94 research outputs found

    Multi-objective Network Opportunistic Access for Group Mobility in Mobile Internet

    Get PDF
    The integration of existing and emerging heterogeneous wireless networks in mobile Internet is a combination of diverse but complementary wireless access technologies. Satisfying a set of imperative constrains and optimization objectives, access network selection (ANS) for mobile node (MN) is an inherent procedure in mobility management that needs to be solved in a reasonable manner for the whole system to operate in an optimal fashion. However, ANS remains a significant challenge. Because many MNs with distinctive call characteristics are likely to have correlated mobility and may need to perform mobility management at the same time, this paper, with the goal of investigating group mobility solutions, proposes a network opportunistic access for group mobility (NOA-GM) scheme. By analyzing the directional patterns of moving MNs and introducing the idea of opportunistic access, this scheme first identifies underloaded access networks as candidates. Then, the candidates are evaluated using normalized models of objective and subjective metrics. On this basis, the ANS problem for group mobility can be conducted as a multiobjective combination optimization and then transferred to a signal-objective model by considering the optimization of the performance of the whole system as a global goal while still achieving each MN\u27s performance request. Using an improved genetic algorithm with newly designed evolutionary operators to solve the signal-objective model, an optimal result option for ANS for group mobility is achieved. Simulations conducted on the NS-2 platform show that NOA-GM outperforms the compared schemes in several critical performance metrics

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Efficient joint call admission control and bandwidth management schemes for QoS provisioning in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 150-157).Next generation wireless network (NGWN) will be heterogeneous where different radio access technologies (RATs) coexist. This coexistence of different RATs necessitates joint radio resource management (JRRM) for enhanced QoS provisioning and efficient radio resource utilization. Joint call admission control (JCAC) algorithm is one of the joint radio resource management algorithms. The basic functions of a JCAC algorithm are to decide whether or not an incoming call can be accepted into a heterogeneous wireless network, and to determine which of the available RATs is most suitable to admit the incoming call. The objective of a JCAC algorithm is to guarantee the QoS requirements of all accepted calls and at the same time make the best use of the available radio resources. Traditional call admission control algorithms designed for homogeneous wireless networks do not provide a single solution to address the heterogeneous architecture, which characterizes NGWN. Consequently, there is need to develop JCAC algorithms for heterogeneous wireless networks. The thesis proposes three JCAC schemes for improving QoS and radio resource utilization, which are of primary concerns, in heterogeneous wireless networks. The first scheme combines adaptive bandwidth management and joint call admission control. The objectives of the first scheme are to enhance average system utilization, guarantee QoS requirements of all accepted calls, and reduce new call blocking probability and handoff call dropping probability in heterogeneous wireless networks. The scheme consists of three components namely: joint call admission controller, bandwidth reservation unit, and bandwidth adaptation unit. Using Markov decision process, an analytical model is developed to evaluate the performance of the proposed scheme considering three performance metrics, which are new call blocking probability, handoff call dropping probability, and system utilization. Numerical results show that the proposed scheme improves system utilization and reduces both new call blocking probability and handoff call dropping probability. The second proposed JCAC scheme minimizes call blocking probability by determining the optimal call allocation policy among the available RATs. The scheme measures the arrival rates of different classes of calls into the heterogeneous wireless network. Using linear programming technique, the JCAC scheme determines the call allocation policy that minimizes call-blocking probability in the heterogeneous network. Numerical results show that the proposed scheme reduces call-blocking probability in the heterogeneous wireless network

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Application of genetic algorithm to wireless communications

    Get PDF
    Wireless communication is one of the most active areas of technology development of our time. Like all engineering endeavours, the subject of the wireless communication also brings with it a whole host of complex design issues, concerning network design, signal detection, interference cancellation, and resource allocation, to name a few. Many of these problems have little knowledge of the solution space or have very large search space, which are known as non-deterministic polynomial (NP) -hard or - complete and therefore intractable to solution using analytical approaches. Consequently, varied heuristic methods attempts have been made to solve them ranging from simple deterministic algorithms to complicated random-search methods. Genetic alcyorithm (GA) is an adaptive heuristic search algorithm premised on the evolutionary ideas of evolution and natural selection, which has been successfully applied to a variety of complicated problems arising from physics, engineering, biology, economy or sociology. Due to its outstanding search strength and high designable components, GA has attracted great interests even in the wireless domain. This dissertation is devoted to the application of GA to solve various difficult problems spotlighted from the wireless systems. These problems have been mathematically formulated in the constrained optimisation context, and the main work has been focused on developing the problem-specific GA approaches, which incorporate many modifications to the traditional GA in order to obtain enhanced performance. Comparative results lead to the conclusion that the proposed GA approaches are generally able to obtain the optimal or near-optimal solutions to the considered optimisation problems provided that the appropriate representation, suitable fitness function, and problem-specific operators are utilised. As a whole, the present work is largely original and should be of great interest to the design of practical GA approaches to solve realistic problems in the wireless communications systems.EThOS - Electronic Theses Online ServiceBritish Council (ORS) : Newcastle UniversityGBUnited Kingdo

    Queueing models for capacity changes in cellular networks

    Get PDF
    With the rapid development of cellular communication techniques, many recent studies have focused on improving the quality of service (QoS) in cellular networks. One characteristic of the systems in cellular networks, which can have direct impact on the system QoS, is the fluctuation of the system capacity. In this thesis, the QoS of systems with capacity fluctuations is studied from two perspectives: (1) priority queueing systems with preemption, and (2) the M/M/~C/~C system. In the first part, we propose two models with controlled preemption and analyze their performance in the context of a single reference cell that supports two kinds of traffic (new calls and handoff calls). The formulae for calculating the performance measures of interest (i.e., handoff call blocking probability, new call blocking and dropping probabilities) are developed, and the procedures for solving optimization problems for the optimal number of channels required for each proposed model are established. The proposed controlled preemption models are then compared to existing non-preemption and full preemption models from the following three perspectives: (i) channel utilization, (ii) low priority call (i.e., new calls) performance, and (iii) flexibility to meet various constraints. The results showed that the proposed controlled preemption models are the best models overall. In the second part, the loss system with stochastic capacity, denoted by M/M/~C/~C, is analyzed using the Markov regenerative process (MRGP) method. Three different distributions of capacity interchange times (exponential, gamma, and Pareto) and three different capacity variation patterns (skip-free, distance-based, and uniform-based) are considered. Analytic expressions are derived to calculate call blocking and dropping probabilities and are verified by call level simulations. Finally, numerical examples are provided to determine the impact of different distributions of capacity interchange times and different capacity variation patterns on system performance

    Inteligência nas decisões de mobilidade

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesActualmente existe uma vasta gama de tecnologias de acesso sem fios como Wi-Fi, GPRS, UMTS, HSDPA and WiMAX. No futuro estas diferentes tecnologias complementar-se-ão convergindo numa infra-estrutura heterogénea capaz de fornecer um melhor serviço aos utilizadores, 4G. A evolução dos terminais móveis também permitirá que estes se liguem simultaneamente às redes de acesso. Assim, o conceito existente de “always connected” dará lugar a um novo paradigma, “always best connected”, que basicamente consiste em que o terminal esteja ligado às redes de acesso mais apropriadas num determinado instante e para serviços específicos. Devido ao aumento da complexidade nas decisões de handover das redes de próxima geração, o objectivo desta dissertação consiste no desenvolvimento de uma arquitectura de suporte a mobilidade inteligente. Este mecanismo deve, dependendo do cenário e do contexto, decidir a melhor distribuição dos serviços dos utilizadores pelas diferentes redes de acesso disponíveis. Para implementá-lo, foi usada uma abordagem simples baseada num protocolo responsável pela troca da informação necessária entre os pontos de acesso, terminais móveis e o elemento inteligente. Este último deverá então, através de informação actualizada, decidir a melhor rede de acesso para cada um dos terminais. De forma a simular a resposta do mecanismo perante várias situações, diferentes cenários foram criados para avaliar o desempenho da rede. Da avaliação dos resultados é possível concluir que a introdução de uma entidade inteligente na rede melhora o seu desempenho e experiência do utilizador. ABSTRACT: Currently there is a wide range of wireless access technologies such as Wi-Fi, GPRS, UMTS, HSDPA and WiMAX. In the future these different technologies will converge in a complementary manner forming a heterogeneous infrastructure able to offer a better service to its users, 4G. The evolution of mobile terminals will also allow them to connect simultaneously to several access networks. Thus, the existing concept of “always connected” becomes “always best connected”, consisting in a terminal connected to the most suitable access networks at a certain moment in time and for specific services. Due to the increase of the complexity in handover decisions on the next generation networks, this Thesis has as main goal the development of an architecture capable of supporting intelligent mobility. This mechanism, depending on the scenario and the context, must decide the best distribution of user’s services through the different access networks. To implement it, a simple approach was used based on a protocol responsible for exchanging the necessary information between access points, mobile terminals and the intelligent element. The latter, through updated information, decides the better access network for each terminal. In order to simulate the response of the mechanism in several situations, different scenarios were built to evaluate the performance of the network. From the evaluation it was possible to conclude that the introduction of an intelligent entity in the network improves its performance and the experience of the user
    corecore