34 research outputs found

    Surgical Sealant with Integrated Shape‐Morphing Dual Modality Ultrasound and Computed Tomography Sensors for Gastric Leak Detection

    Get PDF
    Postoperative anastomotic leaks are the most feared complications after gastric surgery. For diagnostics clinicians mostly rely on clinical symptoms such as fever and tachycardia, often developing as a result of an already fully developed, i.e., symptomatic, surgical leak. A gastric fluid responsive, dual modality, electronic‐free, leak sensor system integrable into surgical adhesive suture support materials is introduced. Leak sensors contain high atomic number carbonates embedded in a polyacrylamide matrix, that upon exposure to gastric fluid convert into gaseous carbon dioxide (CO2_{2}). CO2_{2} bubbles remain entrapped in the hydrogel matrix, leading to a distinctly increased echogenic contrast detectable by a low‐cost and portable ultrasound transducer, while the dissolution of the carbonate species and the resulting diffusion of the cation produces a markedly reduced contrast in computed tomography imaging. The sensing elements can be patterned into a variety of characteristic shapes and can be combined with nonreactive tantalum oxide reference elements, allowing the design of shape‐morphing sensing elements visible to the naked eye as well as artificial intelligence‐assisted automated detection. In summary, shape‐morphing dual modality sensors for the early and robust detection of postoperative complications at deep tissue sites, opening new routes for postoperative patient surveillance using existing hospital infrastructure is reported

    Capillary-Driven Pumping for Passive Degassing and Fuel Supply in Direct Methanol Fuel Cells

    Get PDF
    Abstract In this paper we present a new concept of creating and using capillary pressure gradients for passive degassing and passive methanol supply in direct methanol fuel cells (DMFCs). An anode flow field consisting of parallel tapered channels structures is applied to achieve the passive supply mechanism. The flow is propelled by the surface forces of deformed CO 2 bubbles, generated as a reaction product during DMFC operation. This work focuses on studying the influence of channel geometry and surface properties on the capillary-induced liquid flow rates at various bubbly gas flow rates. Besides the aspect ratios and opening angles of the tapered channels, the static contact angle as well as the effect of contact angle hysteresis has been identified to significantly influence the liquid flow rates induced by capillary forces at the bubble menisci. Applying the novel concept, we show that the liquid flow rates are up to thirteen times higher than the methanol oxidation reaction on the anode requires. Experimental results are presented that demonstrate the continuous passive operation of a DMFC for more than 15 h

    Bubbles dynamics in microchannels: inertial and capillary migration forces

    Full text link
    This work focuses on the dynamics of a train of unconfined bubbles flowing in microchan- nels. We investigate the transverse position of a train of bubbles, its velocity and the associated pressure drop when flowing in a microchannel depending on the internal forces due to viscosity, inertia and capillarity. Despite the small scales of the system, inertia, referred to as inertial migration force, play a crucial role in determining the transverse equilibrium position of the bubbles. Beside inertia and viscosity, other effects may also affect the transverse migration of bubbles such as the Marangoni surface stresses and the surface deformability. We look at the influence of surfactants in the limit of infinite Marangoni effect which yields rigid bubble interface. The resulting migration force may balance external body forces if present such as buoyancy, Dean or magnetic ones. This balance not only determines the transverse position of the bubbles but, consequently, the surrounding flow structure, which can be determinant for any mass/heat transfer process involved. Finally, we look at the influence of the bubble deformation on the equilibrium position and compare it to the inertial migration force at the centred position, explaining the stable or unstable character of this position accordingly. A systematic study of the influence of the parameters - such as the bubble size, uniform body force, Reynolds and capillary numbers - has been carried out using numerical simulations based on the Finite Element Method, solving the full steady Navier-Stokes equations and its asymptotic counterpart for the limits of small Reynolds and/or capillary numbers.Comment: Submitted to JF

    Alcohol Production from Cassava Starch by Co-immobilized Zymomonas mobilis and Immobilized Glucoamylase

    Get PDF
    Simultaneous saccharification and fermentation of dextrin£zed cassava starch to glucose and alcohol, respectively, were carried out by co-immobilized Zymomonas mobilis and immobilz'zed glucoamylase (IG). Calcium alginate-entrapped cells and IG (4 : 1 ratio) gave an alcohol productivity of 0.30 glgww cellslh in a batchfermentation process. For continuous fermentation, 54.3 gil alcohol was produced at a dilution rate of 0.3Ih. 60% of the initial activity was lost within 3 days and, thereafter, the system entered a slowly decreasing phase ofalcohol production

    Morphological Investigation of Calcium Carbonate during Ammonification-Carbonization Process of Low Concentration Calcium Solution

    Get PDF
    Ultrafine calcium carbonate is a widely used cheap additive. The research is conducted in low degree supersaturation solution in order to study the polymorphic phases’ change and its factors of the calcium carbonate precipitate in the ammonification-carbonization process of the solution with calcium. Fine particles of calcium carbonate are made in the solution containing 0.015 mol/L of Ca2+. Over 98% of the calcium carbonate precipitate without ammonification resembles the morphology of calcite, while the introduction of ammonia can benefit the formation of vaterite. It was inferred that the main cause should be serious partial oversaturation or steric effects. Ammonia also helps to form the twin spherical calcium carbonate. However, particles formed in the process of ammonification-carbonization in solution with low concentration degree of calcium are not even with a scale of the particle diameter from 5 to 12 μm. Inorganic salts, alcohol, or organic acid salts have significant controlling effect on the particle diameter of calcium carbonate and can help to decrease the particle diameter to about 3 μm. Anionic surfactants can prevent the conglobation of calcium carbonate particles and shrink its diameter to 500 nm–1 μm

    Mathematical modeling of channel-porous layer interfaces in PEM fuel cells

    Get PDF
    In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active zones, and the removal of the reaction products are realized using a combination of channels and porous diffusion layers. In order to improve existing mathematical and numerical models of PEM fuel cells, a deeper understanding of the coupling of the flow processes in the channels and diffusion layers is necessary. After discussing different mathematical models for PEM fuel cells, the work will focus on the description of the coupling of the free flow in the channel region with the filtration velocity in the porous diffusion layer as well as interface conditions between them. The difficulty in finding effective coupling conditions at the interface between the channel flow and the membrane lies in the fact that often the orders of the corresponding differential operators are different, e.g., when using stationary (Navier-)Stokes and Darcy's equation. Alternatively, using the Brinkman model for the porous media this difficulty does not occur. We will review different interface conditions, including the well-known Beavers-Joseph-Saffman boundary condition and its recent improvement by Le Bars and Worster

    Inertio-Thermal Growth of Vapour Bubbles

    Get PDF

    Investigation of Test Methods, Material Properties and Processes for Solar Cell Encapsulants

    Get PDF
    The evaluation of potentially useful low cost encapsulation materials is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost effective, long life solar cell modules. Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatment, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. Two component aliphatic urethane casting syrups were evaluated for suitability as solar module pottants on the basis of optical, physical and fabrication characteristics

    Task-specific ionic liquids: Applications in sample preparation and the chemistry behind their selectivity

    Get PDF
    Task-specific ionic liquids (TSILs) represent a sub-family of ionic liquids characterized by their high specificity towards a target analyte or group of analytes. This characteristic has made them valuable tools for sample preparation, where selectivity represents a key aspect, especially when other species represent a significant source of interference or when non-specific detectors are used. This review presents an overview of TSILs applications for sample preparation from the last ten years, with a special emphasis on their use as liquid-liquid microextraction solvents or as functionalizing agents for sorbents applied to solid-phase microextractions. TSILs applications for the treatment of environmental, food and biological samples are reviewed, including reports devoted to speciation analysis, a relevant trend in recent years regarding elemental studies. Additionally, focus is made on the ?task-specificity? of the presented TSILs, including a description of the chemical characteristics that made them selective towards the studied analytes. Finally, future trends and gaps to be covered in the field are also discussed.Fil: Llaver, Mauricio. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; ArgentinaFil: Fiorentini Chirino, Emiliano Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; ArgentinaFil: Quintas, Pamela Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; ArgentinaFil: Oviedo, Maria Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; ArgentinaFil: Botella Arenas, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; ArgentinaFil: Wuilloud, Rodolfo German. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Química Analítica para Investigación y Desarrollo; Argentin
    corecore