824 research outputs found

    CFTP: a caching FTP server

    Get PDF
    By analyzing the log files generated by the UK National Web Cache and by a number of origin FTP sites we provide evidence that an FTP proxy cache with knowledge of local (national) mirror sites could significantly reduce the amount of data that needs to be transferred across already overused networks. We then describe the design and implementation of CFTP, a caching FTP server, and report on its usage over the first 10 months of its deployment. Finally we discuss a number of ways in which the software could be further enhanced to improve both its efficiency and its usability

    A Community-based Cloud Computing Caching Service

    Get PDF
    Caching has become an important technology in the development of cloud computing-based high-performance web services. Caches reduce the request to response latency experienced by users, and reduce workload on backend databases. They need a high cache-hit rate to be fit for purpose, and this rate is dependent on the cache management policy used. Existing cache management policies are not designed to prevent cache pollution or cache monopoly problems, which impacts negatively on the cache-hit rate. This paper proposes a community-based caching approach (CC) to address these two problems. CC was evaluated for performance against thirteen commercially available cache management policies, and results demonstrate that the cache-hit rate achieved by CC was between 0.7% and 55% better than the alternate cache management policies

    Intelligent Cooperative Adaptive Weight Ranking Policy via dynamic aging based on NB and J48 classifiers

    Get PDF
    The increased usage of World Wide Web leads to increase in network traffic and create a bottleneck over the internet performance.  For most people, the accessing speed or the response time is the most critical factor when using the internet. Reducing response time was done by using web proxy cache technique that storing a copy of pages between client and server sides. If requested pages are cached in the proxy, there is no need to access the server. But, the cache size is limited, so cache replacement algorithms are used to remove pages from the cache when it is full. On the other hand, the conventional algorithms for replacement such as Least Recently Use (LRU), First in First Out (FIFO), Least Frequently Use (LFU), Randomised Policy, etc. may discard essential pages just before use. Furthermore, using conventional algorithms cannot be well optimized since it requires some decision to evict intelligently before a page is replaced. Hence, this paper proposes an integration of Adaptive Weight Ranking Policy (AWRP) with intelligent classifiers (NB-AWRP-DA and J48-AWRP-DA) via dynamic aging factor.  To enhance classifiers power of prediction before integrating them with AWRP, particle swarm optimization (PSO) automated wrapper feature selection methods are used to choose the best subset of features that are relevant and influence classifiers prediction accuracy.   Experimental Result shows that NB-AWRP-DA enhances the performance of web proxy cache across multi proxy datasets by 4.008%,4.087% and 14.022% over LRU, LFU, and FIFO while, J48-AWRP-DA increases HR by 0.483%, 0.563% and 10.497% over LRU, LFU, and FIFO respectively.  Meanwhile, BHR of NB-AWRP-DA rises by 0.9911%,1.008% and 11.5842% over LRU, LFU, and FIFO respectively while 0.0204%, 0.0379% and 10.6136 for LRU, LFU, FIFO respectively using J48-AWRP-DA

    Performance Analysis of Local Caching Replacement Policies for Internet Video Streaming Services

    Get PDF

    Web Proxy Cache Replacement Policies Using Decision Tree (DT) Machine Learning Technique for Enhanced Performance of Web Proxy

    Get PDF
    Web cache is a mechanism for the temporary storage (caching) of web documents, such as HTML pages and images, to reduce bandwidth usage, server load, and perceived lag. A web cache stores the copies of documents passing through it and any subsequent requests may be satisfied from the cache if certain conditions are met. In this paper, Decision Tree (DT ) a machine learning technique has been used to increase the performance of traditional Web proxy caching policies such as SIZE, and Hybrid. Decision Tree (DT) is used and integrated with traditional Web proxy caching techniques to form better caching approaches known as DT - SIZE and DT - Hybrid. The proposed approaches are evaluated by trace - driven simulation and compared with traditional Web proxy caching techniques. Experimental results have revealed that the proposed DT - SIZE and DT - Hybrid significantly increased Pure Hit - Ratio, Byte Hit - Ratio and reduced the latency when compared with SIZE and Hybrid

    Implementation of Cache Attack on Real Information Centric Networking System

    Get PDF
    Network security is an ongoing major problem in today’s Internet world. Even though there have been simulation studies related to denial of service and cache attacks, studies of attacks on real networks are still lacking in the research. In this thesis, the effects of cache attacks in real information-centric networking systems were investigated. Cache attacks were implemented in real networks with different cache sizes and with Least Recently Used, Random and First In First Out algorithms to fill the caches in each node. The attacker hits the cache with unpopular content, making the user request that the results be fetched from web servers. The cache hit, time taken to get the result, and number of hops to serve the request were calculated with real network traffic. The results of the implementation are provided for different topologies and are compared with the simulation results
    • …
    corecore