We investigate a new type of approximation to quantum determinants, the
``\qFd", and test numerically the conjecture that for Axiom A hyperbolic flows
such determinants have a larger domain of analyticity and better convergence
than the \qS s derived from the \Gt. The conjecture is supported by numerical
investigations of the 3-disk repeller, a normal-form model of a flow, and a
model 2-d map.Comment: Revtex, Ask for figures from [email protected]