208 research outputs found

    Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context

    Full text link
    Mathematical formulae represent complex semantic information in a concise form. Especially in Science, Technology, Engineering, and Mathematics, mathematical formulae are crucial to communicate information, e.g., in scientific papers, and to perform computations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such information between systems additionally requires conversion methods for mathematical representation formats. We analyze how the semantic enrichment of formulae improves the format conversion process and show that considering the textual context of formulae reduces the error rate of such conversions. Our main contributions are: (1) providing an openly available benchmark dataset for the mathematical format conversion task consisting of a newly created test collection, an extensive, manually curated gold standard and task-specific evaluation metrics; (2) performing a quantitative evaluation of state-of-the-art tools for mathematical format conversions; (3) presenting a new approach that considers the textual context of formulae to reduce the error rate for mathematical format conversions. Our benchmark dataset facilitates future research on mathematical format conversions as well as research on many problems in mathematical information retrieval. Because we annotated and linked all components of formulae, e.g., identifiers, operators and other entities, to Wikidata entries, the gold standard can, for instance, be used to train methods for formula concept discovery and recognition. Such methods can then be applied to improve mathematical information retrieval systems, e.g., for semantic formula search, recommendation of mathematical content, or detection of mathematical plagiarism.Comment: 10 pages, 4 figure

    Bravo MaRDI: A Wikibase Powered Knowledge Graph on Mathematics

    Full text link
    Mathematical world knowledge is a fundamental component of Wikidata. However, to date, no expertly curated knowledge graph has focused specifically on contemporary mathematics. Addressing this gap, the Mathematical Research Data Initiative (MaRDI) has developed a comprehensive knowledge graph that links multimodal research data in mathematics. This encompasses traditional research data items like datasets, software, and publications and includes semantically advanced objects such as mathematical formulas and hypotheses. This paper details the abilities of the MaRDI knowledge graph, which is based on Wikibase, leading up to its inaugural public release, codenamed Bravo, available on https://portal.mardi4nfdi.de.Comment: Accepted at Wikidata'23: Wikidata workshop at ISWC 202

    Querying Geometric Figures Using a Controlled Language, Ontological Graphs and Dependency Lattices

    Full text link
    Dynamic geometry systems (DGS) have become basic tools in many areas of geometry as, for example, in education. Geometry Automated Theorem Provers (GATP) are an active area of research and are considered as being basic tools in future enhanced educational software as well as in a next generation of mechanized mathematics assistants. Recently emerged Web repositories of geometric knowledge, like TGTP and Intergeo, are an attempt to make the already vast data set of geometric knowledge widely available. Considering the large amount of geometric information already available, we face the need of a query mechanism for descriptions of geometric constructions. In this paper we discuss two approaches for describing geometric figures (declarative and procedural), and present algorithms for querying geometric figures in declaratively and procedurally described corpora, by using a DGS or a dedicated controlled natural language for queries.Comment: 14 pages, 5 figures, accepted at CICM 201

    Leveraging Mathematical Subject Information to Enhance Bibliometric Data

    Get PDF
    The field of mathematics is known to be especially challenging from a bibliometric point of view. Its bibliographic metrics are especially sensitive to distortions and are heavily influenced by the subject and its popularity. Therefore, quantitative methods are prone to misrepresentations, and need to take subject information into account. In this paper we investigate how the mathematical bibliography of the abstracting and reviewing service Zentralblatt MATH (zbMATH) could further benefit from the inclusion of mathematical subject information MSC2010. Furthermore, the mappings of MSC2010 to Linked Open Data resources have been upgraded and extended to also benefit from semantic information provided by DBpedia

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure
    • …
    corecore