288 research outputs found

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Plenoptic Signal Processing for Robust Vision in Field Robotics

    Get PDF
    This thesis proposes the use of plenoptic cameras for improving the robustness and simplicity of machine vision in field robotics applications. Dust, rain, fog, snow, murky water and insufficient light can cause even the most sophisticated vision systems to fail. Plenoptic cameras offer an appealing alternative to conventional imagery by gathering significantly more light over a wider depth of field, and capturing a rich 4D light field structure that encodes textural and geometric information. The key contributions of this work lie in exploring the properties of plenoptic signals and developing algorithms for exploiting them. It lays the groundwork for the deployment of plenoptic cameras in field robotics by establishing a decoding, calibration and rectification scheme appropriate to compact, lenslet-based devices. Next, the frequency-domain shape of plenoptic signals is elaborated and exploited by constructing a filter which focuses over a wide depth of field rather than at a single depth. This filter is shown to reject noise, improving contrast in low light and through attenuating media, while mitigating occluders such as snow, rain and underwater particulate matter. Next, a closed-form generalization of optical flow is presented which directly estimates camera motion from first-order derivatives. An elegant adaptation of this "plenoptic flow" to lenslet-based imagery is demonstrated, as well as a simple, additive method for rendering novel views. Finally, the isolation of dynamic elements from a static background is considered, a task complicated by the non-uniform apparent motion caused by a mobile camera. Two elegant closed-form solutions are presented dealing with monocular time-series and light field image pairs. This work emphasizes non-iterative, noise-tolerant, closed-form, linear methods with predictable and constant runtimes, making them suitable for real-time embedded implementation in field robotics applications

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Scalable multi-view stereo camera array for real world real-time image capture and three-dimensional displays

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2004.Includes bibliographical references (leaves 71-75).The number of three-dimensional displays available is escalating and yet the capturing devices for multiple view content are focused on either single camera precision rigs that are limited to stationary objects or the use of synthetically created animations. In this work we will use the existence of inexpensive digital CMOS cameras to explore a multi- image capture paradigm and the gathering of real world real-time data of active and static scenes. The capturing system can be developed and employed for a wide range of applications such as portrait-based images for multi-view facial recognition systems, hypostereo surgical training systems, and stereo surveillance by unmanned aerial vehicles. The system will be adaptable to capturing the correct stereo views based on the environmental scene and the desired three-dimensional display. Several issues explored by the system will include image calibration, geometric correction, the possibility of object tracking, and transfer of the array technology into other image capturing systems. These features provide the user more freedom to interact with their specific 3-D content while allowing the computer to take on the difficult role of stereoscopic cinematographer.Samuel L. Hill.S.M

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Towards markerless orthopaedic navigation with intuitive Optical See-through Head-mounted displays

    Get PDF
    The potential of image-guided orthopaedic navigation to improve surgical outcomes has been well-recognised during the last two decades. According to the tracked pose of target bone, the anatomical information and preoperative plans are updated and displayed to surgeons, so that they can follow the guidance to reach the goal with higher accuracy, efficiency and reproducibility. Despite their success, current orthopaedic navigation systems have two main limitations: for target tracking, artificial markers have to be drilled into the bone and calibrated manually to the bone, which introduces the risk of additional harm to patients and increases operating complexity; for guidance visualisation, surgeons have to shift their attention from the patient to an external 2D monitor, which is disruptive and can be mentally stressful. Motivated by these limitations, this thesis explores the development of an intuitive, compact and reliable navigation system for orthopaedic surgery. To this end, conventional marker-based tracking is replaced by a novel markerless tracking algorithm, and the 2D display is replaced by a 3D holographic Optical see-through (OST) Head-mounted display (HMD) precisely calibrated to a user's perspective. Our markerless tracking, facilitated by a commercial RGBD camera, is achieved through deep learning-based bone segmentation followed by real-time pose registration. For robust segmentation, a new network is designed and efficiently augmented by a synthetic dataset. Our segmentation network outperforms the state-of-the-art regarding occlusion-robustness, device-agnostic behaviour, and target generalisability. For reliable pose registration, a novel Bounded Iterative Closest Point (BICP) workflow is proposed. The improved markerless tracking can achieve a clinically acceptable error of 0.95 deg and 2.17 mm according to a phantom test. OST displays allow ubiquitous enrichment of perceived real world with contextually blended virtual aids through semi-transparent glasses. They have been recognised as a suitable visual tool for surgical assistance, since they do not hinder the surgeon's natural eyesight and require no attention shift or perspective conversion. The OST calibration is crucial to ensure locational-coherent surgical guidance. Current calibration methods are either human error-prone or hardly applicable to commercial devices. To this end, we propose an offline camera-based calibration method that is highly accurate yet easy to implement in commercial products, and an online alignment-based refinement that is user-centric and robust against user error. The proposed methods are proven to be superior to other similar State-of- the-art (SOTA)s regarding calibration convenience and display accuracy. Motivated by the ambition to develop the world's first markerless OST navigation system, we integrated the developed markerless tracking and calibration scheme into a complete navigation workflow designed for femur drilling tasks during knee replacement surgery. We verify the usability of our designed OST system with an experienced orthopaedic surgeon by a cadaver study. Our test validates the potential of the proposed markerless navigation system for surgical assistance, although further improvement is required for clinical acceptance.Open Acces

    Haptic holography : an early computational plastic

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.Includes bibliographical references (p. 135-148).This dissertation introduces haptic holography, a combination of computational modeling and multimodal spatial display, as an early computationalplastic In this work, we combine various holographic displays with a force feedback device to image free-standing material surfaces with programmatically prescribed behavior. We present three implementations, Touch, Lathe, and Poke, each named for the primitive functional affordance it offers. In Touch, we present static holographic images of simple geometry, reconstructed in front of the hologram plane (in the viewer's space), and precisely co-located with a force model of the same geometry. These images can be visually inspected and haptically explored using a hand-held interface. In Lathe, we again display holo-haptic images of simple geometry, this time allowing those images to be reshaped by haptic interaction in a dynamic but constrained manner. Finally in Poke, we present a holo-haptic image that permits arbitrary reshaping of its reconstructed surface. As supporting technology, we offer a new technique for incrementally computing and locally updating interference-modeled holographic fringe patterns. This technique permits electronic holograms to be updated arbitrarily and interactively, marking a long-held goal in display holography. As a broader contribution, we offer a new behavior-based spatial framework, based on both perception and action, for informing the design of spatial interactive systems.Wendy J. Plesniak.Ph.D

    Guest Orientation, Assistance, and Telepresence Robot

    Get PDF
    The project was focused on a mobile research platform for autonomous navigation components and sensors vital to its autonomous interaction with its environment. The goal of this project was to create such a mobile robotic platform, which would in turn be capable of acting as a fully autonomous tour guide for the WPI campus. The project combined the robust capabilities of a Segway Robotic Mobility Platform with the cutting edge adaptability of the Robot Operating System software framework. The robot will work in conjunction with school staff to provide video tour information as part of an enhanced tour experience. The project is a highly visible representation of WPI\u27s unique MQP program and its ability to prepare engineers capable of solving real world problems

    Absolute depth using low-cost light field cameras

    Get PDF
    Digital cameras are increasingly used for measurement tasks within engineering scenarios, often being part of metrology platforms. Existing cameras are well equipped to provide 2D information about the fields of view (FOV) they observe, the objects within the FOV, and the accompanying environments. But for some applications these 2D results are not sufficient, specifically applications that require Z dimensional data (depth data) along with the X and Y dimensional data. New designs of camera systems have previously been developed by integrating multiple cameras to provide 3D data, ranging from 2 camera photogrammetry to multiple camera stereo systems. Many earlier attempts to record 3D data on 2D sensors have been completed, and likewise many research groups around the world are currently working on camera technology but from different perspectives; computer vision, algorithm development, metrology, etc. Plenoptic or Lightfield camera technology was defined as a technique over 100 years ago but has remained dormant as a potential metrology instrument. Lightfield cameras utilize an additional Micro Lens Array (MLA) in front of the imaging sensor, to create multiple viewpoints of the same scene and allow encoding of depth information. A small number of companies have explored the potential of lightfield cameras, but in the majority, these have been aimed at domestic consumer photography, only ever recording scenes as relative scale greyscale images. This research considers the potential for lightfield cameras to be used for world scene metrology applications, specifically to record absolute coordinate data. Specific interest has been paid to a range of low cost lightfield cameras to; understand the functional/behavioural characteristics of the optics, identify potential need for optical and/or algorithm development, define sensitivity, repeatability and accuracy characteristics and limiting thresholds of use, and allow quantified 3D absolute scale coordinate data to be extracted from the images. The novel output of this work is; an analysis of lightfield camera system sensitivity leading to the definition of Active Zones (linear data generation good data) and In-active Zones (non-linear data generation poor data), development of bespoke calibration algorithms that remove radial/tangential distortion from the data captured using any MLA based camera, and, a light field camera independent algorithm that allows the delivery of 3D coordinate data in absolute units within a well-defined measurable range from a given camera
    corecore