2,649 research outputs found

    Second-Order Self-Consistent-Field Density-Matrix Renormalization Group

    Full text link
    We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based on a direct minimization of an energy expression which is correct to second-order with respect to changes in the molecular orbital basis. We exploit a simultaneous optimization of the MPS wave function and molecular orbitals in order to achieve quadratic convergence. In contrast to previously reported (augmented Hessian) Newton-Raphson and super-configuration-interaction algorithms for DMRG-SCF, energy convergence beyond a quadratic scaling is possible in our ansatz. Discarding the set of redundant active-active orbital rotations, the DMRG-SCF energy converges typically within two to four cycles of the self-consistent procedureComment: 40 pages, 5 figures, 3 table

    Ab Initio and Semi-Empirical Calculations of Cyanoligated Rhodium Dimer Complexs

    Get PDF
    Molecular modeling, using both ab initio and semi-empirical methods has been undertaken for a series of dirhodium complexes in order to improve the understanding of the nature of the chemical bonding in this class of homogeneous catalysts. These complexes, with carboxylamidate and carboxylate ligands, are extremely functional metal catalysts used in the synthesis of pharmaceuticals and agrochemicals. The X-ray crystallography shows anomalies in the bond angles that have potential impact on understanding the catalysis. To resolve these issues, minimum energy structures of several examples (e.g. Rh2(NHCOCH3)4, Rh2(NHCOCH3)4NC, Rh2(CO2CH3)4, Rh2(CO2CH3)4NC, Rh2(CHO2)4, and Rh2(CHO2)4NC) were calculated using Hatree-Fock and Density Functional Theory/B3LYP with the LANL2DZ ECP (Rh), and cc-pVDZ (all other atoms) basis sets

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes

    Progress in Time-Dependent Density-Functional Theory

    Full text link
    The classic density-functional theory (DFT) formalism introduced by Hohenberg, Kohn, and Sham in the mid-1960s, is based upon the idea that the complicated N-electron wavefunction can be replaced with the mathematically simpler 1-electron charge density in electronic struc- ture calculations of the ground stationary state. As such, ordinary DFT is neither able to treat time-dependent (TD) problems nor describe excited electronic states. In 1984, Runge and Gross proved a theorem making TD-DFT formally exact. Information about electronic excited states may be obtained from this theory through the linear response (LR) theory formalism. Begin- ning in the mid-1990s, LR-TD-DFT became increasingly popular for calculating absorption and other spectra of medium- and large-sized molecules. Its ease of use and relatively good accuracy has now brought LR-TD-DFT to the forefront for this type of application. As the number and the diversity of applications of TD-DFT has grown, so too has grown our understanding of the strengths and weaknesses of the approximate functionals commonly used for TD-DFT. The objective of this article is to continue where a previous review of TD-DFT in this series [Annu. Rev. Phys. Chem. 55: 427 (2004)] left off and highlight some of the problems and solutions from the point of view of applied physical chemistry. Since doubly-excited states have a particularly important role to play in bond dissociation and formation in both thermal and photochemistry, particular emphasis will be placed upon the problem of going beyond or around the TD-DFT adiabatic approximation which limits TD-DFT calculations to nominally singly-excited states. Posted with permission from the Annual Review of Physical Chemistry, Volume 63 \c{opyright} 2012 by Annual Reviews, http://www.annualreviews.org

    Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime

    Full text link
    Over the course of the past few decades, the field of computational chemistry has managed to manifest itself as a key complement to more traditional lab-oriented chemistry. This is particularly true in the wake of the recent renaissance of full configuration interaction (FCI)-level methodologies, albeit only if these can prove themselves sufficiently robust and versatile to be routinely applied to a variety of chemical problems of interest. In the present series of works, performance and feature enhancements of one such avenue towards FCI-level results for medium to large one-electron basis sets, the recently introduced many-body expanded full configuration interaction (MBE-FCI) formalism [J. Phys. Chem. Lett., 8, 4633 (2017)], will be presented. Specifically, in this opening part of the series, the capabilities of the MBE-FCI method in producing near-exact ground state energies for weakly correlated molecules of any spin multiplicity will be demonstrated.Comment: 38 pages, 7 tables, 3 figures, 1 SI attached as an ancillary fil

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Theoretical Comparison of the Excited Electronic States of the Linear Uranyl (UO\u3csub\u3e2\u3c/sub\u3e\u3csup\u3e2+\u3c/sup\u3e) and Tetrahedral Uranate (UO\u3csub\u3e4\u3c/sub\u3e\u3csup\u3e2-\u3c/sup\u3e) Ions Using Relativistic Computational Methods

    Get PDF
    This thesis examines the ground and excited electronic states of the uranyl (UO2+) and uranate (UO42-) ions using Hartree-Fock self-consistent field (HF SCF), multi-configuration self-consistent field (MCSCF) and multi-reference single and double excitation configuration interaction (MR- CISD) methods. The MR-CISD SD calculation included spin-orbit operators. Molecular geometries were obtained from self-consistent field (SCF ) second-order perturbation theory (MP2), and density functional theory (DFT) geometry optimizations using the NWChem 4.01 massively parallel ab initio software package. COLUMBUS version 5.8 was used to perform in-depth analysis on the HF SCF MCSCF and MR-CISD potential energy surfaces. Excited state calculations for the uranyl ion were performed using both a large- and small-core relativistic effective core potential (RECP) in order to calibrate the method. This calibration included comparison to previous theoretical and experimental work on the uranyl ion. Uranate excited states were performed using the small-core RECP as well as the methodology developed using the uranyl ion

    Software for the frontiers of quantum chemistry : An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.Peer reviewe

    Phonons and related properties of extended systems from density-functional perturbation theory

    Full text link
    This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudo-potential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long wave-length vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
    • …
    corecore