349 research outputs found

    Virtualizing Data Parallel Systems for Portability, Productivity, and Performance.

    Full text link
    Computer systems equipped with graphics processing units (GPUs) have become increasingly common over the last decade. In order to utilize the highly data parallel architecture of GPUs for general purpose applications, new programming models such as OpenCL and CUDA were introduced, showing that data parallel kernels on GPUs can achieve speedups by several orders of magnitude. With this success, applications from a variety of domains have been converted to use several complicated OpenCL/CUDA data parallel kernels to benefit from data parallel systems. Simultaneously, the software industry has experienced a massive growth in the amount of data to process, demanding more powerful workhorses for data parallel computation. Consequently, additional parallel computing devices such as extra GPUs and co-processors are attached to the system, expecting more performance and capability to process larger data. However, these programming models expose hardware details to programmers, such as the number of computing devices, interconnects, and physical memory size of each device. This degrades productivity in the software development process as programmers must manually split the workload with regard to hardware characteristics. This process is tedious and prone to errors, and most importantly, it is hard to maximize the performance at compile time as programmers do not know the runtime behaviors that can affect the performance such as input size and device availability. Therefore, applications lack portability as they may fail to run due to limited physical memory or experience suboptimal performance across different systems. To cope with these challenges, this thesis proposes a dynamic compiler framework that provides the OpenCL applications with an abstraction layer for physical devices. This abstraction layer virtualizes physical devices and memory sub-systems, and transparently orchestrates the execution of multiple data parallel kernels on multiple computing devices. The framework significantly improves productivity as it provides hardware portability, allowing programmers to write an OpenCL program without being concerned of the target devices. Our framework also maximizes performance by balancing the data parallel workload considering factors like kernel dependencies, device performance variation on workloads of different sizes, the data transfer cost over the interconnect between devices, and physical memory limits on each device.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113361/1/jhaeng_1.pd

    Cryptanalysis of the McEliece Cryptosystem on GPGPUs

    Get PDF
    The linear code based McEliece cryptosystem is potentially promising as a so-called post-quantum public key cryptosystem because thus far it has resisted quantum cryptanalysis, but to be considered secure, the cryptosystem must resist other attacks as well. In 2011, Bernstein et al. introduced the Ball Collision Decoding (BCD) attack on McEliece which is a significant improvement in asymptotic complexity over the previous best known attack. We implement this attack on GPUs, which offer a parallel architecture that is well-suited to the matrix operations used in the attack and decrease the asymptotic run-time. Our implementation executes the attack more than twice as fast as the reference implementation and could be used for a practical attack on the original McEliece parameters

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    Scheduling strategies for parallel patterns on heterogeneous architectures

    Get PDF
    To help shrink the programmability-performance efficiency gap, we discuss that adaptive runtime systems can be used to facilitate the management of heterogeneous architectures. A runtime system can provide a significant performance boost while reducing the energy consumption, because it is aware of processors’ architectures and application’s requirements. We analyse how applications map onto hardware by inspecting built-in processor counters, and therefore build models to describe the observed behaviour. In this thesis, we discuss how parallel patterns, such as parallel for loops and pipelines, can be decomposed and efficiently executed on heterogeneous plat- forms. We propose several scheduling strategies aiming at reducing execution time and energy consumption. We demonstrate how applications can be run faster by mapping the application level parallelism onto the hardware process- ing units that best fit the application requirements, and by selecting the right task size. First, we devise a load balancing technique, that targets heterogeneous CPU and multi-GPU architectures. It monitors the relative speed of each processing unit, and distributes the remaining workload based on these relative speeds. By making all processing units to finish at same time, we avoid unnecessary waits between processors. Along with this load balancing technique, we propose a performance-sensitive partitioner that adapts the amount of computation offloaded to the accelerator for better performance and utilisation. We also present an accurate performance model for streaming applications, such as face recognition or object tracking. This model targets pipelined applications, as a series of stages, and performs a scalability analysis of each stage by using coarse and medium grain parallelism. Additionally, it also considers executing the stage on the GPU or not. By applying the model, we always find the best pipeline configuration among all possible, and get substantial performance and energy savings. All experiments in this thesis have been performed by using state-of-the-art hardware accelerators and benchmarks of the field of HPC. Specifically, we use the Rodinia and SHOC benchmark suites, for the evaluation of the parallel for partitioner. Moreover, we use the the ViVid application, along with tracking and SRAD applications from Rodinia Benchmark Suite, all of them are good candidates of vision applications. Finally, we rely on Intel Threading Building Blocks, the core engine of our schedulers; the Intel OpenCL SDK and CUDA SDK to offload computations to the GPU accelerators and Intel PCM library to monitor energy consumption and cache memory metrics.During the last decade, power consumption and energy efficiency have become key aspects in processor design. Nowadays, the power consumption is the principal limitation for further scaling of chip multiprocessors design (CMPs). In general, the research community agrees that current chip multiprocessor technology trends will not scale performance without an increase of power budget. Hardware design innovations as the recent Heterogeneous Architectures and Near Threshold Computing are needed to cope with the performance-power barrier. As a result of this, there has been a shift away from chip multiprocessors to heterogeneous processor architectures. Recently, we have witnessed an explosion in the availability of this kind of architectures. Many hardware vendors have released a number of heterogeneous processors to overcome the aforementioned limitations. However, software also requires changes to allow further performance scaling on these architectures. With the advent of heterogeneous architectures, hardware manufactures have impose the burden of explicit accelerator management on software developers. In general, programmers are used to sequential programming, but writing high-performance programs for heterogeneous architectures is a complex task. Programming for this kind of platforms requires the understanding of new hardware concepts, orchestration of different parallelism levels, the explicit management of different memory spaces and synchronisations between processing units, and finally the usage of low-level programming models such as OpenCL or CUDA. Moreover, heterogeneous architectures suffer from performance portability, as one program can exhibit unequal performance on different devices

    Scheduling in Mapreduce Clusters

    Get PDF
    MapReduce is a framework proposed by Google for processing huge amounts of data in a distributed environment. The simplicity of the programming model and the fault-tolerance feature of the framework make it very popular in Big Data processing. As MapReduce clusters get popular, their scheduling becomes increasingly important. On one hand, many MapReduce applications have high performance requirements, for example, on response time and/or throughput. On the other hand, with the increasing size of MapReduce clusters, the energy-efficient scheduling of MapReduce clusters becomes inevitable. These scheduling challenges, however, have not been systematically studied. The objective of this dissertation is to provide MapReduce applications with low cost and energy consumption through the development of scheduling theory and algorithms, energy models, and energy-aware resource management. In particular, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce clusters. This research work is expected to have a breakthrough in Big Data processing, particularly in providing green computing to Big Data applications such as social network analysis, medical care data mining, and financial fraud detection. The tools we propose to develop are expected to increase utilization and reduce energy consumption for MapReduce clusters. In this PhD dissertation, we propose to address the aforementioned challenges by investigating and developing 1) a match-making scheduling algorithm for improving the data locality of Map- Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map- Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map- Reduce cluster. Advisers: Ying Lu and David Swanso
    • …
    corecore