14,381 research outputs found

    G protein-coupled receptor signalling in astrocytes in health and disease: A focus on metabotropic glutamate receptors

    Get PDF
    Work published over the past 10–15 years has caused the neuroscience community to engage in a process of constant re-evaluation of the roles of glial cells in the mammalian central nervous system. Recent emerging evidence suggests that, in addition to carrying out various homeostatic functions within the CNS, astrocytes can also engage in a two-way dialogue with neurons. Astrocytes possess many of the receptors, and some of the ion channels, present in neurons endowing them with an ability to sense and respond to an array of neuronal signals. In addition, an expanding number of small molecules and proteins have been shown to be released by astrocytes in both health and disease. In this commentary we will highlight advances in our understanding of G protein-coupled receptor signalling in astrocytes, with a particular emphasis on metabotropic glutamate (mGlu) receptors. Discussion will focus on the major mGlu receptors expressed in astrocytes, mGlu3 and mGlu5, how these receptors can influence different aspects of astrocyte physiology, and how signalling by these G protein-coupled receptors might change under pathophysiological circumstances

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Coexistence of amplitude and frequency modulations in intracellular calcium dynamics

    Full text link
    The complex dynamics of intracellular calcium regulates cellular responses to information encoded in extracellular signals. Here, we study the encoding of these external signals in the context of the Li-Rinzel model. We show that by control of biophysical parameters the information can be encoded in amplitude modulation, frequency modulation or mixed (AM and FM) modulation. We briefly discuss the possible implications of this new role of information encoding for astrocytes.Comment: 4 pages, 4 figure

    Computational Astrocyence: Astrocytes encode inhibitory activity into the frequency and spatial extent of their calcium elevations

    Full text link
    Deciphering the complex interactions between neurotransmission and astrocytic Ca2+Ca^{2+} elevations is a target promising a comprehensive understanding of brain function. While the astrocytic response to excitatory synaptic activity has been extensively studied, how inhibitory activity results to intracellular Ca2+Ca^{2+} waves remains elusive. In this study, we developed a compartmental astrocytic model that exhibits distinct levels of responsiveness to inhibitory activity. Our model suggested that the astrocytic coverage of inhibitory terminals defines the spatial and temporal scale of their Ca2+Ca^{2+} elevations. Understanding the interplay between the synaptic pathways and the astrocytic responses will help us identify how astrocytes work independently and cooperatively with neurons, in health and disease.Comment: 4 pages, 3 figures, IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI '19

    Activity-dependent release of Adenosine: a critical re-evaluation of mechanism

    Get PDF
    Adenosine is perhaps the most important and universal modulator in the brain. The current consensus is that it is primarily produced in the extracellular space from the breakdown of previously released ATP. It is also accepted that it can be released directly, as adenosine, during pathological events primarily by equilibrative transport. Nevertheless, there is a growing realization that adenosine can be rapidly released from the nervous system in a manner that is dependent upon the activity of neurons. We consider three competing classes of mechanism that could explain neuronal activity dependent adenosine release (exocytosis of ATP followed by extracellular conversion to adenosine; exocytotic release of an unspecified transmitter followed by direct non-exocytotic adenosine release from an interposed cell; and direct exocytotic release of adenosine) and outline discriminatory experimental tests to decide between them. We review several examples of activity dependent adenosine release and explore their underlying mechanisms where these are known. We discuss the limits of current experimental techniques in definitively discriminating between the competing models of release, and identify key areas where technologies need to advance to enable definitive discriminatory tests. Nevertheless, within the current limits, we conclude that there is evidence for a mechanism that strongly resembles direct exocytosis of adenosine underlying at least some examples of neuronal activity dependent adenosine release

    Astrocytes: Orchestrating synaptic plasticity?

    Get PDF
    Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its constituting mechanisms is of crucial importance in many aspects of normal and pathological brain function. In particular, a prominent aspect that remains debated is how the plasticity mechanisms, that encompass a broad spectrum of temporal and spatial scales, come to play together in a concerted fashion. Here we review and discuss evidence that pinpoints to a possible non-neuronal, glial candidate for such orchestration: the regulation of synaptic plasticity by astrocytes
    corecore