12,114 research outputs found

    Complex Gaussian multiplicative chaos

    Full text link
    In this article, we study complex Gaussian multiplicative chaos. More precisely, we study the renormalization theory and the limit of the exponential of a complex log-correlated Gaussian field in all dimensions (including Gaussian Free Fields in dimension 2). Our main working assumption is that the real part and the imaginary part are independent. We also discuss applications in 2D string theory; in particular we give a rigorous mathematical definition of the so-called Tachyon fields, the conformally invariant operators in critical Liouville Quantum Gravity with a c=1 central charge, and derive the original KPZ formula for these fields.Comment: 66 pages, 5 figures, contains open problems and application in 2 dimensional string theory. The new version contains the KPZ formula for the Tachyon fields and further discussions about application

    Universal neural field computation

    Full text link
    Turing machines and G\"odel numbers are important pillars of the theory of computation. Thus, any computational architecture needs to show how it could relate to Turing machines and how stable implementations of Turing computation are possible. In this chapter, we implement universal Turing computation in a neural field environment. To this end, we employ the canonical symbologram representation of a Turing machine obtained from a G\"odel encoding of its symbolic repertoire and generalized shifts. The resulting nonlinear dynamical automaton (NDA) is a piecewise affine-linear map acting on the unit square that is partitioned into rectangular domains. Instead of looking at point dynamics in phase space, we then consider functional dynamics of probability distributions functions (p.d.f.s) over phase space. This is generally described by a Frobenius-Perron integral transformation that can be regarded as a neural field equation over the unit square as feature space of a dynamic field theory (DFT). Solving the Frobenius-Perron equation yields that uniform p.d.f.s with rectangular support are mapped onto uniform p.d.f.s with rectangular support, again. We call the resulting representation \emph{dynamic field automaton}.Comment: 21 pages; 6 figures. arXiv admin note: text overlap with arXiv:1204.546

    A Fredholm Determinant for Semi-classical Quantization

    Get PDF
    We investigate a new type of approximation to quantum determinants, the ``\qFd", and test numerically the conjecture that for Axiom A hyperbolic flows such determinants have a larger domain of analyticity and better convergence than the \qS s derived from the \Gt. The conjecture is supported by numerical investigations of the 3-disk repeller, a normal-form model of a flow, and a model 2-dd map.Comment: Revtex, Ask for figures from [email protected]

    Quantitative uniform in time chaos propagation for Boltzmann collision processes

    Full text link
    This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by Kac \cite{Kac1956} this limit is based on the {\em chaos propagation}, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or long-range interactions), (2) prove and quantify this property \emph{uniformly in time}. This yields the first chaos propagation result for the spatially homogeneous Boltzmann equation for true (without cut-off) Maxwell molecules whose "Master equation" shares similarities with the one of a L\'evy process and the first {\em quantitative} chaos propagation result for the spatially homogeneous Boltzmann equation for hard spheres (improvement of the %non-contructive convergence result of Sznitman \cite{S1}). Moreover our chaos propagation results are the first uniform in time ones for Boltzmann collision processes (to our knowledge), which partly answers the important question raised by Kac of relating the long-time behavior of a particle system with the one of its mean-field limit, and we provide as a surprising application a new proof of the well-known result of gaussian limit of rescaled marginals of uniform measure on the NN-dimensional sphere as NN goes to infinity (more applications will be provided in a forthcoming work). Our results are based on a new method which reduces the question of chaos propagation to the one of proving a purely functional estimate on some generator operators ({\em consistency estimate}) together with fine stability estimates on the flow of the limiting non-linear equation ({\em stability estimates})

    Log-correlated Gaussian fields: an overview

    Get PDF
    We survey the properties of the log-correlated Gaussian field (LGF), which is a centered Gaussian random distribution (generalized function) hh on Rd\mathbb R^d, defined up to a global additive constant. Its law is determined by the covariance formula Cov[(h,ϕ1),(h,ϕ2)]=Rd×Rdlogyzϕ1(y)ϕ2(z)dydz\mathrm{Cov}\bigl[ (h, \phi_1), (h, \phi_2) \bigr] = \int_{\mathbb R^d \times \mathbb R^d} -\log|y-z| \phi_1(y) \phi_2(z)dydz which holds for mean-zero test functions ϕ1,ϕ2\phi_1, \phi_2. The LGF belongs to the larger family of fractional Gaussian fields obtained by applying fractional powers of the Laplacian to a white noise WW on Rd\mathbb R^d. It takes the form h=(Δ)d/4Wh = (-\Delta)^{-d/4} W. By comparison, the Gaussian free field (GFF) takes the form (Δ)1/2W(-\Delta)^{-1/2} W in any dimension. The LGFs with d{2,1}d \in \{2,1\} coincide with the 2D GFF and its restriction to a line. These objects arise in the study of conformal field theory and SLE, random surfaces, random matrices, Liouville quantum gravity, and (when d=1d=1) finance. Higher dimensional LGFs appear in models of turbulence and early-universe cosmology. LGFs are closely related to cascade models and Gaussian branching random walks. We review LGF approximation schemes, restriction properties, Markov properties, conformal symmetries, and multiplicative chaos applications.Comment: 24 pages, 2 figure

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    On high-frequency limits of UU-statistics in Besov spaces over compact manifolds

    Get PDF
    In this paper, quantitative bounds in high-frequency central limit theorems are derived for Poisson based UU-statistics of arbitrary degree built by means of wavelet coefficients over compact Riemannian manifolds. The wavelets considered here are the so-called needlets, characterized by strong concentration properties and by an exact reconstruction formula. Furthermore, we consider Poisson point processes over the manifold such that the density function associated to its control measure lives in a Besov space. The main findings of this paper include new rates of convergence that depend strongly on the degree of regularity of the control measure of the underlying Poisson point process, providing a refined understanding of the connection between regularity and speed of convergence in this framework.Comment: 19 page
    corecore