6,866 research outputs found

    Acoustic and Device Feature Fusion for Load Recognition

    Get PDF
    Appliance-specific Load Monitoring (LM) provides a possible solution to the problem of energy conservation which is becoming increasingly challenging, due to growing energy demands within offices and residential spaces. It is essential to perform automatic appliance recognition and monitoring for optimal resource utilization. In this paper, we study the use of non-intrusive LM methods that rely on steady-state appliance signatures for classifying most commonly used office appliances, while demonstrating their limitation in terms of accurately discerning the low-power devices due to overlapping load signatures. We propose a multilayer decision architecture that makes use of audio features derived from device sounds and fuse it with load signatures acquired from energy meter. For the recognition of device sounds, we perform feature set selection by evaluating the combination of time-domain and FFT-based audio features on the state of the art machine learning algorithms. The highest recognition performance however is shown by support vector machines, for the device and audio recognition experiments. Further, we demonstrate that our proposed feature set which is a concatenation of device audio feature and load signature significantly improves the device recognition accuracy in comparison to the use of steady-state load signatures only

    A robust sequential hypothesis testing method for brake squeal localisation

    Get PDF
    This contribution deals with the in situ detection and localisation of brake squeal in an automobile. As brake squeal is emitted from regions known a priori, i.e., near the wheels, the localisation is treated as a hypothesis testing problem. Distributed microphone arrays, situated under the automobile, are used to capture the directional properties of the sound field generated by a squealing brake. The spatial characteristics of the sampled sound field is then used to formulate the hypothesis tests. However, in contrast to standard hypothesis testing approaches of this kind, the propagation environment is complex and time-varying. Coupled with inaccuracies in the knowledge of the sensor and source positions as well as sensor gain mismatches, modelling the sound field is difficult and standard approaches fail in this case. A previously proposed approach implicitly tried to account for such incomplete system knowledge and was based on ad hoc likelihood formulations. The current paper builds upon this approach and proposes a second approach, based on more solid theoretical foundations, that can systematically account for the model uncertainties. Results from tests in a real setting show that the proposed approach is more consistent than the prior state-of-the-art. In both approaches, the tasks of detection and localisation are decoupled for complexity reasons. The localisation (hypothesis testing) is subject to a prior detection of brake squeal and identification of the squeal frequencies. The approaches used for the detection and identification of squeal frequencies are also presented. The paper, further, briefly addresses some practical issues related to array design and placement. (C) 2019 Author(s)

    A method for three-dimensional particle sizing in two-phase flows

    Get PDF
    A method is devised for true three-dimensional (3D) particle sizing in two-phase systems. Based on a ray-optics approximation of the Mie scattering theory for spherical particles, and under given assumptions, the principle is applicable to intensity data from scatterers within arbitrary interrogation volumes. It requires knowledge of the particle 3D location and intensity, and of the spatial distribution of the incident light intensity throughout the measurement volume. The new methodology is particularly suited for Lagrangian measurements: we demonstrate its use with the defocusing digital particle image velocimetry technique, a 3D measurement technique that provides the location, intensity and velocity of particles in large volume domains. We provide a method to characterize the volumetric distribution of the incident illumination and we assess experimentally the size measurement uncertainty

    A study on acoustic emission signal propagation of a small size multi-cylinder diesel engine

    Get PDF
    Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders
    corecore