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Abstract

In this paper we study and analyze the influence of caching stategies on the performance of
WWW proxies. We propose a new strategy called class-based LRU that works recency-
based as well as size-based, with the ultimate aim to obtain a well-balanced mixture between
large and small documents in the cache, and hence, good performance for both small and
large object requests. We show that for class-based LRU good results are obtained for both
the hit rate and the byte hit rate, if the size of the classes and the corresponding document
size ranges are well choosen. The latter is achieved by using a Bayesian decision rule and a
characterisation of the requested object-size distribution using the EM-algorithm. Further-
more, the overhead to implement class-based LRU is comparable to that of LRU and does
not depend on the number of cached objects.

1 Introduction

Today, the largest share of traffic in the internet originates from WWW requests. The increasing
use of WWW-based services has not only led to high frequented web servers but also to heavy-used
components of the internet. Fortunately, it is well known that there are popular and frequently
requested sites, so that object caching can be employed to reduce the internet network traffic [3]
and to decrease the perceived response times.

Web caching has some special properties that make it an interesting and new reseach area,
separate from traditional approaches towards caching: (i) The sizes of the objects to be cached vary
greatly. Thus, one can not assume fixed-sized “pages” as in main-memory caching. Additionally,
objects may be of different types, thus influencing caching decisions. (ii) The costs to request
particular objects vary largely and are difficult to compute in advance. These costs are not only
different per object, even for the same object they depend on the load of the origin server, its
opererational state and the distance between client and server. (iii) Objects in the cache are read
only and hence no write-back mechanism is needed.

There are three possible locations for object caching (see Fig. 1): (i) Client caching. The
locality in the requests of many clients can be exploited by client-side caching in order to reduce
network traffic and response time. (ii) Prozy server caching. The proxy server typically resides
between the LAN (at which also the clients are connected) and the internet. The clients must
configurate their browsers so that all HTTP requests are directed to the proxy. In doing so, external
bandwidth will be saved, however, at the risk of the proxy server itself becoming a bottleneck.
(iii) Primary web server caching. Primary web servers store objects in main memory, in order to
reduce disk I/O. This caching problem did not attract much attention, due to the fact that no
(internet) bandwidth can be saved with it and the document retrieval time is often dominated
by the network latency [2]. Furthermore, the load on the disks seldomly forms a bottleneck in
a WWW server. Table 1 gives an overview over the pros and cons of the three different caching
locations.
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Figure 1: Three cache locations in the WWW Figure 2: Principle of Class-LRU
at client and proxy at server
+ reduces network traffic — does not reduce network traffic
+ reduces response time — does not (really) reduce response time
+ decreases server workload — does not decrease server workload
— distorts server access statistics — higher server load
— danger of data inconsistency + decreases response time in LAN
at proxy + decreases 1/0 load
— cache miss extends response time
— possible new bottleneck

Table 1: Pros and cons of WWW-caching according to its location

Organisation of the paper. We will give a consise overview of existing caching strategies in
Section 2, before we present our new strategy in Section 3. The implementation, validation and
comparison is presented in Section 4. Conclusions are drawn in Section 5.

2 Caching strategies

Over the last few years, many well-known caching strategies have been evaluated [7, 15, 11, 10].
Aim of these strategies has been to improve the cache hit rate (defined as the percentage of requests
that could be served from the cache), the cache byte hit rate (defined as the percentage of bytes
that could be served from the cache), or, even better, both. At the center of all the approaches is
the question which object has to be replaced when a new object has to be stored (and the cached
is already completely filled). The algorithms referred to above have been developed for specific
contexts and it has been shown that an algorithm that is optimal for one context may fail to
provide good results in another context [7, 10]. This is due to the fact that the caching algorithms
rate some object characteristics more important than others. Table 2 summarises whether the
caching algorithms use certain object characteristics or not.

Some of the mentioned caching strategies have been evaluated for use in proxy and primary
web servers. Williams and Abrams [15] have proposed the LFF strategy and have compared it
with LRU and FIFO. The LFF did show better results, but only w.r.t. the hit rate. Arlitt and
Williamson [6] have analyzed trace-driven cache simulations with different logfiles. LFU-aging
has provided the best results w.r.t. both hit rate and byte hit rate. If one considers only the hit
rate, then LFF was better. Furthermore, the methods LRU, LFU and FBR (Frequency Based
Replacement) have been compared with LFU-aging and LFF. It has been shown that the extension
based on the aging approach only delivers a small improvement but produces more CPU load. In
comparison to LRU, LFU, LFF and other strategies, GDS has shown the best results for both the
hit rate and the byte hit rate. However, a simultaneous optimization of both metrics could not
be attained. An extension of GDS to GDSF has been proposed in [8]; the results and conclusions
remained the same, with the exception that GDSF generally yields better results than GDS.



strategy size-based | recency-based | frequency-based origin context
FIFO - - - -

LFF Vv - - web caching
LRU - vV - memory caching
LFU - - V4 memory caching
SLRU - Vv Vi disk caching
LRU-K - Vv 4 database caching
LFU-Aging - vV Vv web, disk caching
GDS 4 v - web caching
GDSF N4 v/ Vi web caching

Table 2: Classification of caching algorithms according to the employed object characteristics and
their origins

Furthermore, it has been shown that LFF and LFU have severe problems with cache pollution [7],
that is, with cached objects which are not requested any more but stay in the cache due to their
popularity in the past.

These results indicate that size-based strategies yield better results for the hit rate, whereas
frequency-based strategies improve the byte hit rate. No strategy has been recognized as the
ultimate best one, rather the choice of a good strategy depends on the characteristics of the con-
sidered workload. These considerations have led us to develop a workload-based caching strategy
for WWW proxies, as will be discussed in the next section.

3 Class-based LRU

3.1 Basic idea

The caching strategy class-based LRU is a refinement of standard LRU. Its justification lies in the
fact that object-size distributions in the WWW are heavy-tailed, that is, although small objects
are more popular and are requested more frequently, large objects occur more often than it has
been expected in the past, and therefore have a great impact on the perceived performance.

In most caching methods, the object sizes are completely ignored, or either small or large
objects are favoured. However, since caching large objects increases the byte hit rate and decreases
the hit rate (and vice versa for small objects), both a high byte hit rate and a high hit rate can
only be attained by creating a proper balance between large and small objects in the cache. With
C-LRU, this is achieved by partioning the cache into portions reserved for objects of a specific
size, as follows:

e The available memory for the cache is divided into I partitions where each partition i (for
i=1,...,1) takes a specific fraction p; of the cache (0 <p; < 1, ,p; =1).

e Partition ¢ caches objects belonging to class i, where class i is defined to encompass all
objects of size s with 7,1 <s<r; (0=ro<r1 <...<77_1 <7T]=00).

e Each partition in itself is managed with the LRU strategy.

Thus, when an object has to be cached, its class has to be determined before it is passed to
the corresponding partition (see Figure 2). For this strategy to work, we need an approach to
determine the values pq,...,pr and r1,...,r;. This will be addressed in the next section.

3.2 Determining the fractions p; and the boundaries 7;

Object-size characterisation. As has recently been shown, the object-size distribution of
objects requested at proxy servers, can very well be described as a hyper-exponential distribution;
the parameters of such a hyperexponential distribution can be estimated easily with the EM-
algorithm [12]. This implies that the object-sizes density f(z) takes the form of a probabilistic
mixture of exponential terms:

I
f(x):Zci)\ie*Aiz’ Ogclgl, Zci: , for 1 = ,.“,I. (1)
=1 i



In [12] it is shown that I normally is relatively small, say in the range of 4 to 8.

Cache fractions p;. For the fraction p;, we propose two possible values:

(a) to optimize the hit rate, we take the partition size p; proportional to the probability that a
request refers to an object from class ¢, that is, we set: p; = ¢;;
(b) to optimize the byte hit rate, we take into account the expected amount of bytes “encom-

passed by” class ¢ in relation to the overall expected amount of bytes. Since the average
C%/)‘m

object size in class i is 1/)\;, we set: p; = =~—.
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Cache boundaries r;. The range boundaries r; are computed using a Bayesian decision rule

(see [13]). For an object of size s, the appropriate class C(s) is taken such that the decision-error

is minimised. To achieve this aim, we set [13]:

C(s) = argmaz;(c; e %), 1=1,...,1. 2)

Note that the range boundaries need to be determined only once. Upon the arrival of a request
for an object with size s, a simple (binary) search in the ranges {[0, 1], [r1,72], ..., [r1—1, 7]} will
yield the appropriate class C(s).

4 Application, evaluation and comparison

Cache performance heavily depends on the size of the provided cache and the employed replace-
ment strategy. To evaluate and compare the performance of C-LRU, we performed trace-driven
simulations. We used two traces: the RWTH trace has been collected in early 2000 and consist
of the logged requests to the proxy-server of the RWTH of Aachen, and the DEC trace of the
web proxy of Digital Equipment Company [1]. Note that simulation time passes much faster than
real time; in our studies, a trace comprising 54 days could be simulated in only a few minutes.

4.1 Trace analysis

In our study, we only considered static (cacheable) objects, requests to dynamic objects were
removed as far as identified. Table 3 presents some important statistics for both traces. The heavy-
tailedness of the object-size distribution is clearly visible: high squared coefficients of variation
and very small medians (compared to the means). The maximum reachable hit rate (denoted as
HR,) and the maximum reachable byte hit rate (BHR ) have been computed using a trace-based
simulation with infinite cache. Below, we address the object size distribution, the recency and
the frequency of object requests. We focus on the RWTH trace (the corresponding, and similar,
results for the DEC trace are given in [14].

Distribution of the object sizes. It has been found that the object-size distribution shows the
property of heavy-tailedness (see [14]); the distribution decays more slowly than an exponential
distribution. This becomes even more clear from the histogram of object sizes in Figure 3. The
heavy-tailedness is also present when looking at the request frequency as a function of the object
size (see Figure 4). It shows that small objects are not only more numerous but also that they
are requested more often than large objects (this inverse correlation between file size and file
popularity has also been observed in [4]). Thus, caching strategies which favour small objects are
expected to perform better. However, the figure also shows that large objects cannot be neglected.

Recency of reference (temporal locality). Another way to determine the popularity of
objects is the temporal locality of their references [5]. However, recent tests have pointed out
that temporal locality decreases [9], possibly due to client caching. We performed the common
LRU stack-depth [5] method to analyse the temporal locality of references. The results are given
in Figure 5 (left). The positions of the requested objects within the LRU stack are combined in
5000 blocks. The figure shows that about 20% of all requests have a strong temporal locality, thus
suggesting that a recency-based caching strategy should be used.
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total size of unique objects 157.31 GB 17.08 GB
HRoo 30.46 % 47.34 %
BHRoo 16.01 % 39.32 %
original size of trace file 2 GB 800 MB
size after preprocessing 340 MB 47 MB

Table 3: Statistics for the RWTH and the DEC trace
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Figure 3: Number of objects as function of objects size for the RWTH trace: (left) linear scale for
objects smaller than 10 KB; (right) log-log scale for objects larger than 10 KB
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Figure 4: Number of requests by object size for the RWTH trace: (left) linear scale for objects
smaller than 10 KB; (right) log-log scale for objects larger than 10 KB
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Figure 5: Analysis of the RWTH trace: (left) temporal locality characteristics (LRU stack-depth);
(right) frequency of reference as a function of object rank (Zipf’s law)

64 MB | 256 MB | 1 GB 4 GB 16 GB | 64 GB | 256 GB
RWTH | 0,04% 0,16% | 0,64% | 2,54% | 10,17% | 40,69% | 162,7%
DEC | 0,37% 1,49% | 5,86% | 23,43% | 93,7% | 374,8% —

Table 4: Cache sizes as percentage of total amount of objects requested

Frequency of reference. Object which have often been requested in the past, are probably
popular for the future too. This is explained by Zipf’s law: if one ranks the popularity of words
in a given text (denoted p) by their frequency of use (denoted P), then it holds P ~ 1/p. Studies
have shown that Zipf’s law also holds for WWW objects. Figure 5 (right) shows a log-log plot
of all 8.3 million requested objects of the RWTH trace. As can be seen, the slope of the log-log
plot is nearly —1, as predicted by Zipf’s law, suggesting that a frequency-based strategies should
be used. It should be mentioned that there are many objects that have been requested only once,
namely 72.64% of all objects in the DEC trace and 67.5% in the RWTH trace. Frequency-based
strategies have the advantage that “one timers” are poorly valued, so that frequently requested
objects stay longer in the cache and cache pollution can be avoided.

4.2 Performance comparison

In this section, we only consider the RWTH trace; similar experiments were performed for the
DEC trace (and reported in [14]). We performed the trace-driven simulations using our own
simulator, written in C+4. To obtain reasonable results for the hit rate and the byte hit rate,
the simulator has to run for a certain amount of time without hits or misses being counted. The
so-called warm-up phase was set to 8% of all requests, which corresponds to two million requests
and a time periode of approximately four days.

The cache size is a decisive factor for the performance of the cache, hence, we want to choose
the caching strategy that provides the best result for a given cache size. To compare the caching
strategies, we have performed the evaluation with different cache sizes, as shown in Table 4.

First, we have to specify the parameters for the C-LRU strategy, as described in Section 3.
Using the EM-algorithm with I = 4, the corresponding values for p; and r; are listed in Table 5
(with the cases (a)—(b) as presented in Section 3.2).

In Figure 6, we show the simulation results of the RWTH trace for the different caching
strategies with respect to the hit rate and the byte hit rate, as a function of the cache size; notice
that the cache size is expressed as percentage of the trace size. For the C-LRU strategy, we have
included the results for the cases (a) and (b) as “C-LRU(a)” and “C-LRU(b)”, respectively.

With respect to the hit rate, the simulations show that GDS-Hit provides the best performance
for smaller cache sizes. However, for larger cache sizes, it is outperformed by C-LRU(a). The weak
performance of C-LRU(a) for small absolute cache sizes can be understood when looking at the
partition sizes: the assigned cache size of only 0.2% for class 4 (i = 4) is too small considering the
fact that partition 4 is responsible for all objects larger than 367 kBytes. In practical use, this
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Table 5: RWTH trace: parameters for C-LRU
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Figure 6: Hit rate (left) and Byte hit rate (right) comparision of the caching strategies for the
RWTH trace as a function of the cache size

fact does not pose a problem since typical caches nowadays are larger than 1 GBytes and, indeed,
C-LRU performs well for those cache sizes.

For the byte hit rate, one observes that the performance of all strategies is nearly equal, except
for LFF which yields the worst results. C-LRU(a) shows a small performance decrease of about
1% for very large cache sizes. However, C-LRU(b) performs as good as the other strategies. Note
that this behaviour is not surprising since C-LRU(a) has been chosen to optimise the hit rate. The
reverse can be observed for C-LRU(b): optimised for the byte hit rate, its performance is quite
low when considering the hit rate.

4.3 Time complexity

When choosing a caching strategy for practical use, the incurred CPU overhead for managing
the cache is of utmost importance. Table 6 shows the time complexity of the typical operations
performed by the cache, being (i) the identification of a cache hit or miss, (ii) the insertion of
an object into the cache, (iii) the deletion of an object from the cache and (iv) the update of
the specific data structures when an access to a cache entry has taken place. Note that N is the
number of objects in the cache, and I is the number of C-LRU classes.

As can be seen, LRU, SLRU have the smallest time complexity. The performance of C-LRU
depends on the number of classes I which, with values of I around 6, implies that the complexity
of C-LRU is nearly equal to the complexity of LRU. In contrast, GDS and other methods require
O(log N), where N is very large.

5 Conclusions

In this paper, we have proposed a new caching strategy which bases its replacement decisions both
on the size of the requested objects as well as on the recency of the requests. We have shown
that these characteristics are important for WWW proxy-server caching, making our strategy
interesting for use in this area. For the performance of C-LRU, we can make two statements:
considering the byte hit rate, its performance is comparable to existing strategies, but when
looking at the hit rate, C-LRU is clearly better than most other strategies, sharing the first place
with GDS-Hit depending on cache size. This is important since the response time of web servers,



Hit/Miss Insert Delete Update
LRU 0(1) o(1) o(1) 0o(1)
SLRU | 0O(1) o(1) o(1) o(1)
LRU-K o(1) O(log N) o(1) O(log N)
LFU o(1) O(log N) 0(1) O(log N)
LFF 0(1) O(log N) 0(1) O(log N)
GDS O(1) O(log N) O(1) O(log N)
C-LRU O(1) O(logI) O(loglI) O(1)

Table 6: Complexity for various cache operations

as perceived by the end users, is mainly determined by the hit rate [10]. The time complexity of
C-LRU is nearly equal to LRU, that is, it is not dependent on the number of cached objects (as
is the case for GDS-Hit).

The C-LRU caching approach naturally allows for an adaptive caching strategy if the param-

eters are recomputed at appropriate times. A thorough investigation of this aspect, however, will
be presented in the near future. In a companion study, we have shown that a similar object-size
classification can also be exploited for scheduling WWW server; we have reported about that in a
separate paper [13].
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