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This contribution deals with the in situ detection and localisation of brake squeal in an automobile.

As brake squeal is emitted from regions known a priori, i.e., near the wheels, the localisation is

treated as a hypothesis testing problem. Distributed microphone arrays, situated under the automo-

bile, are used to capture the directional properties of the sound field generated by a squealing brake.

The spatial characteristics of the sampled sound field is then used to formulate the hypothesis tests.

However, in contrast to standard hypothesis testing approaches of this kind, the propagation envi-

ronment is complex and time-varying. Coupled with inaccuracies in the knowledge of the sensor

and source positions as well as sensor gain mismatches, modelling the sound field is difficult and

standard approaches fail in this case. A previously proposed approach implicitly tried to account

for such incomplete system knowledge and was based on ad hoc likelihood formulations. The cur-

rent paper builds upon this approach and proposes a second approach, based on more solid theoreti-

cal foundations, that can systematically account for the model uncertainties. Results from tests in a

real setting show that the proposed approach is more consistent than the prior state-of-the-art. In

both approaches, the tasks of detection and localisation are decoupled for complexity reasons. The

localisation (hypothesis testing) is subject to a prior detection of brake squeal and identification of

the squeal frequencies. The approaches used for the detection and identification of squeal frequen-

cies are also presented. The paper, further, briefly addresses some practical issues related to array

design and placement. VC 2019 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/1.5138608

[KTW] Pages: 4898–4912

I. INTRODUCTION

The optimisation of the acoustic design of cars over the

past years has led to significant reduction in the engine-,

wind- and tyre-noise, chassis vibration noise, etc. Due to this

lowering of the overall sound level, a variety of low-level

contributors to the acoustic footprint are now coming into the

focus of the automobile manufacturers. One such contributor

is brake squeal—the high-pitched noise sometimes emitted

when brakes are applied. This is known to be very annoying

and is a major concern for the manufacturers. The in situ
detection and localisation of brake squeal is, however, a

challenging problem since the scenario in which brake squeal

occurs is a dynamic one: the background noise is highly

time-variant depending upon road surfacing, atmospheric

conditions, age and state of components, speed of motion,

and engine condition, to name just a few uncontrollable fac-

tors. Further, most brake squeal is produced by vibration of

the brake components, especially the pads and discs, due to

resonance. Thus, the source of the squeal is distributed over

the disk, pad and calliper surfaces, giving it a significant spa-

tial spread. The squeal is narrow-band in nature, with the

squeal frequencies typically ranging from 1 to 16 kHz. Also,

the squeal frequencies are usually different for each wheel,

and dependent upon the speed of the automobile when brak-

ing, age of the components, environmental conditions (e.g.,

heat, moisture), brake pressure, etc. Analysis and quantifica-

tion of the various factors inducing brake squeal would there-

fore help the manufacturers further reduce this contributor to

the acoustic footprint.

Depending upon the aim of the analysis, this can be

conducted from several different perspectives. One good

classification, suggested in Mauer and Haverkamp (2007),

consists of the following three approaches:

(a) A driver-focussed analysis, which considers the per-

ceivable attributes of brake squeal in the interior of the

automobile, with the aim of optimising brake noise and

vibration as part of the driving experience.

(b) A pedestrian-focussed analysis, which considers the

perception of brake noise exterior to the automobile to

minimise the exterior radiation of noise.

(c) A component-focussed analysis, where the assessment

is focussed on the source of the noise, in order to apply

measures of noise reduction at the source.

a)Part of the work was done during the respective Ph.D. theses of the first

and second authors at the Ruhr-Universit€at Bochum, Germany.
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Whereas significant research has been conducted

towards the perceptual analysis of brake squeal with respect

to the first two assessment goals (see, e.g., Attia et al., 2006;

Philippen et al., 2010), work is still required for achieving

the third goal—that of component-based analysis. Such an

analysis is beneficial in that the data are more appropriate to

understand the excitation process leading to brake squeal

and could, thereby, allow for the development and applica-

tion of suitable noise reduction measures at the source (see,

e.g., Hou et al., 2009; Liang and Yamaura, 2014; L€u et al.,
2017a,b; Pan et al., 2019).

A first step in this direction is the detection of brake squeal

and the localisation of this squeal to the contributing brake(s).

This information can then be combined along with the other

local parameters such as temperature, brake-pedal pressure,

etc., in the subsequent analysis. Therefore, from the acoustic

signal processing point of view, we have the following:

(1) An environment that contains several narrowband sour-

ces, the a priori knowledge of whose approximate posi-

tions are available (the four wheel positions).

(2) At any time none, one, or several of these sources could

be “active” (i.e., emit a squeal), occupying possibly

overlapping frequencies. The presence of active sources

within an observed time range constitutes what we shall

define as an acoustic event.

Brake squeal localisation defined in this context consists

of detecting such acoustic events and locating them to their

contributing sources (generator brakes). For each detected

squeal frequency, given that there are four brakes, there are

ð24 � 1Þ possible combinations1 that could have contributed

to the generation of the squeal. Thus, selecting the right

combination constitutes the solution to the localisation prob-

lem. In other words, brake squeal localisation may be seen

as a multiple-hypothesis testing or a detection problem based

on the directional properties of the sound field received at

appropriately situated sensors.

While the intuitive solution for brake squeal detection

and localisation would be to analyse signals from individual

microphones mounted next to the sound sources, i.e., next to

the brake in the wheel casing, or from accelorometers placed

on the brake itself, this setup suffers from several disadvan-

tages that make the implementation impractical. First, the

wheel casings are not easily accessible, making installation

difficult and requiring special facilities. Furthermore, this

region is prone to high temperatures and often collects dust

and dirt. These could affect the sensors and could lead to a

more-or-less complete system breakdown due to the lack of

sensor-redundancy. This is compounded by the fact that

repair or replacement in the field is difficult. Performing

brake squeal localisation using single microphones in the

wheel casing requires a comparison of the amplitudes or

powers of the recorded signals. To make the right decision,

therefore, the microphones must be perfectly calibrated,

requiring expensive measurement microphones. Even under

perfect calibration, dust or dirt sticking to any one sensor

will change its frequency response and replacing the defec-

tive sensor would require recalibration of the system.

Additionally, brake squeal from any one brake may lead to

almost identical amplitudes at all the microphones. Thus, a

distinction based on amplitudes is not easy. Furthermore,

accelerometers mounted near the brake pads are difficult to

secure in position mechanically, due the heat and vibration.

In Madhu et al. (2014), a microphone array based solu-

tion was proposed as an alternative. This approach exploited

the directional properties of the sound field; hence, the arrays

were not constrained to be in close vicinity of the brakes and

were mounted under the chassis, which is easily accessible.

Furthermore, it was argued in Madhu et al. (2014) that tech-

niques based on sound field directivity are relatively robust

against gain mismatches amongst the microphones, so an

accurate calibration was not required. The redundancy of

microphones in the array, combined with an appropriate

algorithm to detect defective sensors (see, e.g., Madhu and

Martin, 2008b, and references therein) not only prevents a

system breakdown but additionally allows correct localisa-

tion, taking the changed array geometry into account. If

required, an entire array can be replaced in the field since the

arrays are easily accessible. This makes maintenance and

servicing of the system easy.

It was further concluded in Madhu et al. (2014) that,

given the narrowband nature of brake-squeal, the well-known

broadband approaches (e.g., Benesty, 2000; Chen et al.,
2003; Knapp and Carter, 1976; Madhu and Martin, 2005;

Roth, 1971; Scheuing and Yang, 2006; Talantzis et al., 2005;

Yoon et al., 2006) should not be used to localize the squeal

to the generating brakes and that algorithms that lend them-

selves to solving this problem should be based on narrow-

band, approaches for each squeal frequency (cf. DiBiase

et al., 2001; Paulraj and Kailath, 1986; Schmidt, 1981;

Thiergart et al., 2016; Wax, 1992; Wax and Kailath, 1984).

Since such narrowband approaches are implicitly based on

the phase of the pairwise cross-power-spectra of the micro-

phone signals, a weighted variant of the narrowband steered

response power phase transform (SRP-PHAT) algorithm was

adopted in Madhu et al. (2014) and an approach based on ad
hoc formulation of likelihoods was developed. Here, we pro-

pose an alternative method, based on more solid theoretical

foundations, that can systematically account for the different

uncertainties. We further demonstrate the improved consis-

tency of this approach over the existing state-of-the-art in a

real setting.

The remainder of the paper is organised as follows: we

first introduce the signal model of Madhu et al. (2014) in

Sec. II, followed by the system overview in Sec. III (array

placement and hypothesis nomenclature). In Sec. IV, we

briefly describe the algorithm of Madhu et al. (2014). In

Sec. V, we detail the proposed approach. The developed

algorithm is next tested on both simulations and data

obtained under realistic conditions, and its performance rela-

tive to the state-of-the-art summarised.

II. SIGNAL MODEL

Since we deal with the narrowband localisation of the

sources, we first transform each microphone signal into the

short-time Fourier domain. This frame-wise spectral

J. Acoust. Soc. Am. 146 (6), December 2019 Madhu et al. 4899



representation of a discrete-time signal xðnÞ is obtained by a

K-point discrete Fourier transform (DFT) on overlapped,

windowed signal segments. The corresponding representa-

tion of the signal is Xðk; bÞ, where k is the discrete frequency

bin index and b is the frame index.

Consider an array of M microphones at positions rm

¼ ðxm; ym; zmÞT capturing the signals emitted from Q sour-

ces located at rq ¼ ðxq; yq; zqÞT . The signal at microphone m
may be approximated as (Madhu and Martin, 2008a)

Xmðk; bÞ �
XQ

q¼1

A0;mq kð ÞS0qðk; bÞ þ Vmðk; bÞ; (1)

where A0;mqðkÞ is the transfer function from rq to rm; S0;qðk; bÞ
is the qth source signal and Vmðk; bÞ is the noise component at

microphone m. The approximation is a result of truncating the

support of the signals to finite length. Each A0;mqðkÞ is further

represented as A0;mqðkÞ ¼ jA00;mqðkÞje�|Xksmq þA000;mqðkÞ where

jA00;mqj represents the gain along the direct path and A000;mq 2 C

indicates the net gain and phase smearing caused by the reflec-

tions along the indirect paths. smq represents the absolute time

delay of the signal from source q to microphone m along the

direct path with Xk ¼ 2pkfs=K being the kth discrete fre-

quency and fs the sampling frequency.

Whereas the direct path components A00;mq ¼ jA00;mqðkÞj
e�|Xksmq of the transfer function are directly related to the

geometric arrangement of the sources and the sensors and

are key to the localisation problem, the indirect path compo-

nents (A000;mq) are treated as disturbances. Further, dominance

of the direct path is assumed (i.e., jA00;mqj � jA000;mqj), allow-

ing us to lump the indirect component contributions with the

background noise.

The model is further simplified in terms of the relative
transfer functions (Gannot et al., 2001) by considering the

signals received at the first microphone through the direct

path as the reference,

Sqðk; bÞ ¼ jA00;1q Xð Þje�|Xks1q S0qðk; bÞ: (2)

Under these simplifications and stacking, the microphone sig-

nals into a vector for each time-frequency point ðk; bÞ leads us

to the following compact vector representation of the model as

Xðk; bÞ¼� A kð ÞSðk; bÞ þ Vðk; bÞ; (3)

with

A kð Þ ¼

1 � � � 1

..

. . .
. ..

.

A00;M1 kð Þ
A00;11 kð Þ

�����
�����e|XkDsM1 � � �

A00;MQ kð Þ
A00;1Q kð Þ

�����
�����e|XkDsMQ

0
BBBBB@

1
CCCCCA;

where Dsmq ¼ s1q � smq is the relative time delay or time
delay of arrival (TDOA) of the wavefront of source q at

microphone m, with respect to the first microphone.

III. SYSTEM OVERVIEW

A. System overview

The system proposed in Madhu et al. (2014) consisted

of four linear microphone sub-arrays, each consisting of

eight elements. The inter-microphone spacing for each sub-

array was chosen in order to ensure that an unambiguous

decision at each frequency would be possible in the desired

range and that the spatial aliasing problem (van Trees, 2002)

would not occur. This led to the harmonically nested array

depicted in Fig. 1. Such harmonic nesting additionally has

the benefit of frequency invariant beamwidth (Ward et al.,
2001) in the SRP-PHAT cost function over the frequency

range of interest. The four linear sub-arrays are placed along

the outside border of the auto-chassis as depicted in Fig. 2.

This placement preserves the dominance of the direct path

from a brake to the arrays to which it has a direct line of

sight (LOS). To clarify: array 2 can distinguish accurately

between events originating front right and front left, but an

event at the rear right/left brakes is not accurately localised

(construction of the chassis is such that line-of-sight is

obstructed). The reverse holds true for array 4. Array 1, on

the other hand, cannot distinguish between an event at front
right and front left. Controlled tests on a stationary vehicle

demonstrated that even when the squeal event was from

front left, array 1 indicated maximum spatially coherent

energy from the direction of front right. The reverse is true

for array 3. We infer that this behaviour is due to the shad-

owing of the brake at front right by the wheel, and the pres-

ence of a parallel reflecting surface in the vicinity of the

brake at front left, leading to a coherent first-order reflection.

Thus, array 1 perceives a source emanating from front right
as coming from front left. The same holds for squeals origi-

nating from the rear wheels, while the reverse argument

holds for array 3. Consequently, arrays 1 and 3 are used to

distinguish reliably between events coming from the front

and the rear. This discrimination capability for each array is

also illustrated in Fig. 2. Accordingly, we require separate

arrays for the front and rear wheels, to perform a left-right

distinction and two arrays on the side to perform the front-

back distinction. The reasoning for the redundancy in the

front-back distinction is explained further in the following

section.

B. Hypothesis nomenclature and formulation

Assume, for now, the availability of an initial stage that

can detect the occurrence of brake squeal and extract the cor-

responding squeal frequencies. Given these frequencies at

which we have an acoustic event and the directional statistics

available from the arrays, the hypothesis testing approach

requires us to decide which of the 24 � 1 combinations of

brakes generated the event. Since no single array can localise

FIG. 1. (Color online) The designed array for brake squeal localisation. The

spacings are symmetric about the center, with d12 ¼ 4 cm, d23 ¼ 2 cm,

d34 ¼ 1 cm, and d45 ¼ 0:5 cm.
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all sources, hypothesis tests which consider the complete 4-

array system were not optimal. Therefore, in the hierarchical

approach we proposed previously, the localisation of a

squeal event to a brake was done in two steps. In the first

stage, arrays 1 and 3 were used to test

(1) HF: squeal emanated from the front.

(2) HB: squeal emanated from the back (rear).

(3) HFB: squeal emanated simultaneously from the front and

rear.

Depending upon the outcome of this stage, arrays 2 and/

or 4 were considered to detect if the event originated from

the right (R) or the left (L), i.e., if HF was true, we used

array 2 to test pick from the subsequent hypotheses:

(1) HLjF: squeal emanated from the brake on front left.

(2) HRjF: squeal emanated from the brake on front right.

(3) HLRjF: squeal emanated from front left and front right.

Similarly, given the occurrence of squeal from the rear,

array 4 was used to decide between HLjB, HRjB, and HLRjB.

Note that the accuracy of the front/back detection is critical

as the next stage depends on the outcome of this test. It is to

increase this accuracy and to provide robustness against sen-

sor defects that we built in redundancy by using two arrays

for this stage. The truth of the hypotheses themselves

depends on the particular use of the spatial statistics.

IV. HIERARCHICAL APPROACH SUMMARY

The approach of Madhu et al. (2014) was based on heu-

ristic conditions with the aim of assigning a measure of con-
tribution of each brake to each acoustic event, thereby

arriving at a “soft” decision. Under assumptions of indepen-

dence between the squeal event at each brake, a heuristic

likelihood L of activity for each brake was computed in a

factorable form as in Eq. (4) below,

L F;Rð Þ ¼ L RjFð Þ � L Fð Þ;
L F; Lð Þ ¼ L LjFð Þ � L Fð Þ;
L B;Rð Þ ¼ L RjBð Þ � L Bð Þ;
L B; Lð Þ ¼ L LjBð Þ � L Bð Þ; (4)

where, e.g., LðF;RÞ denotes the likelihood of activity of the

front, right brake; LðFÞ denotes the likelihood of activity

from the front brakes; LðRjFÞ denotes the likelihood of

activity of the front right brake conditional upon the hypoth-

esis that the event originated from the front; and so on. The

likelihood was based on a pair-wise coherence-weighted

sum of the cross-power spectrum components of the SRP-

PHAT cost-function J ðr; k; iÞ. In this notation, the depen-

dence on frequency k, the candidate position r and the array

i is explicit. For convenience, this function is reproduced

below for a generic array as

J ðr; kÞ ¼
X

m;m0m 6¼m0m;m
0

e|Xk DsmðrÞ�Dsm0ðrÞð Þ

 

�
WXmXm0 kð Þ
jWXmXm0 kð Þj

jCmm0 ðkÞj2
!
; (5)

where, in accordance with the model in Sec. II, DsmðrÞ is the

TDOA that would be generated across the array, if a source

were present at location r; WXmXm0 ðkÞ ¼ XmðkÞX�m0 ðkÞ and

Cmm0 ðkÞ is the coherence between microphones m and m0 at

frequency Xk.

To account for the small deviations in the positioning of

the microphone arrays and the spatially spread nature of the

acoustic sources, the candidate positions for each brake are

extended to encompass the possible spread of the source and

the deviations in the microphone array, leading to a spatially

averaged estimate of J over a candidate region R,

J ðR; k; iÞ ¼
ð

r2R
J ðr; k; iÞdr: (6)

Since the squeal event can be reasonably assumed to be con-

centrated in the region around the respective wheels, we

define the extent of the candidate regions as depicted by the

shading in Fig. 3(a) for all the wheels and in Fig. 3(b) for

array 3 in particular.

With these extended regions and the corresponding spa-

tially averaged metrics, the marginals and the conditional

probabilities were defined as

LðF; kÞ¼� J F kð Þ
max J F kð Þ;J B kð Þ

� � ;
LðB; kÞ¼� J B kð Þ

max J F kð Þ;J B kð Þ
� � ; (7)

and

L LjF; kð Þ¼� J ðRFL; k; 2Þ
max J ðRFR; k; 2Þ; J ðRFL; k; 2Þð Þ ;

L RjF; kð Þ¼� J ðRFR; k; 2Þ
max J ðRFR; k; 2Þ; J ðRFL; k; 2Þð Þ ;

L LjB; kð Þ¼� J ðRBL; k; 4Þ
max J ðRBR; k; 4Þ; J ðRBL; k; 4Þð Þ ;

L RjB; kð Þ¼� J ðRBR; k; 4Þ
max J ðRBR; k; 4Þ; J ðRBL; k; 4Þð Þ ; (8)

where

J F kð Þ ¼ J RFL; k; 1ð Þ þ J RFR; k; 3ð Þ;
J B kð Þ ¼ J RBL; k; 1ð Þ þ J RBR; k; 3ð Þ: (9)

FIG. 2. (Color online) Arrangement of arrays to achieve LOS of two arrays

for each brake. The subscripts for each wheel indicate the arrays having a

direct LOS to that wheel. (a) Search regions for each wheel. (b) Candidate

positions for array 3.
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This gives us a normalised value for the occurrence of a

squeal event—akin to the probability of that event. At this

stage, we may take a hard decision regarding the activity of

a particular brake, which is done by thresholding the likeli-

hood values obtained from Eq. (4) by substituting the values

of Eqs. (7) and (8). This threshold, !L, is empirically set.

V. PROPOSED APPROACH SUMMARY

This approach is derived from the sequential hypothesis

testing framework based on maximum likelihood (Kraus,

1993; Maiwald, 1995). However, these approaches cannot

be used directly since they require accurate knowledge of

the signals and the propagation vector and such information

is hard to gather for brake squeal localisation. The reason

lies in part in the insufficient knowledge regarding the source

locations (the positions are only approximately known, the

spatial extent during a squeal is unknown and time and fre-

quency variant. Estimating these parameters during the

localisation procedure is also difficult, since the squeal is

only present for a short time interval). In addition, we require

a model for the signal distortion caused by the acoustic envi-

ronment under the automobile. This is further complicated

by the fact that such a model is time variant and depends not

only on the relative source–receiver positions, but also on

the external environment, which is continually changing.

Thus, given the short time frames in which the detection and

localisation must be done, applying the ML framework

requires a high-dimensional optimisation, which increases

the computational complexity and makes a real-time imple-

mentation impossible. This is the motivation to find an

approach that is not only real-time capable (low computa-

tional complexity) but also more tolerant and robust against

such imperfect knowledge. In this section, we shall develop

one such method.

Since each array principally evaluates two regions, con-

sider one such generic array, with the corresponding sources

S1ðk; bÞ and S2ðk; bÞ. We further make the simplifying

assumption that the sources are spectrally disjoint, i.e., each

active frequency is dominated by one source, which we

require to localise. This assumption is realistic since the

squeal frequencies and the presence of squeal depend on sev-

eral factors (hydraulic pressure, humidity, dust, state of

brake shoe and disk, speed, etc.), which will be different for

any two brakes. Note this contrast to the previous algorithm,

which allows multiple wheels to contribute to a squeal event

at a given frequency and time frame. The spectral disjoint-

ness assumption further implies that, given an active fre-

quency, it must be allocated to one source. To do this, we

sequentially test each of the two regions for the presence of

source activity whilst blocking out contributions from the

other region (treated as a clutter region). The approximate

knowledge of the source positions can be used for designing

such blocking systems with sufficient tolerance to compen-

sate for possible inaccuracies in the model. Assume for now

that we have such a blocking system P?q ðkÞ for region 1 at

frequency bin k. Then, define Yð1Þðk; bÞ as

Yð1Þðk; bÞ ¼ P?1 kð ÞXðk; bÞ

¼ P?1 kð Þ
X2

q¼1

�Aq kð ÞSqðk; bÞ þ Vðk; bÞ

0
@

1
A

�P?1 kð Þ �A2 kð ÞS2ðk; bÞ þ Vðk; bÞ
� �

; (10)

where �A indicates the relative propagation vector from

source to receiver [i.e., the signal model from Eq. (3)], but

taking into account the unknown disturbances. The approxi-

mation in the last step holds as, by designing the blocking

system to have a suitable tolerance, we may negate the con-

tributions from the blocked source 1. Similarly, we may

negate the contribution of source 2 to obtain: Yð2Þðk; bÞ. The

use of such a blocking system to obtain the resultant signals

YðqÞðk; bÞ is key to our approach, which we term the maxi-
mum choice (MaxChoice) algorithm. Note that such a block-

ing matrix is well-known in the beamforming community for

generating the noise estimate in, e.g., adaptive beamforming

approaches such as the generalised sidelobe canceller
(Gannot et al., 2017; Griffiths and Jim, 1982).

We next compute the residual energy in Yð1Þðk; bÞ and

Yð2Þðk; bÞ, over the B time records. This may be compactly

expressed as, when source q is blocked, as

FIG. 3. (Color online) Candidate search regions. The shaded regions indicate the a priori knowledge of regions of source presence, which is used to obtain the

candidate search regions for the cost function computation as in Eq. (6). The search region for array 3 is, further, illustrated for convenience.
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�Wqq kð Þ ¼
XB

b¼1

tr YðqÞðk; bÞYðqÞ;Hðk; bÞ
� �

�P?q kð Þ
XB

b¼1

�A3�q kð Þ�AH

3�q kð ÞjS3�qðk; bÞj2
� 

þ Vðk; bÞVHðk; bÞ
�!

P?;Hq kð Þ: (11)

Recognise that this is a measure of the energy received by

the microphone from spatial regions other than the region

associated with the presence of source q. Once this residual

energy has been computed, a binary decision is made for

that bin as follows:

�W22 kð Þ
�W11 kð Þ

0
H1

H2

1; (12)

with Hq representing the hypothesis that the source origi-

nated from region q. Note that in this approach we do not

perform explicit source localisation. Rather, by configuring

the blocking system with suitable tolerance around the

nominal source positions, we compensate for imperfec-

tions in the knowledge of the propagation model and

source position.

When the propagation model is well-known and the

source positions are available, it is straightforward to extend

this approach to perform a hypothesis test for the presence or

absence of source activity independently in each region.

Thereby, it is also possible to handle the case of correlated

or even coherent sources, and the assumption of spectral dis-

jointness is not necessary. Indeed, one may consider such a

system to be a generalised form of the approach presented in

Tadaion et al. (2007), that better uses the a priori knowledge

available regarding the nominal source positions and spatial

extent.

MaxChoice is summarised in Fig. 4.

A. Design of the blocking system

We now address the issue of design of the blocking

matrix for a generic frequency k, an M channel array and a

blocking region defined as Rq. Denote by ðM � NqðkÞÞ, the

dimensions of the blocking matrix. The frequency-dependent

parameter NqðkÞð< MÞ is determined such that we minimise

the contribution of sources fromRq, i.e., find P?q ðkÞ such thatð
Rq

jjP?q kð ÞAðr; kÞjj2dr � 0

) P?q kð Þ
ð
Rq

Aðr; kÞAHðr; kÞdr

 !
P?;Hq kð Þ � 0: (13)

Defining

Rq kð Þ ¼
ð
Rq

Aðr; kÞAHðr; kÞ dr; (14)

we see that Eq. (13) is minimised if we select P?q ðkÞ to span

the orthogonal complement space of RqðkÞ, i.e., if the eigen-

vectors of RqðkÞ are denoted as UiðkÞ;

P?q kð Þ ¼ UM�Nq kð Þþ1 kð Þ; …; UM kð Þ
� �
UM�Nq kð Þþ1 kð Þ; …; UM kð Þ
� �H

; (15)

where NqðkÞ is estimated, for a given threshold !
(0 � ! � 1), in the following manner:

Nq kð Þ ¼ argmin
N

!�

XM�N

i¼1

ki kð Þ

XM

i¼1

ki kð Þ

����������

����������
; (16)

where the kiðkÞ are the eigenvalues of RqðkÞ, sorted in the

descending order of magnitude. In effect, Eq. (16) selects the

FIG. 4. Summary of the MaxChoice

approach.
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dimension of the orthogonal complement space by setting a

threshold on the energy that is present in the target region.

The dimension of the target region subspace and the orthogo-

nal complement space are illustrated below for an azimuthal

blocking regionRh ¼ ½25	; 65	
, for various values of !.

As may be seen in Fig. 5, the target region dimensions

are low for the lower frequencies. This is because of the lack

of directivity in these frequencies, making Aðr; kÞ in Eq. (13)

almost independent of r. As k increases, so does the directiv-

ity, and the matrix RqðkÞ increases in rank. The blocking

capabilities of such a designed system is illustrated in Fig. 6

for two sample values of !.

The blocking matrix is computed according to (14)–(16),

where the integration is either performed numerically or,

under simplifying assumptions, may also be obtained in a

closed form solution (see Appendix A). Note that the broad

spread of the blocking region (620
	

about the mean source

DOA) is chosen to account for the inaccuracies in array posi-

tioning, source spread and propagation model uncertainties.

The target regions for the two sources corresponding to each

array are defined as in Table I. Note, further, that the toler-

ance regions are the same for all arrays, requiring only a sin-

gle computation of P?q ðkÞ, unlike the hierarchical approach

where the cost function parameters for each array have to be

computed separately. Further, this approach is easy to tailor

to almost any automobile size and does not require a separate

recalibration of the search regions as in the hierarchical

approach.

VI. EXPERIMENTAL EVALUATION

The presented approaches to brake squeal localisation

were evaluated using a VW Touran. The recordings of brake

squeal were made under different driving conditions and sur-

roundings. As mentioned previously, the signals were ana-

lyzed in T¼ 200 ms time segments. Each segment was

decomposed into its short-time spectrogram using a win-

dowed, K point DFT, with a frame shift of O samples, as

depicted in Fig. 7. Such spectrograms were constructed for

each channel of every array and evaluated for the presence

of active frequencies. If such frequencies were found, the

hypothesis tests were carried out in the corresponding fre-

quency bins. The analysis parameters are presented in

Table II. These parameters yield, for our application, an

acceptable tradeoff between computational complexity, stor-

age requirements, and efficient processing of information for

instrumental and perceptual analysis. For the spectral analy-

sis, the von Hann or the Hamming windows are usually used

due to their good spectral characteristics. The threshold

!L ¼ 0:7 was empirically set based on the experiments we

did in the controlled scenario (see further). The DFT was

computed using the efficient fast Fourier transform (FFT)

technique.

A general difficulty in the evaluation stems from the

absence of reliable ground truth. Even for the experienced

listener, it is not easy to localise sounds while driving.

Therefore, we first validated the approaches on a controlled

scenario, where the automobile was at standstill and the

brake squeal was simulated by manually exciting the brake

discs with a shaker. For the subsequent evaluation on the

realistic recordings, we base our evaluation on the plausibil-

ity of the results (we know the approximate resonance fre-

quencies of the brakes and thereby can see if signals

detected at these frequencies are correctly assigned).

A point of note here: the finite spectral resolution associ-

ated with the DFT coupled with the frequency jitter of the

sources smears each narrowband acoustic event across more

FIG. 5. Target region dimensions for the array shown in Fig. 1. The sampling

frequency is fs ¼ 32 kHz and a K ¼ 1024 point DFT has been used. The tar-

get region dimension and the orthogonal complement space dimension add

up to M for each combination of ðk;!Þ. (a) ! ¼ 0:95; (b) ! ¼ 0:99.

FIG. 6. Performance of the blocking system in dB for the array of Fig. 1, for a sampling frequency of fs ¼ 32 kHz and a K ¼ 1024 point DFT. The discontinu-

ities in the plot are the frequency bins at which the dimensions of the orthogonal complement space change. The blocking region was set toRh ¼ ½25
	
; 65

	 
.

TABLE I. Blocking regions for the two sources corresponding to each

array.

Rh1
Rh2

[25	, 65	] [115	, 155	]
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than one frequency bin. The accretion of such adjacent fre-

quency bins builds what we denote as a frequency band and

the presence of an active band characterises an acoustic

event.

Both the hierarchical approach and the MaxChoice

approach are modified to take such spectral smearing into

account. In the former case, the probability of activity is

computed using the spectrally-averaged cost functions for

each array and in the latter case, the decision is based on a

weighted average of the decisions in the individual bins of a

band. As the MaxChoice approach essentially makes one

decision per band, the maximum allowable bandwidth of a

band in this approach is constrained to about 100 Hz. No

such restriction is placed on the bandwidth in the hierarchi-

cal case, as it is capable of making multiple decisions at any

band, and thus the smearing of two different events into one

band should not affect the performance of this approach.

Some sample results are presented in Figs. 8–10, where

one may easily discern the squeal regions in the reference

spectrogram. The results obtained from the localisation

approaches are depicted on this spectrogram in a colour

coded manner consistent with Table III.

We begin with a localisation scenario where only a sin-

gle active frequency is present. The predominantly active

brake in this case was BR. Both approaches are in agreement

in terms of their localisation result. At t ¼ 21.8 s, the hierar-

chical approach performs multiple decisions whereas the

MaxChoice approach makes a single decision consistent with

the time history until that point. Note that in case of multiple

decisions in the hierarchical approach, the results are pre-

sented for the localised brakes in the order FR, FL, BL, and

BR. Thus, at t ¼ 21.8 s, where the hierarchical approaches

localises the squeal simultaneously to FL, BL, and BR, the

results are presented by bars of the appropriate colour,

slightly frequency shifted, in the above mentioned order.

Figures 9 and 10 present a more dynamic case, where

multiple brakes squeal simultaneously and at multiple,

closely spaced frequencies.

A. Relative comparison of the approaches

We now present a relative comparison of the hierarchi-

cal and the MaxChoice approach, evaluated on the available

data. The comparison is according to four different criteria:

(a) Detection and localisation rate.

(b) Validity of the spectral disjointness assumption in

MaxChoice.

(c) Agreement between the two approaches.

(d) Consistency of the two approaches during disagree-

ment in the localisation result

1. Detection and localisation rate

This criterion measures the number of instances where

each algorithm detects and localises a squeal. This is indicated

in Table IV, where Z denotes the number of localisation

FIG. 7. (Color online) Schematic of the data analysis for a microphone sig-

nal illustrating the concept of a signal segment of length T ms, its decompo-

sition into frames of length K with a frame shift of O between two

successive frames. The fact that the data-frames are windowed before the

computation of the DFT is also schematically illustrated. (a) Sample signal

spectrum, (b) localisation results, hierarchical approach, (c) localisation

results, MaxChoice approach.

TABLE II. Parameters for the experimental evaluations.

fs DFT length Frame shift Window/ Likelihood

(kHz) (ms) (ms) length (ms) threshold !L

32 32 8 von Hann/32 0.7

FIG. 8. (Color online) Single active frequency, dominantly from BR. In

general, both the proposed approaches are in good agreement regarding the

localisation. The hierarchical approach makes multiple decisions at t ¼ 21.8 s,

as compared to the single decision of the MaxChoice approach. Further, the

hierarchical approach detects, but does not localise the harmonic in the three

time segments from 32.8 to 33.4 s. Such behaviour is examined further in Sec.

VI A. This recording was made as the car was moving along a ramp in a tun-

nel—thus under exceedingly reverberant conditions. (a) Sample signal spec-

trum, (b) localisation results, hierarchical approach, (c) localisation results,

MaxChoice approach.

J. Acoust. Soc. Am. 146 (6), December 2019 Madhu et al. 4905



decisions and �Z represents those segments where a squeal was

detected but no localisation decision was taken. Additionally

indicated is the number of soft decisions taken by the hierar-

chical approach (Zs). We see that the data contains 1290

instances of detected and 895 instances (under MaxChoice) of

localised squeal events. For any particular time frame and fre-

quency, we say we have detected a squeal event if at least one

array marks this frequency as active in the observed time

frame. The discrepancy in the number of detected and local-

ised events arises due to the following reasons:

C1: When the SNR is low, there are squeal events that are

detected only by the one or the other array, and therefore do

not contribute to the localisation result.

C2: In the hierarchical approach, given the zero upper

threshold value of the cost function values, some

frequencies where a squeal is present (i.e., detected by all

the arrays) may not be localised as the cost function

assumes positive values over the corresponding search

regions. Manual examination of such instances indicate that

in these cases the minimum of the cost function is shifted to

lie outside the demarcated search region. This could happen

due to temporary divergence of the direct path as, for exam-

ple, when turning the wheels. The hierarchical approach is

more sensitive to such misalignments as compared to the

MaxChoice approach due to the stronger influence of the

cost function in the decision chain in this case, as compared

FIG. 9. (Color online) Sample results for a more dynamic scenario. Multiple

brakes squeal simultaneously and at multiple frequencies. Again, in general,

both approaches are in good agreement. The period between t ¼ 35 s – t ¼ 39 s

is of interest. Two closely spaced traces are visible at f � 8 kHz. This is

treated by the hierarchical approach as a single band, which is then local-

ised to both FR and FL, and presented in the order FR, FL. The MaxChoice

approach, due to its constrained maximum bandwidth, localises each trace

independently, the lower to FL and the upper to FR. This explains the

apparent discrepancy between the approaches. Note that the end result of

localisation is essentially the same from both approaches. (a) Sample signal

spectrum, (b) localisation results, hierarchical approach, (c) localisation

results, MaxChoice approach.

FIG. 10. (Color online) Sample results for a multi-squeal scenario. Again,

both the proposed approaches detect the squeal as being from different

brakes and localise them correspondingly. Again, as in Fig. 9, the multiple

traces around around f � 8 kHz are analysed as a single band in the hierar-

chical approach, and localised to FR and FL, whereas the MaxChoice

approach localises each trace independently. Thus, while the graphical pre-

sentation may seem different, the end result of both approaches is essentially

the same. (a) Sample signal spectrum and noise floor estimate, (b) Local

SNR estimate.

TABLE III. Colour-coding for the different wheels.

FR FL BL BR
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to the binary decision propagation based on relative differ-

ences in the MaxChoice case.

C3: In very rare cases, the MaxChoice approach may also

fail to make a decision. This occurs when, for example, in

the first stage the squeal is localised to the front of the auto-

mobile, but array 2, responsible for the subsequent FL/FR

decision, does not detect the squeal at that frequency and

time frame.

Since C3 is very rare (based on manual examination of

the results), we take the MaxChoice approach as the baseline

and assume that the lack of decision here is principally due

to C1. As this condition must also hold for the hierarchical

approach, the difference in the Z and �Z values between the

two algorithms should indicate the frequency of occurrence

of C2, a drawback of the hierarchical approach. In this con-

text we see that the hierarchical approach fails to make a

decision in an additional 61 instances, as compared to the

MaxChoice approach.

2. Validity of the spectral disjointness assumption of
MaxChoice

We analyze here the soft decisions taken by the hierarchi-
cal approach, indicating the number of times multiple wheels

have been allocated to a specific event. This metric should

give us an idea of the validity of our assumption regarding the

temporal and spectral disjointness of the squeal signals origi-

nating from different brakes. We see from Table V, where ZðiÞ
indicates the number of instances where i wheels were local-

ised, that only in 27 cases was a soft decision taken, a percen-

tual amount of 3.4%, indicating the validity of our spectral

disjointness assumption for the MaxChoice approach.

Furthermore, we see that in 23 of these cases, one of the deci-

sions of the hierarchical approach correspond to the decision

taken by the MaxChoice approach. The four instances where

no agreement is reached with MaxChoice are engendered by

the occurrence of condition C3, which forces MaxChoice to a

“no-decision” state.

3. Agreement between the two approaches

This is presented in Table VI for two cases. In the first

case, we consider the instances where the squeal has been

detected by all arrays and therefore must be localised at least

by the MaxChoice approach. We measure, here, how often

both approaches localise such events to the same wheel. In

the second case, we consider the agreement between the

approaches when no decision is taken for the time segment.

The discrepancy between �Z and �Z agree is because of the rare

occurrence of C3 for the MaxChoice approach. In general,

we see a very good agreement between the two proposed

approaches.

4. Consistency of the results during disagreement

This criterion presents the temporal consistency of the

localisation results for the cases where both approaches are

not in agreement for a squeal event. In effect, we treat the

localisation result for a frame BðlÞ and frequency k as consis-
tent if the same wheel has been localised at frame Bðl61Þ,
for that same frequency (assuming, of course, that the squeal

event spans more than one time frame. Consistency in this

context cannot be defined for events lasting only one time

frame). We see from the presented results in Table VII that

the MaxChoice approach seems to be consistent for a larger

proportion of the cases where the results of the approaches

were different, for detected squeal events. Note, however,

that the consistency measure is heuristic in the absence of

ground truth, and it is difficult to ascertain if a consistent

result is indeed the true result. Therefore, these results

should be treated with some caution. Zdiv indicates the total

number of detected squeal events for which the two

approaches were not in agreement and Zconsistent indicates

the number of instances from Zdiv, where each approach is

consistent.

5. Comparison summary

Both approaches are capable of detecting and localising

closely spaced harmonics that originate from different

wheels. This is illustrated in Fig. 9, around frequencies of

7.9–8.1 kHz. Furthermore, both show a high degree of agree-

ment in the localisation performance, in general making the

same decision when the squeal component has a high SNR.

The time frames where the approaches diverge correspond

mainly to segments that contain the squeal only in a small

fraction of its total length, or where the SNR is low. In such

cases, the temporal consistency of the results obtained by

TABLE V. Performance comparison, hierarchical and MaxChoice—

Analysis of soft decisions by the hierarchical approach.

Zs Zð2Þ Zð3Þ Zð4Þ
Zagree

MaxChoice

27(3.4%) 25 1 1 23

TABLE VI. Performance comparison, hierarchical and MaxChoice—

agreement.

Zagree
�Z agree

(decision segments) (no decision segments)

800 (89.4%) 391 (99.0%)

TABLE IV. Performance comparison, hierarchical and MaxChoice—Detection

and localisation capability.

Z �Z Zs

Hier. 861 456 27

MaxCh. 895 395 N/A

TABLE VII. Performance comparison, hierarchical and MaxChoice—

Analysis during divergent behavior.

Zconsistent

Zdiv MaxChoice Hierarchical Neither

99 65 21 13
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MaxChoice is higher than that of the hierarchical approach.

We reiterate that in the absence of a ground-truth, such a

comparative evaluation cannot completely predict which

algorithm is the better choice. However, the MaxChoice

approach seems to be less sensitive to positioning errors and

errors in the propagation model, and might well prove to be

the better algorithm.

The hierarchical approach makes a soft decision in only

a small percentage of the cases. In all other cases, only a sin-

gle decision is made, leading us to conclude the validity of

the assumption that an active frequency stems from a single

source.

VII. SQUEAL DETECTION AND IDENTIFICATION OF
ACTIVE FREQUENCIES

As mentioned previously (Sec. III B), the hypothesis

testing is performed only on frequency bands where brake

squeal is detected. A robust detection of the squeal and the

identification of the active frequencies is, therefore, critical

for the proper functioning of the localisation stage. Since

brake squeal consists of narrowband harmonics, the signals

recorded by the microphones would consist of such harmon-

ics superimposed upon the (relatively stationary compared to

the squeal) broadband background noise. Thus, identifying

spectral components that “stick-out” of the background noise

would offer a good estimate of the active frequencies.

One way to do this would be to monitor the background

noise level using conventional algorithms based on long-

term statistics of the signal spectra (e.g., Gerkmann and

Hendriks 2011; Martin, 2001), and then to consider har-

monic peaks that are significantly higher than this noise

floor. This necessitates maintaining a record of the required

signal statistics and computing the a posteriori signal-

to-noise ratio (SNR) (Ephraim and Malah, 1984) at each fre-

quency and each time frame, to identify potentially active

frequencies. Thus detection of brake squeal and the identifi-

cation of the active frequencies are performed in a single

step. This approach has two drawbacks: (1) the computa-

tional cost associated with maintaining the noise floor

statistics and computing the active frequencies in each time-

frame and (2) the memory requirements associated with

maintaining records of the noise floor for computing the

statistics. Since brake squeal only occurs in a small fraction

of the observed time period, most of these computations are

superfluous. We therefore propose to decouple the problem

of detection and frequency identification: the first stage is

further broken down into its two constituent subtasks: (a) a
priori detection of squeal presence and (b) extraction of the

active frequencies, if part (a) detects a squeal.

For the initial decision regarding the presence of a

squeal in a signal segment it suffices to use a simpler, com-

putationally less expensive approach. If a squeal is detected

by this approach, the local SNR estimators need be run only

on that segment for extracting the active frequencies. The

algorithm used for the a priori detection of squeal presence

is described, for completeness, in Appendix B.

We reduce the computational and memory expense

further by computing the local SNRs without maintaining

noise statistics. For this, we exploit the observation that the

squeal harmonics are extremely narrowband. Hence, order
statistic methods lend themselves nicely to detecting these

harmonics. Specifically, for each segment where squeal has

been detected, we perform a median filtering across the

signal periodogram. This yields an estimate of the noise floor

for that time-segment, under the assumption that the noise

has a smooth spectral progression. This is a reasonable

assumption given that the noise is essentially road/tyre/

engine noise, predominant at the low frequencies. This

segment-wise noise floor estimate can be used to determine

the local SNRs and, by a proper selection of the threshold,

active frequency bins can be identified. This is illustrated in

Fig. 11. For further robustness, the detection of squeal and

computation of the active frequencies is done, for each array

on the basis of the aggregated amplitude data.

FIG. 11. (Color online) Illustration of the order-statistic method for local

SNR estimation and active squeal frequency identification. Note that this

approach is only carried out on signal segments where squeal is detected.

There is no requirement to maintain signal statistics or records of past seg-

ments for computing these statistics. (a) Sub-band containing environmental

noise only, (b) sub-band containing squeal.
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VIII. CONCLUSIONS

This contribution has presented the design of a new

localisation algorithm for the detection of brake-squeal.

Given the complex and time-varying acoustic environment

under the car and uncertainties in the knowledge of the

source and sensor positions, localising a squeal event to the

generator brakes is a challenging problem, where standard

localisation approaches fail. The proposed approach builds

upon the previous state-of-the-art, which treats the problem

as that of a multiple-hypothesis testing problem. Under the

simplifying assumptions of source disjointness, each

detected squeal event (within a narrow bandwidth) is allo-

cated to one brake. This is based on projections of the signals

onto their orthogonal component subspace, where the com-

putation of this component is designed to account for the

model uncertainties. For linear arrays, the computation of

the orthogonal component allows for a closed form solution.

Further, for most passenger vehicle dimensions, the design

of the blocking system is identical for each array, leading to

a simpler architecture. Both approaches perform well on the

test data. A comparison of the two approaches shows that

their performance is very similar highlighting, on the one

hand, the good choice of the heuristic and, on the other hand,

the validity of the simplifying assumptions of the second

approach. The MaxChoice approach, however, seems to pre-

sent more consistent results and is computationally simpler

and more versatile. More importantly, the detection

approach presented here is not constrained to the problem of

brake squeal localisation alone, but may be extended to other

applications too. The design of robust-blocking systems, for

example, may be applied to other problems where the propa-

gation environment is not ideally known, and errors in the

signal model need to be compensated for. This approach

may also be applied to the hypothesis testing for the presence

of coherent sources from a priori known spatial regions.

Usage of appropriate blocking systems would allow for the

independent testing of the presence or absence of source

activity in each region—with a resulting lower computa-

tional complexity.
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APPENDIX A: CLOSED-FORM SOLUTION FOR R

For a linear array and a blocking region demarcated in

terms of the azimuth as Rh ¼ ½h1; h2
, and under the assump-

tion of well calibrated arrays, the propagation vector from

the sources in this region to the array is defined as

Aðh; kÞ ¼ e�|d1Xk cos ðhÞ=c; …; e�|dMXk cos ðhÞ=c
� �T

; (A1)

with dm being measured with respect to the center of mass of

the array. The covariance matrix RðkÞ forRh is then

R kð Þ ¼
ðh2

h1

Aðh; kÞAHðh; kÞdh; (A2)

which may be evaluated numerically, as a closed form solution

to this is difficult. If we, however, make the simplifying

assumption that the sources lie on the surface of a sphere with

the array at the center and assume the blocking region to span

the surface of the sphere between the specified angles, we may

obtain a closed form solution (see, e.g., Elko, 2001) as

R kð Þ ¼
ð2p

0

ðh2

h1

Aðh;-; kÞAHðh;-; kÞ sin ðhÞdhd-

¼ 2p
ðh2

h1

Aðh; kÞAHðh; kÞ sin ðhÞdh; (A3)

with elements

Rmm0 kð Þ
2p

¼
ðcos ðh1Þ � cos ðh2ÞÞ; m ¼ m0

e|Xkdmm0 cos ðh1Þ=c � e|Xkdmm0 cos ðh2Þ=c

|Xkdmm0=c
; m 6¼ m0;

8><
>:

(A4)

where dmm0 ¼ dm � dm0 . Such a closed-form solution is also

reminiscent of Slepian sequences or discrete prolate spheroi-

dal sequences (Slepian, 1978), applied now to the context of

spatial beampattern design.

Further, it is easy to show that if the arrays are not well

calibrated in terms of amplitude, then the normalised steer-

ing vector may be reformulated as

Aðh; kÞ ¼ A1e�|d1Xk cos ðhÞ=c; …; AMe�|dMXk cos ðhÞ=c
� �T

;

(A5)

where each Am may be modelled by a suitable probability

density function with mean 1. In this case, the deterministic

covariance between two elements m and m0 is obtained by

the statistical expectation

Rdet
mm0 kð Þ ¼ E Rmm0 kð Þ

� �
: (A6)

Since this expectation is not a function of the source loca-

tion, it amounts to multiplying the results in Eq. (A2) by the

statistical expectation of the amplitude terms: EfAmAm0 g.
We can assume, further, these amplitude variations to be

independent of each other, simplifying the computation.

Under the assumption of a uniform distribution of the ampli-

tude about 16�, we see that the covariance matrix is unaf-

fected for small � after the expectation. On the other hand, if

the perturbations in the amplitude follow other distributions,

these can be factored in as well.

APPENDIX B: DETECTION OF BRAKE SQUEAL
PRESENCE

The brake-squeal events are narrowband, with most of

the spectral energy being concentrated in the squeal
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frequencies,2 giving rise to a rather well-structured spec-

trum in the presence of brake-squeal. The aim of the

detection stage is to form an a priori decision on the pres-

ence of a squeal event. The prerequisites for any such

approach are that it should be computationally not too

demanding and yet reasonably accurate. Fast model-order

estimation techniques (e.g., Cong et al., 2012), based on

the statistics of the eigenvectors of covariance matrices

could be a possibility. If we compute the covariance

matrix over small frequency bands, the presence of squeal

would manifest as a dominant eigenvalue. However, this

approach requires maintaining signal statistics. Further,

squeal events do not always occur for long time instants,

which leads to underestimation of the statistics. Hence, we

propose the use of modified information theoretic tools

(like entropy).

The entropy for a discrete source with an alphabet A
and an associated probability distribution function P is

defined as (Shannon and Weaver, 1949)

HðAÞ ¼ �
X
8a2A

Pa log2 Pað Þ: (B1)

It characterises the amount of disorder in the system: the

entropy is maximum if all the symbols in the alphabet are

equally probable and reduces as the probability distribution

becomes more “peaked.”

Now, consider small sub-bands of frequencies in the

discrete Fourier spectrum of a signal. Let the length of each

sub-band be K0. If a sub-band contains a harmonic signal,

the power spectrum would be peaked at this frequency.

Alternatively, if the sub-band contained only environmental

noise, the distribution of power would be more or less equal

along all the discrete frequency bins of that band. Similar to

Renevey and Drygajlo (2001), let us define a pseudo proba-

bility distribution function along the bins k of a sub-band

L as

Pk;L ¼
jX Lð ÞðkÞj2XK0

k¼1

jX Lð ÞðkÞj2
; (B2)

where XðLÞðkÞ ¼ Xðk þ ðL � 1ÞK0Þ represents the DFT coef-

ficient of bin k in sub-band L. Such a distribution function is

shown in Fig. 12.

It may be seen from Fig. 12 that the distribution defined

in Eq. (B2) is a faithful representation of the underlying spec-

tral structure. This “entropy” can then be calculated using

Eqs. (B1) and (B2) and used to predict squeal presence for a

fixed detection threshold !apriori. Note that setting the detec-

tion threshold !apriori involves a trade-off between sensitivity

to events at lower power and the generation of too many false

alarms and depends upon the requirements of the application.

If this approach detects a squeal in a signal segment, that seg-

ment is analysed in more detail and the squeal frequencies

are extracted using more sophisticated algorithms.

APPENDIX C: DESCRIPTION OF HARDWARE USED

The 32-channel array with microphones and pre-

amplifiers was custom-made. The microphones were Knowles

FG-6163-P07 analog electret microphones with an omnidirec-

tional characteristic and a 6 dB per octave sloping frequency

response for the suppression of low frequency components at

the electro-acoustic interface. Frequency response of the cap-

sules is flat above 2 kHz.

The microphones were connected to Funk

Tonstudiotechnik Type SOA-2V2 (Funk-Tonstudiotechnik,

2019) pre-amps with symmetric outputs.

For the A/D conversion and transmission to the com-

puter, we used the hardware based on the NIST Mark III

design (NIST, 2019).

A picture of the array and the casing of the data acquisi-

tion system is presented in Fig. 13 to allow the reader to get a

better idea of the structure of the array and the compactness

FIG. 12. (Color online) Probability distribution functions for cases where only noise is present (a) and where the sub-band contains an active frequency (b).

Note the ‘peakiness’ of the second plot with respect to the almost flat curve of the first.
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of the data acquisition setup. Further, to enable usage in a

mobile environment, the recording setup could be hooked up

to a 12 V auto battery.

1The presence of a squeal event precludes the null hypothesis that no brakes

were active.
2The lower frequencies containing motor noise are neglected in our

considerations.
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