
Communication Tree Problems ∗

Carme Àlvarez† Rafel Cases† Josep Dı́az† Jordi Petit† Maria Serna†

March 7, 2001

Abstract

In this paper, we consider random communication requirements and several
cost measures for a particular model of tree routing on a complete network. First
we show that a random tree does not give any approximation. Then give approxi-
mation algorithms for the case for two random models of requirements.

1 Introduction

The general routing tree problem consists in: given a weighted communication net with
a subset of distinguished nodes, the terminals, and given communication requirements
between each pair of terminals, decide whether there is a spanning tree, minimizing
some communication parameter. Problems in which a routing tree has to be constructed
arise in many applications. In phone communication, it is usual to have n locations
together with an expected number of phone calls between each pair of locations. In
this case the goal is to design a network to handle these calls in an optimal way. In
distributed or mobile computing, there are shared resources as disks, input, output
devices, etc., and system requirements that force to establish an optimal point-to-point
communication. In tree-structured computations, the computational activity is limited
to the leaves of the tree. In such a case it is important not only to distribute evenly the
tasks among the leaves but to build an adequate computation tree taking into account
communication parameters.

Hu [10] considered the problem of constructing a routing tree of minimum com-
munication cost among all such trees. The cost of communication between a pair of
nodes, with respect to a spanning tree is the product of their communication require-
ment and the weighted length of the path between the two nodes. In this case the set
of terminals is the complete set of nodes. He shows that the problem can be solved
in polynomial time when all the weights are equal. Notice that there is no restriction
on the degree of the routing tree and that the communication net is a complete graph.
Polynomial time algorithms for two particular cases of this problem were shown in [1].
In the first case, the tree must contain specified terminals as leaves, and in the second,
the tree must contain a specified set of edges from the communication net.

Johnson et al. [11] show that finding a spanning tree of minimum communication
cost in general weighted communication nets is NP-hard, even if all requirements are

∗This research was partially supported by ALCOM-FT (IST-99-14186) and CICYT project
TIC1999-0754-C03.

†Departament de Llenguatges i Sistemes Informàtics. Universitat Politècnica de Catalunya. Campus
Nord C5. c/ Jordi Girona 1-3. 08034 Barcelona (Spain). {alvarez,cases,diaz,jpetit,mjserna}@lsi.upc.es

1

equal. A polynomial time approximation scheme for this problem is given in [14].
Notice again that the resulting routing tree may not have bounded degree.

In this paper we are interested in the complexity of finding routing trees minimiz-
ing some measures. We consider an unweighted complete graph as the communication
net. We require that the routing tree has internal nodes of degree 3, and all the
terminals must be the leaves of the routing tree. Furthermore, the communication
requirements between terminals is 0 or 1.

The particular measures that we will minimize are congestion, dilation and total
communication cost (see definitions below). We will refer to these problems as the
routing tree problems.

Some results are known for these problems. The minimum congestion routing
tree (minimum carving-width) was introduced in [13]. There it is shown that obtaining
a routing tree of minimum congestion is NP-hard, and that the problem is solvable in
polynomial time when the communication requirements form a planar graph. In [9]
it is shown that there is a logarithmic gap between the minimum congestion and the
minimum dilation of a given graph. The minimum is taken over all routing trees
(tree arrangements) with internal nodes of degree 3. To the best of our knowledge no
complexity results are known for the other two problems.

Our first question is whether a randomly selected routing tree can provide a good
approximation to any of the problems. We answer this on the negative by showing that
for some of the problems the average routing cost, for a given graph, is far away from
the optimum cost.

Our next question concerns the approximability of the tree routing problems when
the communication requirements are obtained randomly, that is by a given random
graph. We deal with two models, the canonical class Gn,p [4] and random geometric
graphs, denoted by G(n; r) [6], which are a probabilistic distribution of disk graphs
where the n vertices correspond to n points uniformly distributed on the unit square
and the radius is r.

Our results show that for any of the three considered measures, we can produce
a routing tree that with high probability has cost within a constant of the optimum
when the graph is drawn at random. For the Gn,p model we show that any balanced
routing tree will have cost within a constant of the optimum with high probability. For
the G(n; r) model, an adequate balanced routing tree provides, with high probability a
constant approximation. In order to get this last result we will give also deterministic
constant approximation algorithms for square meshes.

2 Preliminaries

Given an undirected graph G, a routing tree of G is a tree T whose leaves are the nodes
of G and whose internal nodes have degree 3. Given a routing tree T of G and an edge
uv in G, let λ(uv, T,G) be the distance from u to v in T . We say that λ(uv, T,G) is
the dilation of edge uv of G in T . Given a routing tree T of G and an edge xy in T ,
let θ(xy, T,G) be the number of edges uv in G such that the path from u to v in T
traverses xy. We say that θ(xy, T,G) is the congestion of edge xy in T for G. Given a
routing tree T of G and an edge xy in T , let δ(xy, T,G) be the number of vertices u in
G that are connected to some other vertex v in G such that the the path from u to v
in T traverses xy. We say that δ(xy, T,G) is the separation of edge xy in T for G.

The problems we address are:

2

• Minimum Tree Dilation (MinTD): Given a graph G, find mintd(G) = minT td(T,G)
where td(T,G) = maxuv∈E(G) λ(uv, T,G).

• Minimum Tree Congestion (MinTC): Given a graph G, find mintc(G) = minT tc(T,G)
where tc(T,G) = maxxy∈E(T) θ(xy, T,G).

• Minimum Tree Length (MinTL): Given a graph G, find mintl(G) = minT tl(T,G)
where tl(T,G) =

∑
uv∈E(G) λ(uv, T,G) =

∑
xy∈E(T) θ(xy, T,G).

• Minimum Tree Separation (MinTS): Given a graph G, find mints(G) = minT ts(T,G)
where ts(T,G) = maxxy∈E(T) δ(xy, T,G).

The following basic upper bounds on the cost of a routing tree will prove to be
useful. Recall that the diameter of a tree is the longest distance between any two leaves.

Lemma 1. Let G be any graph with n nodes and m edges. Let T be any routing
tree of G of diameter d. Then, tc(T,G) ≤ m, ts(T,G) ≤ n, td(T,G) ≤ d, and
tl(T,G) ≤ dm.

So as we always have a routing tree with n leaves and diameter log n + 1 we have
that td(T,G) ≤ log n + 1, and tl(T,G) ≤ m log n + m. In contrast tc(T,G) can be
Θ(n2) and ts(T,G) can be Θ(n), for example when G is a complete graph on n vertices.

We say that an edge of a routing tree T is a s-splitter edge if its removal splits T
in two components, each one with at least s leaves. Observe that for any routing tree
there always is a bn/3c-splitter edge.

The following result on trees is easy to prove.

Lemma 2. Let α, β ∈ (0, 1). Let T be a routing tree with n leaves (and n big enough).
For any node u in T and any integer i, let L>i(T, u) denote the set of leaves of T at
distance greater than i from u. Then, for all node u in T , it holds that L>α log n(T, u) ≥
βn.

Proof.
:::
En

:::::::
Rafel

::::::
tenia

::::::::
alguna

::::::::
esmena

::::::
aqúı. Consider a breadth first search process in

T starting at u. At iteration i, all nodes at distance i from u have been marked and
there can be at most 3 · 2i−1 such nodes (at the first iteration, at most three nodes can
be reached; in subsequent iterations, the number of reached nodes can at most double).
Therefore,

L>α log n(u) ≥ n−
α log n∑

i=0

3 · 2i−1 ≥ n− 3nα + 3
2 ≥ βn

by the assumption that n is large enough.

Finally, recall that a sequence of events (En)n≥1 is said to occur with high prob-
ability if limn→∞Pr [En] = 1, and that in the case Pr [En] ≥ 1 − 2−Ω(n) for all n big
enough, we say that (En)n≥1 occurs with overwhelming probability.

3 Average

In this section we seek for the average costs of the MinTD and MinTL problems over
all possible routing trees for a fixed graph.

3

Notice that the routing trees we are using to define our problems are non-rooted,
commutative trees, with n labeled leaves (the labeled vertices of G) and such that each
of its n − 2 internal nodes has degree 3. Let us denote such trees as n-CLN trees.
Let n-CLR denote the set of commutative, rooted binary trees with n labeled leaves.
Finally define the n-Catalan trees, as the non-commutative and non-labeled, rooted
binary trees with n internal nodes.

Lemma 3. The number of different n-CLN trees that can be placed on a graph with
n vertices is (

2(n− 2)
n− 2

)
(n− 1)!

2n−2
.

Proof. Let us define the following isomorphism between the n-CLN trees and the (n−1)-
CLR trees: given a n-CLN tree, suppress the leaf with label n and make its father the
root of the new (n − 1)-CLR tree. Two plane representations of (n − 1)-CLR trees
are equivalent iff one can be obtained from the other by a finite number of rotations
of internal nodes. Then, the number of (n − 1)-CLR trees are the number of (n − 2)-
Catalan trees multiplied by all possible (n− 1)! permutations of the labels divided by
the 2n−2 equivalent (n− 1)-CLR trees, which gives the statement of the lemma.

Lemma 4. Given a characteristic function on a tree, which is invariant under commu-
tation (rotation of internal nodes), the average value of the function is the same on the
CLR trees and on the Catalan trees.

Proof. Let Bn denote the set of all n-Catalan trees, En the set of all (n + 1)-CLR trees
and Cn the set of all commutative rooted non-labeled trees with n internal nodes. Also,
let f(T) be a characteristic function of a tree T that is invariant under commutation,
i.e. all trees that are equivalent under commutation have the same value f(T). Do the
following decompositions,

Bn =
⋃

T∈Cn

BT and En =
⋃

T∈CnET

,

where BT is the set of Catalan trees T ′ that are equivalent to T under commutation and
where ET is the set of CLR trees T ′′ such that we could obtain T from T ′′ by successive
erasing of labels.

Let us define the commutative characteristic of a binary tree T , k(T), to be the
number of internal nodes in T for which the left son is equivalent to the right son under
commutation (rotation of the node). Then for any given non-labeled, commutative tree
T , let e(T) be the number of CLR trees that could be obtained from T , and let c(T)
be the number of Catalan trees that could be obtained from T . Then

c(T) = |BT | = 2|T |−k(T) and e(T) = |ET | = (|T |+ 1)!
2k(T)

.

Therefore, ∑
T ′∈Bn

f(T ′) =
∑

T∈Cn

∑
T ′∈BT

f(T ′) =
∑

T∈Cn

f(T)c(T)

∑
T ′′∈En

f(T ′′) =
∑

T∈Cn

∑
T ′′∈ET

f(T ′′) =
∑

T∈Cn

f(T)e(T).

4

So, we get ∑
T∈Cn

f(T)e(T) =
∑

T∈Cn

f(T)c(T)
e(T)
c(T)

=
(n + 1)!

2n

∑
T∈Cn

f(T)c(T),

and therefore
∑

T ′′∈En
f(T ′′) = (n+1)!

2n

∑
T ′∈Bn

f(T ′). As a consequence,∑
T ′′∈En

f(T ′′)∑
T ′′∈En

1
=

∑
T ′∈Bn

f(T ′)∑
T ′∈Bn

1
,

and we can conclude that the average value of of f(T ′′) for T ′′ ∈ En is the same that
the average value of f(T ′) for T ′ ∈ Bn.

From the previous lemmas, together with the known fact that for a n-Catalan
tree, the average distance between any two leaves is

√
nπ + o(

√
n), we get the following

result:

Theorem 1. Given a graph G = (V,E) with |V | = n and |E| = m ≥ 1 the average
length for G is Θ(m

√
n), and the average dilation for G is Θ(

√
n); the average being

taken over all possible n-CLN trees.

The previous theorem says that using a random CLN as routing tree, will provide
communication costs far away from the optimal ones, as by Lemma 1, selecting a routing
tree of logarithmic diameter will do better than a randomly selected routing tree. Note
however that a routing tree with logarithmic diameter not always provides the optimum,
in particular when the graph G is a line or a cycle, a worm (caterpillar with hair length
1) gives the optimum.

4 Gn,p graphs

In this section we show that, with overwhelming probability, all of our routing tree prob-
lems are approximable within a constant for random graphs drawn from the classical
Gn,pn model provided that C0/n ≤ pn ≤ 1 for some properly characterized parameter
C0 > 1. In fact, our results establish that the cost of any balanced routing tree of such
a random graph is within a constant of the optimal cost.

Let us recall the definition of the class of random graphs [2, 4]: Let n be a
positive integer and p a probability. The class Gn,p, is a probability space over the
set of undirected graphs G = (V,E) on the vertex set V = {1, . . . , n} determined by
Pr [uv ∈ E] = p with these events mutually independent.

We introduce now a class of graphs that captures the properties we need to bound
our routing tree costs on uniform random graphs.

Definition 1 (Mixing graphs). Let ε ∈ (0, 1
9), γ ∈ (0, 1) and define Cε,γ = 3(1 +

ln 3)(εγ)−2. Consider a sequence (cn)n≥1 such that Cε,γ ≤ cn ≤ n for all n ≥ n0 for
some natural n0. A graph G = (V,E) with |V | = n and |E| = m is said to be (ε, γ, cn)-
mixing if m ≤ (1+γ)1

2ncn and for any two disjoint subsets A,B ⊂ V such that |A| ≥ εn
and |B| ≥ εn, it holds that

1− γ ≤ θ(A,B)
|A||B|

/
cn

n
≤ 1 + γ,

where θ(A,B) denotes the number of edges in E having one endpoint in A and another
in B.

5

Our interest in mixing graphs is motivated by the fact that, with overwhelming
probability, uniform random graphs are mixing:

Lemma 5 ([8]). Let ε ∈ (0, 1
9), γ ∈ (0, 1) and define Cε,γ = 3(1+ln 3)(εγ)−2. Consider

a sequence (cn)n≥1 such that Cε,γ ≤ cn ≤ n for all n ≥ n0 for some natural n0. Then,
for all n ≥ n0, random graphs drawn from Gn,pn with pn = cn/n are (ε, γ, cn)-mixing
with probability at least 1− 2−Ω(n).

Using a balanced tree, it is possible to approximate the considered problems on
mixing graphs up to a constant:

Lemma 6 (Lower bounds). Let ε ∈ (0, 1
6), γ ∈ (0, 1). Consider a sequence (cn)n≥1

such that Cε,γ ≤ cn ≤ n for all n ≥ n0 for some natural n0. Let G be any (ε, γ, cn)-
mixing graph with n nodes where n is large enough. Let Tb be a balanced routing tree
of G. Then,

tc(Tb, G)
mintc(G)

≤ 2(1− γ)ε2

1 + γ
,

td(Tb, G)
mintd(G)

≤ (1− γ)2

1 + γ
,

tl(Tb, G)
mintl(G)

≤ (1− γ)32ε2

(1 + γ)2
,

ts(Tb, G)
mints(G)

≤ 3
2(1− 7ε2)

.

Proof. To prove this result, we present lower and upper bounds to the considered
problems.

Let us start with a lower bound for mintc(G). Consider any routing tree T of
G. Let uv be a n

√
ε-separator edge of T that separates T into two binary trees Tu

and Tv rooted at u and v respectively (it is clear that such an edge must exist). Let
α, β ∈ (0, 1) be two parameters to be determined latter. By Lemma 2, there exists a set
of leaves Lu of Tu such that for all x ∈ Lu, the distance between x and u in Tu is greater
or equal than α log(n

√
ε) and |Lu| ≥ βn

√
ε. Also, there exists a set of leaves Lv of Tv

such that for all y ∈ Lv, the distance between y and v in Tv is greater or equal than
α log(n

√
ε) and |Lv| ≥ βn

√
ε. Setting β =

√
ε, we have |Lu| ≥ εn and |Lv| ≥ εn. As G

is (ε, γ, cn)-mixing, we have θ(Lu, Lv) ≥ (1− γ)|Lu||Lv |cn/n ≥ (1− γ)ε2ncn. Thus, the
congestion of edge uv is at least (1− γ)ε2ncn. Therefore, tc(T,G) ≥ (1− γ)ε2ncn and
thus mintc(G) ≥ (1− γ)ε2ncn because T is arbitrary.

In order to get lower bounds for mintd(G) and mintl(G), observe that the
distance from x to y in T is at least 2α log(n

√
ε) + 1 for all x ∈ Lu and all y ∈ Lv.

Setting α = 1− γ, we have

td(T,G) ≥ 2α log(n
√

ε) + 1 ≥ (1− γ)22 log n

and

tl(T,G) ≥ (1− γ)ε2ncn(2α log(n
√

ε) + 1) ≥ (1− γ)32ε2cnn log n.

Therefore, mintd(G) ≥ (1 − γ)22 log n and mintl(G) ≥ 2(1 − γ)3ε2cnn log n because
T is arbitrary.

To obtain a lower bound for mints(G), let us say that a graph with n nodes
satisfes the dispersion property if, for any two disjoint subsets A and B of V (G) with
|A| ≥ εn and |B| ≥ εn, it is the case that there is at least one edge between A and
B. Mixing graphs satisfy the dispersion property: From Definition 1 we get θ(A,B) ≥
(1− γ)ε2n2, which implies θ(A,B) ≥ 1 as n is large enough.

6

Let xy be a bn/3c-separator edge of T separating T into two binary trees Tx

and Ty rooted at x and y respectively. Let Lx and Ly denote the leaves of Tx and Ty

respectively. As n is large enough, |Lx| ≥ (1− ε)1
3n and |Ly| ≥ (1− ε)1

3n. Let L
(1)
x be

a subset of size dεne of Lx and let L
(1)
y be a subset of the same size of Ly. Becase of

dispersion, there must be at least one edge in E(G) connecting a node from L
(1)
x to a

node in L
(1)
y . Let u

(1)
x and u

(1)
y be the endpoints of one such edge.

Let 1 < i ≤ (1−ε)1
3n−(1+ε)εn. Let v

(i)
x be a node in Lx \L

(i)
x \{u(j)

x | 1 ≤ j < i}
(this node must exist) and let L

(i)
x = L

(i−1)
x \ {u(i−1)

x } ∪ {v(i)
x }. Likewise, let v

(i)
y be

a node in Ly \ L
(i)
y \ {u(j)

y | 1 ≤ j < i} and let L
(i)
y = L

(i−1)
y \ {u(i−1)

y } ∪ {v(i)
y }.

As, L
(i)
x = L

(i−1)
x = L

(i)
y = L

(i−1)
y = dεne, by dispersion, there must be at least one

edge in E(G) connecting a node from L
(i)
x to a node in L

(i)
y . Call u

(i)
x and u

(i)
y the

endpoints of one such edge. By finite induction, we have that all nodes in {u(i)
x | 1 ≤

i ≤ (1 − ε)1
3n − (1 + ε)εn} are connected in G to some node in Ly and, likewise, all

nodes in {u(i)
y | 1 ≤ i ≤ (1 − ε)1

3n − (1 + ε)εn} are connected in G to some node in
Lx. Therefore, ts(T,G) ≥ 2 · ((1− ε)1

3n − (1 + ε)εn) ≥ (1− 7ε2)2
3n and thus we have

mints(G) ≥ (1− 7ε2)2
3n because T is arbitrary.

We consider now the upper bounds. Let m denote the number of edges in G.
By Lemma 1, we have ts(Tb, G) ≤ n. Moreover, as G is mixing, we also obtain
tc(Tb, G) ≤ m ≤ (1 + γ)1

2ncn. As Tb is a balanced tree of G, its height is at most
dlog ne ≤ (1 + γ) log n. Therefore, we have td(Tb, G) ≤ 2(1 + γ) log n and tl(Tb, G) ≤
m(1 + γ) log n ≤ (1 + γ)2ncn log n.

As a consequence of the two previous lemmas, we get:

Theorem 2. Let ε ∈ (0, 1
9), γ ∈ (0, 1) and define Cε,γ = 3(1 + ln 3)(εγ)−2. Consider

a sequence (cn)n≥1 such that Cε,γ ≤ cn ≤ n for all n ≥ n0 for some natural n0 and
let pn = cn/n. Then, with overwhelming probability, the problems MinTC, MinTD,
MinTL and MinTS can be approximated within a constant on random graphs Gn,pn

using a balanced routing tree. Moreover, in the case of the MinTD, the approximation
factor can be as small as desired.

5 Square meshes

In this section we study our routing tree problems on square meshes. This is intended
as an intermediate step to treat random geometric graphs on the next section. In the
following we will denote an n × n mesh by Ln: V (Ln) = {1, . . . , n}2 and E(Ln) =
{uv : u ∈ V (Ln) ∧ v ∈ V (Ln) ∧ ‖u− v‖2 = 1}.

The following result presents a lower bound of the cost of a mesh.

Lemma 7 (Lower bounds). Let n be a large enough natural. Then,

mintc(Ln) ≥ 1
2n, mintd(Ln) ≥ log n,

mintl(Ln) ≥ 6n2 − 8n + 1, mints(Ln) ≥
√

6
3 n.

Proof. Let (A,B) be a partition of V (Ln). We claim that θ(A,B) ≥ min
{√|A|,√|B|

}
:

If A includes an entire row of nodes, and B includes an entire row of nodes, then each

7

column includes an edge with one endpoint in A and the other in B, which contributes
1 to θ(A,B), so that θ(A,B) ≥ n. If B contains no entire row or column, and at least
as many rows as columns have non-empty intersection with B, then there are at least√

B such rows, and each contains a cutting edge which contributes 1 to θ(A,B), so
that θ(A,B) ≥ √

B. Applying similar arguments to the other possible cases, we have

θ(A,B) ≥ min
{√

|A|,
√
|B|, n

}
but this minimum is always achieved at

√|A| or at
√|B|.

Let T be any routing tree of Ln. Let uv be a
⌊
n2/3

⌋
-splitter edge of T . As uv

determines a partition (A,B) of Ln with |A|, |B| ≥ ⌊
n2/3

⌋
, the congestion of edge uv is

at least equal to min
{√|A|, √|B|

}
≥ √bn2/3c. Therefore, tc(T,Ln) ≥ √bn2/3c ≥

1
2n. Now the mintc result follows because T is arbitrary.

A numbering ϕ of a n × n mesh is a one-to-one function that maps the nodes
of the mesh to {1, . . . , n2}. For any i ∈ {1, . . . , n2}, let ∂(i, ϕ,Ln) denote the number
of vertices u ∈ V (Ln) with ϕ(u) ≤ i that are connected in E(Ln) to some other node
v ∈ V (Ln) with ϕ(v) > i. Let ϕD denote the “diagonal numbering” of the mesh (see
Figure 1). As a special case of [5, Corollary 9], we have that for any numbering ϕ on Ln

and any k ∈ {1, . . . , n2}, it is the case that ∂(k, ϕ,Ln) ≥ ∂(k, ϕD , Ln). This means that
∂(1

3n2, ϕ,Ln) ≥ qn where qn is the smallest positive integer such that
∑qn

i=1 i ≥ 1
3n2. A

simple computation shows that qn = 1
6

√
9 + 24n2 − 1

2 .
Again, let T be any routing tree of Ln and let uv be a

⌊
n2/3

⌋
-splitter edge of

T . As there are at least qn leaves from one subtree connected in Ln to at least one
other leave in the other subtree, we have that we have that td(T,Ln) ≥ log qn + 2
and ts(T,G) ≥ ∂(1

3n2, ϕ,Ln). As T is arbitrary, assuming n large enough, we get
mintd(Ln) ≥ log qn + 2 ≥ log n and mints(Ln) ≥

√
6

3 n.
We finally prove the mintl result. Let G by any graph with t nodes. Observe

that in any routing tree of G no edge can have length 0 nor 1. Also, observe that, at
most, only t/2 edges can have length 2 (it is the case of the balanced tree) and that, at
most, only t−1 edges can have length 3 (this is the case of the worm). Finally, observe
that all not yet counted edges must have, at least, length 4. In the case of Ln with
t = n2 nodes and m = 2n2 − 2n edges, we get

mintl(Ln) ≥ 2(n2/2) + 3(n2 − 1) + 4(m− (n2/2)− (n2 − 1)) = 6n2 − 8n + 1,

which proves the lemma.

In order to get upper bounds, we shall analyze a recursive algorithm to produce
a routing tree of a n× n mesh in the case n is a power of two.

Definition 2 (The recursive algorithm). Let Ln be a n× n mesh with n = 2k for
some integer k ≥ 1. The recursive algorithm generates a routing tree of Ln according
to the following two rules:

• If k = 1: form a routing tree by joining the four nodes of the mesh as shown in
Figure 2(a).

• If k > 1: divide the mesh in four Ln/2 sub-meshes (top/left, bottom/left, top/right
and bottom/left); recursively create a routing tree for each one of the sub-meshes;
join the four routing trees in one routing tree as shown in Figure 2(b).

8

Figure 3 illustrates the routing tree and problem costs produced by the recursive
algorithm on L2, L4 and L8 meshes. Observe that the recursive algorithm generates
balanced routing trees and produces a (2k−1)-splitting edge, which we call the top edge.
The following lemma states the costs computed by the recursive algorithm.

Lemma 8. Let L2k be a 2k × 2k mesh with k ≥ 1. Let T2k be the routing tree of L2k

computed by the recursive algorithm. Then,

tc(T2k , L2k) = 2k, td(T2k , L2k) = 4k − 1,

ts(T2k , L2k) = 2k+1, tl(T2k , L2k) = 14 · 4k − 8 · 2kk − 15 · 2k.

Proof. The proof for tc and ts is straightforward because the maximal congestion and
the maximal separation are reached at the top edge.

In order to compute td(T2k , L2k), observe that T2k is made of four routing trees
T2k−1 for which the distance from any leaf to their respective top edge is 2k−3. But one
node is inserted in these top edges to construct T2k and three edges are added to connect
a left sub-mesh with a right sub-mesh. So, td(T2k , L2k) = 2((2k − 3) + 1) + 3 = 4k− 1.

In the following, let f(k) = tl(T,L2k). Counting on one’s fingers, it is immediate
to establish that f(1) = 10. In order to compute f(k) for k ≥ 2, observe that T2k is
made of four routing trees T2k−1 which contain 2k−1 · 2k−1 nodes each one and whose
height from the top edge is 2k − 3. We can then establish the following recurrence:{

f(1) = 10,
f(k) = 4f(k − 1) + 4 · 2k−1 + 2 · 2k−1(2(2k − 3) + 4) + 2 · 2k−1(2(2k − 3) + 5).

The first term comes from the cost of the four recursive routing trees; the second term
comes from the lengthening of the four recursive routing trees due to the addition of
a new node on its top edge; the third term comes from the cost of the length of the
horizontal edges between the two top trees and the two bottom trees; the fourth term
comes from the cost of the length of the vertical edges between the two left trees and
the two right trees.

The resolution of the recurrence yields the claimed result.

We now generalize the algorithm to handle n× n meshes when n is not a power
of two.

Definition 3 (The generalized recursive algorithm). Let Ln be a n × n mesh.
Let k be the integer such that n ≤ 2k < 2n and let T2k be the tree computed by the
recursive algorithm on L2k . The generalized recursive algorithm generates a routing tree
Tn of Ln applying iteratively the following transformation for all node u ∈ V (L2k) \
V (Ln): let p1 be the parent of u, let v be the sibling of u and let p2 be the parent of
p1; remove the nodes u and p1 from T together with its three incident edges; add the
edge p2v to T .

The following theorem states that the generalized recursive algorithm is a constant
approximation algorithm for our routing tree problems on meshes:

Theorem 3. For all n big enough, let Ln be a n × n mesh and let Tn be its routing

9

tree computed by the generalized recursive algorithm. Then,

tc(Tn, Ln)
mintc(Ln)

< 4,
td(Tn, Ln)
mintd(Ln)

< 4,

ts(Tn, Ln)
mints(Ln)

< 4,
tl(Tn, Ln)
mintl(Ln)

< 10.

Proof. Let k be the integer such that n ≤ 2k < 2n and let T2k be the tree computed
by the recursive algorithm on L2k . Observe that the iterative deletion of a leaf by the
generalized recursive algorithm cannot increase the congestion or separation at an edge
of the routing tree. Also, the iterative deletion of a leave by the generalized recursive
algorithm cannot increase the length of a graph edge in the routing tree. Therefore,
using Lemma 8, we get

tc(Tn, Ln) ≤ tc(T2k , L2k) ≤ 2k < 2n,

ts(Tn, Ln) ≤ ts(T2k , L2k) ≤ 2k < 2n,

tl(Tn, Ln) ≤ tl(T2k , L2k) ≤ 14 · 4k − 8 · 2k · k − 15 · 2k ≤ 14 · 4k ≤ 56n2,

td(Tn, Ln) ≤ td(T2k , L2k) ≤ 4k − 1 < 4 log n− 3.

Using the lower bounds of Lemma 7, the statement of the theorem follows.

6 Random geometric graphs

Let r be a positive number and let V be any set of n points in the unit square ([0, 1]2).
A geometric graph G(V, r) with vertex set V and radius r is the graph G = (V,E)
where E = {uv | u, v ∈ V ∧ 0 < ‖u − v‖ ≤ r}. In the following, ‖ · ‖ denotes the l∞
norm, but similar results can be obtained with any other lp norm, p > 0.

Let (ri)i≥1 be a sequence of positive numbers and let X = (Xi)i≥1 be a sequence
of independently and uniformly distributed random points in [0, 1]2. For any natural n,
we write Xn = {X1, . . . ,Xn} and call G(Xn, rn) a random geometric graph of n nodes
on X. We denote by G(n; rn) the class of random geometric graphs with n nodes and
radius rn.

In the remainder of this section we restrict our attention to the particular case
where the radius is of the form

rn =
√

an

n
where rn → 0 and an/ log n →∞.

It is important to remark that through this choice, the construction of sparse but
connected graphs is guaranteed: By defining the connectivity distance ρn as the smallest
radius rn such that a random geometric graph is connected, it is known that ρn

√
n/log n

converges to 1
2 almost surely [3].

An easy adaptation of the proofs of [7, Lemma 5.2] and [7, Lemma 5.4] suffice to
prove the following lower bounds:

Lemma 9 (Lower bounds). Let Gn denote a random geometric graph with n nodes
drawn from the G(n; rn) model. Then, with high probability,

mintc(Gn) = Ω(n2r3
n), mintd(Gn) = Ω(log n),

mints(Gn) = Ω(nrn), mintl(Gn) = Ω(n2r2
n log n).

10

We introduce now a class of geometric graphs that captures the properties we
need to bound our routing tree costs on random geometric graphs.

Definition 4 (Well behaved graphs). Consider any set Xn of n points in [0, 1]2,
which together with a radius rn, induce a geometric graph G = G(Xn, rn). Dissect the
unit square into 4 b1/rnc2 boxes of size 1/(2 b1/rnc) × 1/(2 b1/rnc) placed packed in
[0, 1]2 starting at (0, 0). By construction, all the boxes exactly fit in the unit square,
and any two points of Xn connected by an edge in G will be in the same or neighboring
boxes (including diagonals) because 1/(2 b1/rnc) ≥ rn/2. Given ε ∈ (0, 1), let us say
that G is ε-well behaved if every box of this dissection contains at least (1−ε)1

4an points
and at most (1 + ε)1

4an points.

Our interest in well behaved graphs is motivated by the fact that, with high
probability, random geometric graphs are well behaved:

Lemma 10. Let ε ∈ (0, 1
5). Then, with high probability, random geometric graphs

drawn from G(n; rn) are ε-well behaved.

Proof. Choose a box in the dissection and let Y be the random variable counting the
number of points of Xn in this box. As the points in Xn are i.u.d.,

E [Y] = n/
(
4 b1/rnc2

)
∼ 1

4nr2
n = 1

4an.

Let bn = an/ log n; by hypothesis, we have bn →∞. Using Chernoff’s bounds [12], we
obtain

Pr
[
Y ≥ (1 + ε)1

4an

] ≤ Pr
[
Y ≥ (1 + 1

2ε)E [Y]
] ≤ exp

(
− (

1
2ε

)2 E [Y] /3
)

≤ exp
(− 1

13ε2 1
4an

)
= n−ε2bn/52

and

Pr
[
Y ≤ (1− ε)1

4an

] ≤ Pr
[
Y ≤ (1− 1

2ε)E [Y]
] ≤ exp

(
− (

1
2ε

)2 E [Y] /2
)

≤ exp
(−1

9ε2 1
4an

)
= n−ε2bn/36 ≤ n−ε2bn/52.

The number of boxes is certainly smaller than n, so by Boole’s inequality, the
probability that for some box the number of points in the box is less than (1− ε)1

4an

or bigger than (1 + ε)1
4an, is bounded by 2n1−bnε2/52, which goes to 0 as n →∞.

We present now a modification to the recursive algorithm to handle geometric
graphs.

Definition 5 (The boxed recursive algorithm). Let G be a geometric graph with
n nodes and radius rn. Dissect the unit square into 4 b1/rnc2 boxes of size 1/(2 b1/rnc)×
1/(2 b1/rnc) placed packed in [0, 1]2 starting at (0, 0). The boxed recursive algorithm
generates a routing tree T of G in the following way:

• All points in the same box are the leaves of a balanced routing tree.

• The generalized recursive routing tree is used to form a routing tree for all the
graph, taking as its leaves a node that is inserted at the top edge of each of the
balanced trees for each box.

11

The following lemma presents upper bounds on the cost of routing tree problems
on well behaved graphs that match the lower bounds. Its proof uses the boxed recursive
algorithm.

Lemma 11 (Upper bounds). Let ε ∈ (0, 1) and n large enough. Let Gn denote any
ε-well behaved geometric graph with n nodes and radius rn and let Tn be the routing
tree computed by the boxed recursive algorithm for Gn. Then,

tc(Tn, Gn) = O(n2r3
n), td(Tn, Gn) = O(log n),

ts(Tn, Gn) = O(nrn), tl(Tn, Gn) = O(n2r2
n log n).

Proof. As in the case of the mesh, it is easy to see that that the maximal congestion
and separation is located at the top of Tn. In this place we have an edge which hosts the
edges of two rows of

√
n/an boxes, each with at most (1 + ε)an points and connected

to at most 3 neighbors. So, we have

tc(Tn, Gn) ≤ 3 · (1 + ε)a2
n ·

√
n/an = O (an

√
ann) = O(n2r3

n)

and

ts(Tn, Gn) ≤ 2 ·
√

n/an = O(nrn).

The diameter of the routing tree T obtained by the boxed recursive algorithm
is upper bounded by dlog((1 + ε)ane + 1 +

⌈
log(4

⌊
1/r2

n

⌋
)
⌉

= O(log n). So, applying
Lemma 1, we get that td(Tn, Gn) = O(log n).

According to the boxed recursive algorithm, we can analyze the cost of the edges
that appear at each level of the mesh-like construction. At level 0, we consider all
the edges that form a clique in each of the boxes. The total number of levels is l =

log
√

4 b1/rc2. Let us define hi as the height of the subtree at level i. We have h0 =
log((1 + ε)1

4an) and hi+1 = hi + 2. Let ti be the contribution of the edges taken into
account in level i. We have t0 = ((1 + ε)1

4an)2 h0 4 b1/rc2 and ti+1 = 48 2i ((1 +
ε)1

4an)2 hi+1 4 b1/rc2 41−i. Adding
∑l

i=1 ti, we get the claimed result.

The combination of lemmas 9, 10 and 11 leads to state our main result on routing
trees for random geometric graphs:

Theorem 4. With high probability, the problems MinTC, MinTD, MinTL and MinTS
can be approximated within a constant on random geometric graphs G(n; rn) using the
routing tree computed by the boxed recursive algorithm when rn =

√
an/n, rn = o(1)

and an = ω(log n).

References

[1] S. Agarwal, A. K. Mittal, and P. Sharma. Constrained optimum communications
trees and sensitivty analysis. SIAM Journal on Computing, 13:315–328, 1984.

[2] N. Alon, J. H. Spencer, and P. Erdős. The probabilistic method. Wiley-Interscience,
New York, 1992.

12

[3] M. J. Appel and R. P. Russo. The connectivity of a graph on uniform points in
[0, 1]d. Technical Report #275, Department of Statistics and Actuarial Science,
University of Iowa, 1996.

[4] B. Bollobás. Random Graphs. Academic Press, London, 1985.

[5] B. Bollobas and I. Leader. Compressions and isoperimetric inequalities. Journal
of Combinatorial Theory Series A, 56:47–62, 1991.

[6] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit Disk Graphs. Discrete
Mathematics, 86:165–177, 1990.

[7] J. D́ıaz, M. D. Penrose, J. Petit, and M. Serna. Linear ordering of random geo-
metric graphs. In P. Wiedmayer and G. Neyer, editors, Graph Theoretic Concepts
in Computer Science, volume 1665. Springer, Lecture Notes in Computer Science,
June 1999.

[8] J. D́ıaz, J. Petit, M. Serna, and L. Trevisan. Approximating layout problems on
random graphs. Discrete Mathematics. Elsevier North–Holland. To appear.

[9] G. Ding and B. Oporowski. Some results on tree decomposition of graphs. Journal
of Graph Theory, 20(4):481–499, 1995.

[10] T. C. Hu. Optimal communication spanning tree. SIAM Journal on Computing,
(3):189–195, 1974.

[11] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan. The complexity of the network
design problem. Networks, (8):279–285, 1978.

[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[13] P. D. seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

[14] B. Y. Wu, G. Lancia, V. Bafna, K.-M. Chao, R. Ravi, and C. Y. Tang. A polyno-
mial time approximation scheme for minimum routing cost spanning trees. SIAM
Journal on Computing.

13

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

1 2

3

4

5

6

7

8

9

10

...

· · ·

. . .

n2n2−1

n2−2

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

1

2

3

4

...

n−1

n

2

3

4

n−1

n

n

3

4

. . .

n−1

n

n

n−1

4

n−1

n

n

n−1

· · ·

· · ·
n−1

n

n

n−1

. . .

4

n−1

n

n

n−1

4

3

n

n−1

n−2

...

3

2

0

Figure 1: At left, diagonal ordering of the n × n mesh: at each node u, ϕ(u) is
shown. At right, vertex separation induced by the diagonal ordering: at each node
u, ∂(ϕD(u), ϕD, Ln) is shown.

(a) Base case: k = 1

2k

2k

2k
−

1

2k−1

(b) Recursive case

Figure 2: Recursive algorithm to build a routing tree for a L2k mesh.

14

(a) L2: tc = 2, td = 3, tl = 10,
ts = 4.

(b) L4: tc = 4, td = 7, tl = 100,
ts = 8.

(c) L8: tc = 8, td = 11, tl = 584, ts = 16.

Figure 3: Illustration of routing trees computed by the recursive algorithm.

15

