122 research outputs found

    Communication tree problems

    Get PDF
    In this paper, we consider random communication requirements and several cost measures for a particular model of tree routing on a complete network. First we show that a random tree does not give any approximation. Then give approximation algorithms for the case for two random models of requirements.Postprint (published version

    Approximating branchwidth on parametric extensions of planarity

    Full text link
    The \textsl{branchwidth} of a graph has been introduced by Roberson and Seymour as a measure of the tree-decomposability of a graph, alternative to treewidth. Branchwidth is polynomially computable on planar graphs by the celebrated ``Ratcatcher''-algorithm of Seymour and Thomas. We investigate an extension of this algorithm to minor-closed graph classes, further than planar graphs as follows: Let H0H_{0} be a graph embeddedable in the projective plane and H1H_{1} be a graph embeddedable in the torus. We prove that every {H0,H1}\{H_{0},H_{1}\}-minor free graph GG contains a subgraph GG' where the difference between the branchwidth of GG and the branchwidth of GG' is bounded by some constant, depending only on H0H_{0} and H1H_{1}. Moreover, the graph GG' admits a tree decomposition where all torsos are planar. This decomposition can be used for deriving an EPTAS for branchwidth: For {H0,H1}\{H_{0},H_{1}\}-minor free graphs, there is a function f ⁣:NNf\colon\mathbb{N}\to\mathbb{N} and a (1+ϵ)(1+\epsilon)-approximation algorithm for branchwidth, running in time O(n3+f(1ϵ)n),\mathcal{O}(n^3+f(\frac{1}{\epsilon})\cdot n), for every ϵ>0\epsilon>0

    Open Problems in Parameterized and Exact Computation - IWPEC 2006

    Get PDF
    In September 2006, the Second International Workshop on Parameterized and Exact Computation was held in Zürich, Switzerland, as part of ALGO 2006. At the end of IWPEC 2006, a problem session was held. (Most of) the problems mentioned at this problem session, and some other problems, contributed by the participants of IWPEC 2006 are listed here

    Dynamic programming for graphs on surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2O(k·log k). Our approach combines tools from topological graph theory and analytic combinatorics.Postprint (updated version

    On the tree-width of knot diagrams

    Get PDF
    We show that a small tree-decomposition of a knot diagram induces a small sphere-decomposition of the corresponding knot. This, in turn, implies that the knot admits a small essential planar meridional surface or a small bridge sphere. We use this to give the first examples of knots where any diagram has high tree-width. This answers a question of Burton and of Makowsky and Mari\~no.Comment: 14 pages, 6 figures. V2: Minor updates to expositio

    The Effect of Planarization on Width

    Full text link
    We study the effects of planarization (the construction of a planar diagram DD from a non-planar graph GG by replacing each crossing by a new vertex) on graph width parameters. We show that for treewidth, pathwidth, branchwidth, clique-width, and tree-depth there exists a family of nn-vertex graphs with bounded parameter value, all of whose planarizations have parameter value Ω(n)\Omega(n). However, for bandwidth, cutwidth, and carving width, every graph with bounded parameter value has a planarization of linear size whose parameter value remains bounded. The same is true for the treewidth, pathwidth, and branchwidth of graphs of bounded degree.Comment: 15 pages, 6 figures. To appear at the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore