191 research outputs found

    Caching and D2D sharing for content delivery in software-defined UAV networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In cases of catastrophic events such as natural disasters or physical calamities, current network infrastructure can become inoperative. Furthermore, there are transient events leading to excessive demand surges where it is needed to deploy additional network capacity on-demand. In such cases, rapid network deployments become vital to establish communications and enable networked services. Unmanned Aerial Vehicle (UAV) networks are good candidates for this kind of operation. Software-defined networking and content-centric operation are promising technologies to enable agile control, network visibility and efficient content delivery via centralized optimization in these challenged systems. In this work, we consider an edge network which is composed of UAVs and serves in a content-centric mode with in-network caching and device-to-device (D2D) transmissions. We develop a cache placement and selection scheme for energy efficient operation. We also investigate how such a system performs under different operating conditions

    Joint Optimization of Caching Placement and Trajectory for UAV-D2D Networks

    Get PDF
    With the exponential growth of data traffic in wireless networks, edge caching has been regarded as a promising solution to offload data traffic and alleviate backhaul congestion, where the contents can be cached by an unmanned aerial vehicle (UAV) and user terminal (UT) with local data storage. In this article, a cooperative caching architecture of UAV and UTs with scalable video coding (SVC) is proposed, which provides the high transmission rate content delivery and personalized video viewing qualities in hotspot areas. In the proposed cache-enabling UAV-D2D networks, we formulate a joint optimization problem of UT caching placement, UAV trajectory, and UAV caching placement to maximize the cache utility. To solve this challenging mixed integer nonlinear programming problem, the optimization problem is decomposed into three sub-problems. Specifically, we obtain UT caching placement by a many-to-many swap matching algorithm, then obtain the UAV trajectory and UAV caching placement by approximate convex optimization and dynamic programming, respectively. Finally, we propose a low complexity iterative algorithm for the formulated optimization problem to improve the system capacity, fully utilize the cache space resource, and provide diverse delivery qualities for video traffic. Simulation results reveal that: i) the proposed cooperative caching architecture of UAV and UTs obtains larger cache utility than the cache-enabling UAV networks with same data storage capacity and radio resource; ii) compared with the benchmark algorithms, the proposed algorithm improves cache utility and reduces backhaul offloading ratio effectively

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    Transceiver design and multi-hop D2D for UAV IoT coverage in disasters

    Get PDF
    When natural disasters strike, the coverage for Internet of Things (IoT) may be severely destroyed, due to the damaged communications infrastructure. Unmanned aerial vehicles (UAVs) can be exploited as flying base stations to provide emergency coverage for IoT, due to its mobility and flexibility. In this paper, we propose multi-antenna transceiver design and multi-hop device-to-device (D2D) communication to guarantee the reliable transmission and extend the UAV coverage for IoT in disasters. Firstly, multi-hop D2D links are established to extend the coverage of UAV emergency networks due to the constrained transmit power of the UAV. In particular, a shortest-path-routing algorithm is proposed to establish the D2D links rapidly with minimum nodes. The closed-form solutions for the number of hops and the outage probability are derived for the uplink and downlink. Secondly, the transceiver designs for the UAV uplink and downlink are studied to optimize the performance of UAV transmission. Due to the non-convexity of the problem, they are first transformed into convex ones and then, low-complexity algorithms are proposed to solve them efficiently. Simulation results show the performance improvement in the throughput and outage probability by the proposed schemes for UAV wireless coverage of IoT in disasters

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    corecore