1,968 research outputs found

    The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

    Full text link
    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.Comment: Accepted to CVPR 2018; Code and data available at https://www.github.com/richzhang/PerceptualSimilarit

    Galaxy shape measurement with convolutional neural networks

    Get PDF
    We present our results from training and evaluating a convolutional neural network (CNN) to predict galaxy shapes from wide-field survey images of the first data release of the Dark Energy Survey (DES DR1). We use conventional shape measurements as ground truth from an overlapping, deeper survey with less sky coverage, the Canada-France Hawaii Telescope Lensing Survey (CFHTLenS). We demonstrate that CNN predictions from single band DES images reproduce the results of CFHTLenS at bright magnitudes and show higher correlation with CFHTLenS at fainter magnitudes than maximum likelihood model fitting estimates in the DES Y1 im3shape catalogue. Prediction of shape parameters with a CNN is also extremely fast, it takes only 0.2 milliseconds per galaxy, improving more than 4 orders of magnitudes over forward model fitting. The CNN can also accurately predict shapes when using multiple images of the same galaxy, even in different color bands, with no additional computational overhead. The CNN is again more precise for faint objects, and the advantage of the CNN is more pronounced for blue galaxies than red ones when compared to the DES Y1 metacalibration catalogue, which fits a single Gaussian profile using riz band images. We demonstrate that CNN shape predictions within the metacalibration self-calibrating framework yield shear estimates with negligible multiplicative bias, m<10−3 m < 10^{-3}, and no significant PSF leakage. Our proposed setup is applicable to current and next generation weak lensing surveys where higher quality ground truth shapes can be measured in dedicated deep fields

    Pushing the Boundaries of Boundary Detection using Deep Learning

    Get PDF
    In this work we show that adapting Deep Convolutional Neural Network training to the task of boundary detection can result in substantial improvements over the current state-of-the-art in boundary detection. Our contributions consist firstly in combining a careful design of the loss for boundary detection training, a multi-resolution architecture and training with external data to improve the detection accuracy of the current state of the art. When measured on the standard Berkeley Segmentation Dataset, we improve theoptimal dataset scale F-measure from 0.780 to 0.808 - while human performance is at 0.803. We further improve performance to 0.813 by combining deep learning with grouping, integrating the Normalized Cuts technique within a deep network. We also examine the potential of our boundary detector in conjunction with the task of semantic segmentation and demonstrate clear improvements over state-of-the-art systems. Our detector is fully integrated in the popular Caffe framework and processes a 320x420 image in less than a second.Comment: The previous version reported large improvements w.r.t. the LPO region proposal baseline, which turned out to be due to a wrong computation for the baseline. The improvements are currently less important, and are omitted. We are sorry if the reported results caused any confusion. We have also integrated reviewer feedback regarding human performance on the BSD benchmar

    Stochastic Sampling Simulation for Pedestrian Trajectory Prediction

    Full text link
    Urban environments pose a significant challenge for autonomous vehicles (AVs) as they must safely navigate while in close proximity to many pedestrians. It is crucial for the AV to correctly understand and predict the future trajectories of pedestrians to avoid collision and plan a safe path. Deep neural networks (DNNs) have shown promising results in accurately predicting pedestrian trajectories, relying on large amounts of annotated real-world data to learn pedestrian behavior. However, collecting and annotating these large real-world pedestrian datasets is costly in both time and labor. This paper describes a novel method using a stochastic sampling-based simulation to train DNNs for pedestrian trajectory prediction with social interaction. Our novel simulation method can generate vast amounts of automatically-annotated, realistic, and naturalistic synthetic pedestrian trajectories based on small amounts of real annotation. We then use such synthetic trajectories to train an off-the-shelf state-of-the-art deep learning approach Social GAN (Generative Adversarial Network) to perform pedestrian trajectory prediction. Our proposed architecture, trained only using synthetic trajectories, achieves better prediction results compared to those trained on human-annotated real-world data using the same network. Our work demonstrates the effectiveness and potential of using simulation as a substitution for human annotation efforts to train high-performing prediction algorithms such as the DNNs.Comment: 8 pages, 6 figures and 2 table

    Stochastic Sampling Simulation for Pedestrian Trajectory Prediction

    Get PDF
    Urban environments pose a significant challenge for autonomous vehicles (AVs) as they must safely navigate while in close proximity to many pedestrians. It is crucial for the AV to correctly understand and predict the future trajectories of pedestrians to avoid collision and plan a safe path. Deep neural networks (DNNs) have shown promising results in accurately predicting pedestrian trajectories, relying on large amounts of annotated real-world data to learn pedestrian behavior. However, collecting and annotating these large real-world pedestrian datasets is costly in both time and labor. This paper describes a novel method using a stochastic sampling-based simulation to train DNNs for pedestrian trajectory prediction with social interaction. Our novel simulation method can generate vast amounts of automatically-annotated, realistic, and naturalistic synthetic pedestrian trajectories based on small amounts of real annotation. We then use such synthetic trajectories to train an off-the-shelf state-of-the-art deep learning approach Social GAN (Generative Adversarial Network) to perform pedestrian trajectory prediction. Our proposed architecture, trained only using synthetic trajectories, achieves better prediction results compared to those trained on human-annotated real-world data using the same network. Our work demonstrates the effectiveness and potential of using simulation as a substitution for human annotation efforts to train high-performing prediction algorithms such as the DNNs.Comment: 8 pages, 6 figures and 2 table
    • …
    corecore