1,158 research outputs found

    Radiation damages in CMOS image sensors: testing and hardening challenges brought by deep sub-micrometer CIS processes

    Get PDF
    This paper presents a summary of the main results we observed after several years of study on irradiated custom imagers manufactured using 0,18 µm CMOS processes dedicated to imaging. These results are compared to irradiated commercial sensor test results provided by the Jet Propulsion Laboratory to enlighten the differences between standard and pinned photodiode behaviors. Several types of energetic particles have been used (gamma rays, X-rays, protons and neutrons) to irradiate the studied devices. Both total ionizing dose (TID) and displacement damage effects are reported. The most sensitive parameter is still the dark current but some quantum eficiency and MOSFET characteristics changes were also observed at higher dose than those of interest for space applications. In all these degradations, the trench isolations play an important role. The consequences on radiation testing for space applications and radiation-hardening-by-design techniques are also discussed

    Radiation effects on CMOS image sensors with sub-2µm pinned photodiodes

    Get PDF
    A group of four commercial sensors with pixel pitches below 2μm has been irradiated with 60Co source at several total ionizing dose levels related to space applications. A phenomenological approach is proposed through behavior analysis of multiple sensors embedding different technological choices (pitch, isolation or buried oxide). A complete characterization including dark current, activation energy and temporal noise analysis allows to discuss about a degradation scheme

    Radiation Effects on CMOS Image Sensors With Sub-2 µm Pinned Photodiodes

    Get PDF
    CMOS image sensor hardness under irradiation is a key parameter for application fields such as space or medical. In this paper, four commercial sensors featuring different technological characteristics (pitch, isolation or buried oxide) have been irradiated with 60Co source. Based on dark current and temporal noise analysis, we develop and propose a phenomenological model to explain pixel performance degradation

    Rad Tolerant CMOS Image Sensor Based on Hole Collection 4T Pixel Pinned Photodiode

    Get PDF
    1.4μm pixel pitch CMOS Image sensors based on hole collection pinned photodiode (HPD) have been irradiated with 60Co source. The HPD sensors exhibit much lower dark current degradation than equivalent commercial sensors using an Electron collection Pinned Photodiode (EPD). This hardness improvement is mainly attributed to carrier accumulation near the interfaces induced by the generated positive charges in dielectrics. The pre-eminence of this image sensor based on hole collection pinned photodiode architectures in ionizing environments is demonstrated

    Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments

    Get PDF
    The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed

    Vulnerability of CMOS image sensors in megajoule class laser harsh environment

    Get PDF
    CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques
    corecore