10,668 research outputs found

    Modification of electronic surface states by graphene islands on Cu(111)

    Get PDF
    We present a study of graphene/substrate interactions on UHV-grown graphene islands with minimal surface contamination using \emph{in situ} low-temperature scanning tunneling microscopy (STM). We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) Shockley surface state is influenced by the graphene layer, and both the band edge and effective mass are shifted relative to bare Cu(111).Comment: 12 pages, 3 figure

    Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals-corrected Density Functional Theory

    Full text link
    The DFT/vdW-WF method, recently developed to include the Van der Waals interactions in Density Functional Theory (DFT) using the Maximally Localized Wannier functions, is applied to the study of the adsorption of rare-gas atoms (Ne, Ar, Kr, and Xe) on the Cu(111) and Pb(111) surfaces, at three high-symmetry sites. We evaluate the equilibrium binding energies and distances, and the induced work-function changes and dipole moments. We find that, for Ne, Ar, and Kr on the Cu(111) surface the different adsorption configurations are characterized by very similar binding energies, while the favored adsorption site for Xe on Cu(111) is on top of a Cu atom, in agreement with previous theoretical calculations and experimental findings, and in common with other close-packed metal surfaces. Instead, the favored site is always the hollow one on the Pb(111) surface, which therefore represents an interesting system where the investigation of high-coordination sites is possible. Moreover, the Pb(111) substrate is subject, upon rare-gas adsorption, to a significantly smaller change in the work function (and to a correspondingly smaller induced dipole moment) than Cu(111). The role of the chosen reference DFT functional and of different Van der Waals corrections, and their dependence on different rare-gas adatoms, are also discussed

    Origin of the Mosaicity in Graphene Grown on Cu(111)

    Full text link
    We use low-energy electron microscopy to investigate how graphene grows on Cu(111). Graphene islands first nucleate at substrate defects such as step bunches and impurities. A considerable fraction of these islands can be rotationally misaligned with the substrate, generating grain boundaries upon interisland impingement. New rotational boundaries are also generated as graphene grows across substrate step bunches. Thus, rougher substrates lead to higher degrees of mosaicity than do flatter substrates. Increasing the growth temperature improves crystallographic alignment. We demonstrate that graphene growth on Cu(111) is surface diffusion limited by comparing simulations of the time evolution of island shapes with experiments. Islands are dendritic with distinct lobes, but unlike the polycrystalline, four-lobed islands observed on (100)-textured Cu foils, each island can be a single crystal. Thus, epitaxial graphene on smooth, clean Cu(111) has fewer structural defects than it does on Cu(100).Comment: Article revised following reviewer comment

    The structural analysis of Cu(111)-Te (√3 × √3) R30° and (2√3 × 2√3)R30° surface phases by quantitative LEED and DFT,

    Get PDF
    The chemisorption of tellurium on atomically clean Cu(111) surface has been studied under ultra-high vacuum conditions. At room temperature, the initial stage of growth was an ordered 23×23R30° phase (0.08 ML). An ordered 3×3R30° phase is formed at 0.33 ML coverage of Te. The adsorption sites of the Te atoms on the Cu(111) surface at 0.08 ML and 0.33 ML coverages are explored by quantitative low energy electron diffraction (LEED) and density functional theory (DFT). Our results indicate that substitutional surface alloy formation starts at very low coverages

    Driving forces for Ag-induced periodic faceting of vicinal Cu(111)

    Full text link
    Adsorption of submonolayer amounts of Ag on vicinal Cu(111) induces periodic faceting. The equilibrium structure is characterized by Ag-covered facets that alternate with clean Cu stripes. In the atomic scale, the driving force is the matching of Ag(111)-like packed rows with Cu(111) terraces underneath. This determines the preference for the facet orientation and the evolution of different phases as a function of coverage. Both Cu and Ag stripe widths can be varied smoothly in the 3-30 nm range by tuning Ag coverage, allowing to test theoretical predictions of elastic theories.Comment: 1 text, 4 figure
    corecore