbouring samples

(level 2 sub-clustering). For each level 2 cluster, we then apply a dense sampling, using an

additional feature modality (HOG) for robust estimation (level 3 cluster subdividing). Note that

we use the term foreground in a special sense, to denote both target and distractors. Everything

else is called background.
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Figure 5.1: Coarse-to-fine multi-level clustering is used to find image regions containing the tar-
get or distractors. The algorithm: i) sparsely propagates samples around the target position from
the previous frame; ii) clusters the propagated samples into two groups (foreground/background
samples) according to their associated matching scores; iii) clusters the foreground samples ac-
cording to their spatial distribution; iv) densely samples each clustered foreground region to
perform robust estimations.

A. Level 1 clustering

The algorithm samples a sparse set of NR locations surrounding the target location in a uni-

form way. The positions of the sample centres at the kth frame are denoted by {X̂ k(j)}j=1,...,NR .

As colour histograms are acknowledged for their simplicity, computational efficiency, invari-

ance to scale and resolution change [64], we first extract a colour histogram from each sample

and compare it to the target appearance model to get matching scores {L̂C,k(j)}j=1,...,Np , where

C indicates the colour feature. Within the information of the sample distributions and their

associated matching scores, we use f jk = {X̂ k(j), L̂C,k(j)} as the feature vector and feed them

into a Gaussian Mixture Model in order to cluster the samples into two groups: foreground

samples and background samples, by equation 5.1.

p(f jk ; θ) =
2∑

C=1

αCN (f jk ;µC,
∑

C
) (5.1)

where αC is the weight of the cluster C, 0 < αC < 1 for all components, and
∑2

C=1 αC = 1,

where µ and
∑

are the mean and variance of the corresponding cluster. The parameter list:

θ = {α1, µ1,
∑

1
, α2, µ2,

∑
2
} (5.2)

defines a Gaussian mixture model, which is estimated by maximising the likelihood [155]. The

mean matching score of samples in each cluster is denoted by L̄C
C,k. Then, all samples in the
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cluster with greatest mean score are regarded as foreground samples, denoted as equation 5.3.

Rf (ĵ) =


1, if ĵ = arg max L̄C

C,k(j)

0, otherwise.
(5.3)

where Rf denotes whether sample ĵ is regarded as foreground. The selected foreground samples

R̂ k(ĵ) will next be used for level 2 sub-clustering using additional features, while all samples

in the cluster with lower mean score are regarded as background and are discarded.

B. Level 2 sub-clustering

In a highly cluttered environment, there may be many false positives among those sam-

ples labeled as foreground, caused by distractors (non-target image regions with target-like

appearance). To distinguish individual objects in the scene (target and distractors) we therefore

sub-cluster the samples within all level 1 clusters according to their spatial distribution:

Csub(i, j) =


1, if N(i, j) = 1, i, j ∈ Rf

0, otherwise.
(5.4)

where N(i, j) denotes whether sample i and j are neighbours. Csub(i, j) = 1 labels samples i

and j as belonging to the same sub-cluster. Rf represents the foreground sample cluster (level

1 cluster). Noticeably, the performance of this spatial distribution-based clustering method de-

pends on the spatial density of propagated samples. If the samples are sparsely distributed, it

is likely that a level 2 sub-cluster may contain more than one object (a similar problem was

identified in [121, 122]). Figure 5.2 illustrates the results after level 1 and level 2 clustering,

using a frame from the Juggling sequence. Even if there is a gap between two adjacent ob-

jects (Figure 5.2. A), it can be difficult to distinguish them using a sparse sampling density,

Figure 5.2. B. Therefore, we next proceed to another level (level 3 cluster subdividing), where

the foreground regions identified by levels 1 and 2 are more densely sampled and an additional

appearance feature is added to achieve finer scale disambiguation.

C. Level 3 cluster subdividing

81



Figure 5.2: Failure mode of levels 1 and 2 clustering. In this image, the true target (red ball)
is very close to a distractor (another identical red ball), which can lead to failure. (A) red grid
denotes the sparsely distributed samples. Blue rectangles are the estimated foreground regions;
(B) red dots denote background samples while blue dots denote foreground samples which have
been erroneously merged into a single foreground cluster. Clearly levels 1 and 2 clustering can
fail to disambiguate two adjacent objects.

In this level, the algorithm will estimate the regions of tracker or distractors from each sub

cluster. In the initial stage, we sparsely sample the image to achieve computational efficiency

in a large searching scope. After we obtain the set of foreground samples from levels 1 and 2

clustering, we densely sample the region inside each level 2 sub-cluster to further improve the

localisation of target and distractor regions. Each level 2 sub-cluster is obtained using colour

features for matching, and all level 2 foreground samples therefore already have a high colour

matching score. Therefore an additional feature modality is needed to achieve further disam-

biguation of target and distractor regions. At level 3 the algorithm therefore applies HOG fea-

tures to compute the matching scores of the new samples, using a kernel correlation filter [144].

Within each densely re-sampled level 2 sub-cluster, the most straightforward way to iden-

tify the object region is to search for the sample with the highest HOG feature matching score.

However, as shown in figure 5.2, sometimes a coarse level 2 cluster may contain more than one

object. If the target undergoes deformation, then a distractor within the same cluster often trig-

gers a high matching score. [64, 112] tried to detect the target by applying the expectation op-

erator over the distributed samples with associated weights (i.e. taking the likelihood-weighted

mean of all samples). However, the expectation estimation might be highly erroneous when
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multiple similar objects are present in the scene [156]. For example, taking the mean loca-

tion of two similar objects will give an estimated location which lies on a background region,

midway between both samples, shown in figure 5.3. To overcome this problem, we observe

that the spatial ambiguity between the sample with the highest matching score (the mode) and

the location of the mean sample (derived from the expectation operator) can indicate potential

distractions within a cluster, and enable robust estimation.

Figure 5.3: Tracking failure. Taking the mean location of two similar objects will give an
estimated location which lies on a background region.

Within the dense level 3 samples, the initial estimate of the object inside each cluster is

taken to be the sample with highest HOG matching score (i.e. the mode sample), denoted by

R̂
Csub
k (jh). We also use the expectation operator over all samples in the cluster to compute the

mean sample:

R̄Csub
k =

NC∑
j=1

L̂Csub
H,k (j)R̂

Csub
k (j) (5.5)

where L̂Csub
H,k (j) is the associated HOG feature matching score of the dense sample j inside level

2 sub-cluster Csub and NC is the number of samples inside each cluster. If the overlap between

R̂
Csub
k (jh) and R̄Csub

k is small, it suggests there is another distractor inside the cluster, which is

on the opposite side of R̂
Csub
k (jh) compared to R̄Csub

k , see figure 5.4. If we denote foreground

samples in the other half of the cluster as Rf,Csub/2, then a second object’s location is estimated

by:
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ĵ = arg max L̂Csub
H,k (j)

s.t. i ∈ Rf,Csub/2, R̂
Csub
k (jh) ∩ R̄Csub

k < ζ
(5.6)

where ζ is the overlap threshold. This method will iteratively estimate the potential distrac-

tors inside each cluster until R̂
Csub
k (jh) and R̄Csub

k have significant overlap. Here, we use the

threshold 50% to judge whether the overlap is significant.

Figure 5.4: Sub-image of figure 5.2.B with level 3 clustering. Green dot denotes mode sample
R̂

Csub
k (jh). Black dot is the mean sample R̄Csub

k . Yellow dots denote foreground samples in the
other half of the same cluster.

The final estimations from all clusters indicate “foreground” regions that might contain

either the target or distractors, denoted by a set of sample centres {X̂ o,k(j)}j=1...No,k where No,k

is the number of observed foreground regions (note that here we use the term “foreground” in a

slightly unconventional sense, to refer to both target and target-like distractors).

So far, we have presented a multi-level clustering method with coarse-to-fine sampling to

detect target-like regions. The method reduces the computational cost compared to dense sam-

pling over the entire image while improving tracking accuracy compared to methods using a

fixed spatial sampling density. The algorithm will next combine the motion history information

of both target and distractors, described in section 5.1.2, to definitively associate one foreground

region to the target. All remaining foreground regions will be rejected as distractors.

5.1.2 Global dynamic constraint

In highly cluttered scenes, motion cues are important for overcoming the ambiguity caused

by appearance similarities between target and distractors [13]. Therefore, we use the motion
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history of the tracker and distractors to build a global dynamics model to deterministically

associate a single foreground region to the true target.

A. Motion regression model

During camera motion the image coordinates of objects (target or distractors) can abruptly

jump to a new image location from one frame to the next. However, the relative positions

between objects remain comparatively stable. Therefore, these relative positions are used to

generate a global motion model. The multi-level clustering procedure (described in the previous

section) outputs multiple detected foreground object centres {X̂ o,k(j)}j=1...No,k at the kth frame.

We now re-write the coordinates of these object centres as:

X̂ o,k(j) = X̄ o,k + ∆X o,k(j) (5.7)

where ∆X o,k(j) represents the relative displacement between the ith object location and the

spatial distribution centre X̄ o,k = 1
No,k

∑No,k
j=1 X̂ o,k(j) of all the object centre estimates.

Over a short time interval, the underlying dynamics of the target can be reasonably approx-

imated by a linear regression model [13]. The relative motion of the target in frame κ is then

predicted by a linear regression model: ∆X t,κ = β0 +β1κ+εκ, where β0, β1 are the coefficients

and εk is a noise term. To estimate the parameters, the algorithm minimises the sum of squared

residuals
∑k−1

i=1 ε
2
κ, where β̂0, β̂1 is obtained from the historic information of the relative posi-

tion of the target, by least squares estimates. The predicted relative position of the target center

at frame k is:

∆X̂ t,k = β̂0 + β̂1k (5.8)

Note that the relative positions of the target and distractors implicitly encode global infor-

mation about the scene dynamics.The relative position of foreground object j at the kth frame

can be denoted by ∆X o,k(j), which is computed from equation 5.7. Note that our tracking al-

gorithm is only concerned with solving the single target tracking problem, and does not assign

or maintain individual IDs for all foreground objects in the scene. Instead, we use the similarity
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score of target motion dynamics:

wjD,k = e−|∆Xo,k(j)−∆X̂ t,k| (5.9)

where wjD,k denotes the dynamic similarity score between the predicted target relative posi-

tion ∆X̂ t,k and the relative position ∆X o,k(j) of the jth foreground object.

Intuitively, the robustness of this dynamic similarity score, in equation 5.9, corresponds to

the complexity and stability of the spatial distribution of the detected foreground objects. If

the number of detected foreground objects changes dramatically, it indicates either potential

occlusion or newly emerged distractors.

B. Handling dynamic numbers of distractors

For the data association problem, it is crucial to be able to handle situations where the

number of detected objects is changing. In such situations, the relative positions can be highly

noisy or even invalid because of newly emerged/disappeared objects.

Newly emerged or disappeared foreground objects might be either the target or distractors.

Therefore, we use the image coordinates to associate each detected object j with a target-like

dynamic matching score wjt,k and distractor-like dynamic matching scores wj,md,k , computed by:


wjt,k = e−|X̂o,k(j)−X̂ t,k−1|

wj,md,k = e−|X̂o,k(j)−X̂m
d,k−1|

(5.10)

where X̂ t,k−1, X̂
m

d,k−1 are the centers of the target and the m-th distractor in the k − 1th frame.

X̂ o,k(j) is the jth detected object at frame k. Here, the exponential function is applied to

normalise the likelihood value to occupy the range (0, 1) by equation 5.10. The detected object

corresponding to the target should have a high target-like dynamic matching score and also a

low distractor-like dynamic matching score, giving a global dynamic score wjD,k for the jth
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object as:

wjD,k =


Nd,k−1w

j
t,k/

∑Nd,k−1

m=1 wj,md,k , Nd,k−1 6= 0

wjt,k , others

(5.11)

where Nd,k−1 is the number of distractors in the k − 1th frame.

C. Target association and occlusion reasoning

The optimal target association (assigning the target to a particular detected object) is con-

firmed as the one with highest dynamic similarity score wjD,k. Moreover, the target-designated

candidate region should also have a higher matching likelihood than other (distractor) candidate

regions. The final target region is optimally assigned to a candidate region by:

ĵ = arg max wjD,k

s.t. wjt,k ≥ λdmax {wj,md,k }m=1,...,Nd,k−1

(5.12)

where wjD,k is computed from equation 5.9 when the number of detected objects is stable, and

from equation 5.11 when the number of detected objects is changing. Nd,k−1 represents the

number of the distractors in the k − 1th frame while λd is a scaling factor in the range 0 to 1.

As target-like probability and distractor-like probability are computed from the position, this

scaling factor λd controls the impact of the position. If no detected object or candidate region

satisfies the global dynamic constraint (equation 5.12), then the target is regarded as being in

occlusion.

5.2 Experiments

In this section, we first compare our single-target tracker to several other state-of-the-art single-

target trackers which are the ones most highly ranked in the most recent state-of-the-art bench-

mark studies [2, 3, 22]. The compared single target trackers include KCF [9], Struck [25],

SCM [7] and CPF [64]. The CT algorithm [8] is considered the most closely related work to

87



our own and so is also compared.

Additionally, we note that some multi-target tracking scenarios (those where many targets

have similar appearance) also present interesting challenges for single-target tracking, i.e. when

one target is selected for tracking, then the other targets become equivalent to severe camouflage

and clutter. Therefore, we use test videos from multi-target literature [13, 12] to conduct a

second experiment, in which we compare our proposed single-target tracker against multi-target

trackers in scenes featuring many identical objects.

In both cases, we evaluate the ability of the trackers to identify a single specific target in

each frame, however the multi-target trackers are initialised with significant additional infor-

mation about all distractor objects and track them as additional targets (enabling them to use

data-association to disambiguate the true target). In contrast, our single target tracker is only

initialised with information about the single target to be tracked, and must detect and learn about

all other objects in the scene on-the-fly.

5.2.1 Single target tracker comparison

A. Dataset

For comparison against other single target trackers, we have selected 15 highly cluttered

sequences from state-of-the-art tracking benchmarks [2, 3]. Note that we have specifically

chosen not to use the full datasets because: i) these large datasets only contain a few sequences

featuring extreme clutter and camouflage, which this work specifically addresses; ii) testing on

all sequences introduces confounding factors (non-clutter conditions) making it hard to disam-

biguate the true capabilities of each algorithm to tackle clutter and camouflage.

To gain a deeper understanding of tracker performance on cluttered scenes, we propose a

new set of sub-attributes for clutter and camouflage: shape clutter, colour clutter, static camou-

flage, camera motion-caused camouflage motion, self-moving camouflage. We have per-frame

annotated all sequences with all sub-attributes. At the time of writing this thesis, this work

is still in review for publication. All of the test videos are already publicly available. Once

this work becomes accepted for publication, we will publicly release the corresponding set of
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Table 5.1: AUC for single target tracking performance in extremely cluttered scenes. Our
proposed method significantly outperforms all compared methods on all sub-attributes. (red:
best performance; blue: second best performance)

Clutter type Camouflage motion
Tracker Overall Colour Shape no motion camera motion self-motion

Ours 6.4094 6.2877 6.2337 11.9879 6.3740 6.3300
KCF [9] 5.6994 5.5088 5.4689 8.2909 4.6889 5.6541
CPF [64] 5.2830 4.4726 5.0478 10.0545 5.4337 5.1546
SCM [7] 4.4338 4.5308 4.3961 2.7758 3.3757 4.5032

Struck [25] 3.1631 2.5256 3.1031 1.7758 3.0875 3.1748
CT [8] 2.8375 3.0378 2.8246 1.9455 1.8972 2.8559

sub-attribute annotations.

B. Results

For single target tracking, Wu et al. [23] proposed a novel performance metric which uses

the area under the curve (AUC) of the overlap rate curve or central pixel distance curve for

evaluation. Center-error measure counts the center distance at all frames even after a tracker

has failed, which does not reflect the tracker’s true performance [154]. Moreover, the centre

distance is susceptible to subjective bounding box annotation. Therefore, in this work, we only

compare trackers in terms of AUC of the overlap rate curve. We provide the AUC results [2]

of each tracker, tested i) over the entire dataset and ii) for frames corresponding to particular

sub-attributes in table 5.1. The trade-off overlap rate curve is shown in figure 5.5.

Our proposed tracker outperforms all compared trackers, both overall and also in all sub-

attribute categories. The best result is obtained when the camouflage is static. The tracking

performance in scenes with both camera motion and camouflage self-motion is quite similar,

because our proposed global dynamic constraint exploits the relative positions of target and

distractors. In contrast, KCF [9] performs second best for camouflage self-motion, but its per-

formance deteriorates during scenes with camera motion. Since CPF does not assume any target

motion model, it performs relatively well (second best) in scenes with camera movement. How-

ever, CPF [64] has inferior performance in scenes with colour clutter because it relies solely on

a single colour feature for tracking. While SCM [7] and Struck [25] demonstrate excellent

overall performance in [2], they still suffer tracking difficulties in handling highly cluttered and
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Figure 5.5: The trade-off overlap rate curve of single target trackers.

camouflaged scenes. CT [8] does exploit contextual information, but their algorithm is still

based primarily on appearance matching and therefore performs the worst out of the compared

methods.

Figure 5.6 illustrates the strong performance of our proposed tracker in extreme clutter and

camouflage. Distractors, detected and learned online by our tracker, are indicated by yellow

bounding boxes, while the true target is shown with a red bounding box. In frame 139 of se-

quence marching, one distractor shares major overlap with the target, however our proposed

multi-level clustering process can still very accurately disambiguate and localise these two ob-

jects.
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Figure 5.6: Performance of our proposed single target tracker in extremely cluttered and cam-
ouflaged scenes. First row: bolt 1; Second row: marching. Red bounding box: the tracker;
Yellow bonding box: adjacent distractors.

5.2.2 Multi-target tracker comparison

It is possible to draw some analogies between our proposed global dynamic constraint (dynamic

relationship between target and distractors), and the data association techniques proposed in the

multi-target tracking literature. Therefore, we also compare our proposed method against state-

of-the-art multi-target trackers [12, 13]. Our proposed single target tracker is initialised with

a single bounding box around the true target. In contrast, the multi-target tracker is initialised

with multiple bounding boxes (one for each distractor). Therefore the multi-target trackers are

given far more a-priori knowledge about the scene and distractors, while our proposed method

must detect and learn all distractors on-the-fly.

A. Dataset

We utilise the dataset in [13] which was originally designed for tracking multiple objects

with similar appearance. These sequences also present extreme clutter and camouflage chal-

lenges for a single-target tracking task, and are therefore well suited for evaluating our proposed

algorithm. In addition, we also include one sequence used by TINF [12], which features very

similar targets, for a fair comparison. We have modified the ground-truthing on these videos

to make them compatible with single-target tracker evaluation methods. The whole dataset

contains 14 distinct targets for tracking.

B. Trackers
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The multi-target tracking method SMOT [13] is explicitly designed for simultaneously

tracking multiple targets which share similar appearance. However, the original algorithm fo-

cussed on solving the data association problem, and therefore relied on a-priori knowledge of

all ground-truth bounding boxes (i.e. the input to this algorithm is a set of perfect groundtruth

detections for all targets in all images of the entire sequence). Therefore, to conduct a meaning-

ful comparison while explicitly highlighting the improvement of our proposed global dynamic

constraint, we input the same detections (potential regions that contain the target or distractor)

from our proposed multi-level clustering method to SMOT for data association and output the

optimized path for the target, computed by SMOT. We also compare our tracker against the

state-of-the-art multi-target tracker TINF [12] which extended the original single-target tracker

of Struck [25]. For the TINF tracker, we initialise the tracker by providing the ground-truth

bounding boxes of all objects (target and distractors) in the first frame, i.e. TINF is allowed

significant additional prior knowledge over our own method. For consistency, we still use the

same single-target tracking evaluation metric (trade-off curve between overlap threshold and

success ratio).

C. Results

The tracking performance of our method versus the two state-of-the-art multi-target trackers

is shown in figure 5.7. Clearly, our proposed single-target tracker significantly outperforms the

compared methods on this test data. The performance of our method versus SMOT demon-

strates the effectiveness of our proposed global dynamic constraint, since the SMOT algorithm

has difficulty handling scenes with highly dynamic number of distractors. The strong perfor-

mance of our method over TINF, suggests that, by properly modelling the context, a single-

target tracker can outperform a multi-target tracker, even if the multi-target tracker is initialised

with a large amount of additional information about distractors. The TINF method uses SSVM

to train a classification model from extracted colour and hog features. However, since TINF

did not make full use of motion dynamics, this kind of method performs poorly in highly clut-

tered scenes with multiple identical objects, since appearance features (colour and HOG) alone

are unable to fully disambiguate multiple objects sharing identical appearance. Noticeably, our
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proposed tracking method runs at 4.01 fps (using a standard laptop with Matlab), while SMOT

has a speed of 1.86 fps. In contrast, since TINF relies on densely sampled feature extraction at

every image, the algorithm is significantly slower at around 0.18 fps. Figure 5.8 illustrates the

comparative performance of our method and the multi-target trackers in the highly challeng-

ing crowd sequence.
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Figure 5.7: Comparative performance of our method (red) versus SMOT (blue) and TINF
(green), in terms of ability to consistently track a single target in highly cluttered scenes.

5.3 Summary

This chapter has presented a novel method for tracking a single target in scenes of extreme

clutter and camouflage. In contrast to conventional tracking algorithms which only maintain

information about the target, the proposed algorithm incorporates a novel multi-level clustering

method for online detection and learning of target-like contextual image regions, called distrac-
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Figure 5.8: Tracking performance of proposed and compared methods on tracking a single face
in the crowd sequence. Red: ground truth; yellow: ours; green: SMOT; blue: TINF. Both of
the compared methods fail in various frames, with two different failure modes (false positive
occlusion detections and erroneous fixation on distractors). In contrast, our proposed method
tracks successfully throughout.

tors. To disambiguate the target’s path among the distractors, a global dynamic constraint is

proposed, which can also detect occlusions when no likely path is found. The proposed method

successfully prevents the estimated target location from erroneously jumping to distractors dur-

ing occlusions or camouflage interactions.

To evaluate our tracker, we have introduced a new set of sub-attributes, e.g. shape clutter,

colour clutter, static camouflage, camera motion-caused camouflage motion, self-moving cam-

ouflage, and have per-frame annotated a number of public benchmark test sequences with these

sub-attributes. Using this dataset,our proposed tracker outperforms all compared trackers, both

overall and also in all sub-attribute categories. The best result is obtained when the camouflage

is static. The tracking performance in scenes with both camera motion and camouflage self-

motion is quite similar, because our proposed global dynamic constraint exploits the relative

positions of target and distractors.

In the scenes with camouflage, we have also shown that our single-target tracker outper-

forms state-of-the-art multi-target trackers, when they are initialised with the bounding boxes

of all distractors in each scene. Especially, the performance of our method versus SMOT [13]

94



demonstrates the effectiveness of our proposed global dynamic constraint. It is also useful to

note that the proposed multi-level clustering method and global dynamic constraints could, in

principle, be retro-fitted to many other single target trackers to improve their performance in

cluttered scenes.
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CHAPTER 6

CONCLUSION

In this chapter, we first provide a summary of the thesis in section 6.1. Then, we summarise our

contributions in section 6.2 and outline some suggestions for future work in section 6.3.

6.1 Summary

This thesis has investigated single-target tracking problems of arbitrary objects using multi-

layered features and contextual information. Without prior information about the target cate-

gory, the tracker is prone to failure due to many challenges such as significant deformation of

the target, occlusion of the target, viewpoint change, illumination variation, background clutter

and camouflage. To improve tracking performance under these severe conditions, we aim at:

1) designing a robust tracker in RGB images which could adaptively fuse and update multiple

features to overcome a variety of difficult tracking problems, e.g. significant target deforma-

tion, rapid and erratic target motion, illumination change and viewpoint change; 2) extending

the proposed RGB tracker to handle RGB-D images by showing how depth information can be

robustly combined with RGB information during tracking; 3) exploiting the contextual infor-

mation which could handle camouflage problems in the highly cluttered scenes and providing a

deeper analysis of the tracking performance under those severe situations.
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6.2 Contributions

The contributions of this thesis can be summarised with respect to three main aspects, listed

below:

• In chapter 3, we have presented a new single target tracker incorporating a multi-level ap-

pearance model. An adaptive clustered decision tree method has been proposed to select

the minimum combination of features necessary to sufficiently represent each target part

at each frame, thereby providing robustness with computational efficiency. Based on two

different evaluation protocols, we have tested the tracker using two different tracking

benchmarks [2, 3] comprising a total of 70 sequences and comparing our method against

more than 50 other tracking algorithms from the literature. The proposed tracker was

demonstrated to be significantly more robust than the state-of-the-art methods, while also

offering competitive tracking precision.

• In chapter 4, we proposed a single target tracking algorithm in RGB-D images, incorporating

a novel adaptive multi-feature local-global target model with both temporal and spatial

constraints. At the bounding box level, temporal consistency was used to adaptively

fuse information from both RGB and depth images to find a candidate target region. In

frames where one or more features are temporally inconsistent, this global candidate re-

gion was further split into local candidate regions for matching to target parts. We derived

a physical constraint from the depth context, which robustly accommodated large target

depth variation, while still enabling accurate reasoning about occlusions. For evaluation,

we introduced a new RGB-D benchmark dataset with per-frame annotated attributes and

extensive bias analysis. Our tracker has been evaluated using two different methodolo-

gies [2, 3] and in both cases it outperformed other state-of-the-art RGB-D trackers.

• In chapter 5, we have shown how distracting contextual regions can be detected, learned

and explicitly exploited to support a single target tracker under conditions of extreme

clutter and camouflage, including frequent occlusions by objects with similar appearance

to the target. A multi-level clustering method has been proposed for online detection
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and learning of multiple target-like regions, called distractors, when they appeared near

to the true target. To distinguish the target from these distractors, we used global dy-

namic constraints (derived from target and distractor information) to optimize the esti-

mated target trajectory. To evaluate our tracker, we have augmented publicly available

benchmark videos, by proposing a new set of clutter sub-attributes, and annotating these

sub-attributes for all frames in all sequences. Using this dataset, we have shown that

our proposed method outperforms other state-of-the-art single target trackers on highly

cluttered scenes.

6.3 Future work

There are some interesting works related to tracking remaining to be done. The trade-off be-

tween tracking robustness and accuracy is an important problem. While our proposed track-

ers have achieved state-of-the-art robustness, the tracking accuracy could be further improved.

Since we applied a segmentation method for constructing the local parts (modelled as super-

pixels), those constructed local parts contain homogeneous pixels which is good for robustness.

However, such homogeneous regions omit certain kinds of saliency (e.g. edges, corners or edge

junctions) of the local parts which can be helpful for accurate localisation. Therefore, one pos-

sible research direction for the current tracker is to design another type of local parts which are

be more discriminative, such as SIFT regions [89]. A new algorithm might combine homoge-

neous local parts, which aid robustness, with more other kinds of local parts which are better

for aiding accuracy.

The current datasets were constructed for testing the trackers described in this thesis. To

avoid the overfitting problem, we will enlarge the size of this test dataset. Additionally, we

will also construct the training dataset with the same quality, which can achieve a more fair

comparison by: 1) separately comparing the algorithms with and without a training stage; 2)

defining a common training set to ensure that all the training-based methods have the same prior

information.
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Even though we have proposed several tracking algorithms which could advance the current

state-of-the-art tracking research, visual object tracking remains an open and active research

area. This is because, with one initialised bounding box, visual object tracking is an ill-posed

Figure 6.1: The ambiguity of defining the ground truth of arbitrary objects. Bounding boxes
with dotted lines represent the ground truth defined in terms of the smallest possible bounding
box which completely encloses the entire tracked object. Bounding boxes with solid lines use
an intuitive human notion of “the main part” of an object to define the ground truth.

problem since the bounding box used for initialisation will almost always contain some back-

ground pixels and the tracker has no way of knowing what it should track inside the bounding

box. Firstly, this causes a ground truth ambiguity [22], shown in figure 6.1, which leads to

difficulties defining the boundary of the target object and causes evaluation difficulties. A larger

bounding box contains more information about the target, but also includes many non-target

background pixels. In contrast, a smaller bounding box contains less background pixels but

also loses some target information. Secondly, when the bounding box contains more than one

entity, it also causes an ambiguity in tracking objectives (what we should really track), shown in

figure 6.2. In figure 6.2, without any prior information about the target category, it is not clear

whether the tracker should track the glasses or eyes. In this situation, what would it mean to

perform tracking “correctly” for a video in which the boy removes his glasses, puts them down,

and walks away?

Since the current trackers have no prior information about target category, they are often

built based on some heuristic assumptions, e.g. motion smoothness, structure consistency and

colour invariance. With the help of such heuristic assumptions, the tracking performance is
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Figure 6.2: An example of ambiguity in tracking objectives (picture is obtained from [157]).
The red bounding box is provided as the ground truth in the first frame. It is not clear whether
the tracker should track the glasses or eyes.

often improved where those assumptions hold true. However, such assumptions also interfere

with performance when the object changes or moves in a way that is different from what was as-

sumed. Therefore, an interesting research direction in the future is whether the features used for

tracking could go beyond the pixel level and incorporate some common-sense knowledge, e.g.

physics, intentionality, causality and functionality, which avoids the need for such heuristics.
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