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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract
We survey the properties of the log-correlated Gaussian field (LGF), which is a

centered Gaussian random distribution (generalized function) h on Rd, defined up to
a global additive constant. Its law is determined by the covariance formula

Cov
[
(h, φ1), (h, φ2)

]
=

∫
Rd×Rd

− log |y − z|φ1(y)φ2(z)dydz,

which holds for mean-zero test functions φ1, φ2. The LGF belongs to the larger family
of fractional Gaussian fields obtained by applying fractional powers of the Laplacian
to a white noise W on Rd. It takes the form h = (−∆)−d/4W . By comparison, the
Gaussian free field (GFF) takes the form (−∆)−1/2W in any dimension. The LGFs
with d ∈ {2, 1} coincide with the 2D GFF and its restriction to a line. These objects
arise in the study of conformal field theory and SLE, random surfaces, random matri-
ces, Liouville quantum gravity, and (when d = 1) finance. Higher dimensional LGFs
appear in models of turbulence and early-universe cosmology. LGFs are closely related
to cascade models and Gaussian branching random walks. We review LGF approxi-
mation schemes, restriction properties, Markov properties, conformal symmetries, and
multiplicative chaos applications.
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1 Introduction

1.1 Overview

The log-correlated Gaussian free field (LGF) is a beautiful and canonical Gaussian random
generalized function (a tempered distribution) that can be defined (modulo a global additive
constant) on Rd for any d ≥ 1.We present a series of equivalent definitions of the LGF in
Section 1.4, but the simplest is that it is a centered real-valued Gaussian random tempered
distribution h on Rd, defined modulo a global additive constant, whose law is determined by
the covariance formula

Cov
[
(h, φ1), (h, φ2)

]
=

∫
Rd×Rd

− log |y − z|φ1(y)φ2(z)dydz, (1)

which holds for mean-zero test functions φ1, φ2. Here “mean-zero” means
∫
φi(z)dz = 0,

which ensures that (h, φi) is well-defined even though h is only defined modulo a global
additive constant. The statement that h is centered means that E[(h, φ)] = 0 for each
mean-zero test function φ.

This note provides a brief overview of the LGF and is somewhat analogous to the survey
of the Gaussian free field (GFF) presented in [She07]. It should be accessible to any reader
familiar with a few standard notions from real analysis (such as generalized functions, Green’s
function, and Gaussian Hilbert spaces). The reader who is unfamiliar with Gaussian Hilbert
spaces and Wiener chaos (as used in the construction of Brownian motion or the Gaussian
free field) might wish to consult [Jan97] or [She07] for a discussion of these issues with more
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detail than we include here. Also, as we will explain in Section 1.2, the LGF belongs to the
more general family of fractional Gaussian fields (FGFs) surveyed in [LSSW14] (which is
co-authored by one of the current authors). This article can be viewed as a companion piece
to [LSSW14]. We will cite [LSSW14] for results that hold for general FGFs and emphasize
here the results and perspectives that are specific to (or particularly natural for) the LGF.

The LGF in dimension d = 1 has been proposed as a model of (the log of) financial market
volatility [BKM13, DRV12]. When d = 2, the LGF coincides with the 2D Gaussian free field
(GFF), which has an enormous range of applications to mathematical physics [She07]. When
d = 3, the LGF plays an important role in early universe cosmology, where it approximately
describes the gravitational potential function of the universe at a fixed time shortly after
the big bang.1 When d = 4 the LGF is the continuum analog of the so-called Gaussian
membrane model,2 which is a Gibbs measure whose defining energy is the L2 norm of the
discrete Laplacian (c.f. the discrete Gaussian free field, whose defining energy function is the
L2 norm of the discrete gradient)[Kur09, Sak12, Cip13]. The literature on these subjects is
large and complex, and we will not attempt to survey it further here.

We will see that the LGF has conformal invariance symmetries in any dimension. It is
also closely related, in any dimension, to additive cascade models and branching random
walks. We will see that when d is even the LGF has an interesting type of Markov property:
namely, the conditional law of h in a spherical domain D, given the behavior of h outside of
D, depends only on the given values of h on ∂D and the first d/2− 1 normal derivatives of

1The Laplacian of the LGF is a random distribution ψ that is believed to approximately describe pertur-
bations of mass/energy density from uniformity. This field follows the Harrison-Zel’dovich spectrum, which
means that

E[ψ̂(k)∗ψ̂(k′)] = δ(k − k′)P (k),

where δ is the Dirac delta function, the power spectrum P (k) is given by |k|ns , and the spectral index ns is
1. (In the notation of Section 1.2, ψ is an FGF−ns/2.) An overview of this story appears in the reference
text [Dod03]. This formula for P has been empirically observed to approximately hold for a range of k
values spanning many orders of magnitude. However, some of the most recent experimental data, including
data from the Planck Observatory [PAA+13], suggest that while the assumptions of Gaussianity, translation
invariance, and rotational invariance are consistent with the data (and any “non-Gaussianianity” that exists
must be limited), there are statistically significant differences between the empirically calculated power
spectrum and the Harrison-Zel’dovich spectrum. Section 2 of [PAA+13] provides a historical overview of
this issue and many additional references, and Section 4 explains the recent observations. Another analysis
combining this data with more recent BICEP2 data finds ns between .95 and .98 [WLLC14].

2To be precise, if we are given a finite Λ ⊂ Zd and a boundary function hδ : (Zd \ Λ) → R, then the
membrane model on Λ is a probability measure on the finite-dimensional space of functions from Zd to R
that agree with hδ outside of Λ. The probability density function is e−H(h)/2 (times a normalizing constant),
where

H(h) =
∑
v∈Λ

(∆h(v))2

and ∆ is the discrete Laplacian and Λ is the union of Λ and set of vertices adjacent to a point in Λ. The
membrane model on all of Zd can be defined as a Gibbs measure on functions h from Zd to R in the usual
way (which, depending on d, may be defined modulo global additive constants or modulo discrete harmonic
polynomials of some degree): conditioned on the h values outside of Λ, the conditional law within Λ is as
described above. Note that this conditional law depends on and is determined by the given values on those
vertices of Zd \Λ whose graph distance from Λ is 1 or 2. By contrast, in the case of the discrete Gaussian free
field, the conditional law would be determined by the values on the boundary vertices, i.e., those vertices in
Zd \ Λ whose graph distance from Λ is 1.
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h on ∂D. We will also show for general d that the restriction of an LGF on Rd to a lower
dimensional subspace is an LGF on that subspace.

As mentioned above, in two dimensions, the GFF and the LGF coincide. Recent years
have seen an explosion of interesting results about the 2D GFF, and it is interesting to
note that while many of these results can be naturally generalized to other dimensions, the
generalizations often apply to general LGFs, not general GFFs. This is true, for example,
of several recent results about multiplicative chaos and the so-called KPZ formula [DS11,
RV11, DRSV12, DRSV14, CJ14]. In some cases, the generalizations are unsolved problems.
For example, it was shown in [SS12] that even though the 2D GFF is a distribution, not
a continuous function, it is possible to define continuous zero-height “contour lines” of the
GFF using so-called SLE4 curves (i.e., Schramm-Loewner evolutions with parameter κ = 4).
It remains an open question whether the level surfaces of the three (or higher) dimensional
LGF can be canonically defined in a similar way (although it is possible to draw level surfaces
of continuous approximations to the LGF, as Figure 1 illustrates).

Figure 1: Level surfaces of simulated fine-mesh approximations of the 3D LGF. Since the
restriction of a 3D LGF to the plane is a 2D GFF, we expect (based on the GFF results in
[SS12]) that the intersection of one of these surfaces with a plane will be comprised of loops
that look locally like SLE4.

1.2 Relation to other fractional Gaussian fields

The LGF belongs to a larger one-parameter family of Gaussian random functions (or gener-
alized functions) on Rd: namely, the family of Gaussian fields obtained as

h = (−∆)−s/2W (2)

where s ∈ R, and ∆ is the Laplacian, and W is a white noise on Rd. Following the survey
article [LSSW14], we will refer to a field of the form (−∆)−s/2W as a fractional Gaussian
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field and denote it by FGFs. (The parameter s is related to the so-called Hurst parameter,
as we will explain below.)

Making sense of (2) requires us to make sense of the operator (−∆)s/2 in this context.
Fractional powers of the Laplacian can be rigorously constructed in various ways and are
the subject of a large and rapidly growing literature (see [CS07, CSS08, ROS14, Wik13] and
the references therein, as well as our discussion in Section 1.3) but they are not generally
well-defined for all tempered distributions, so there is still some thought required to make
sense of the h in (2). As we explain below the basic idea is to define (−∆)s/2 to be the
operator that multiplies the Fourier transform of its input by the function | · |s.

It turns out that the LGF, as defined by (1), is equivalent (up to a multiplicative constant)
to (2) when s = d/2. We will explain how to make sense of (2) when s = d/2 in Section 1.4.
The survey [LSSW14] contains more detail about general FGFs processes, and much of that
analysis applies to the LGF as a special case. For example, [LSSW14] explicitly derives the
constant relating (1) and (2), which we will not do here.

The family of fractional Gaussian fields includes white noise itself (s = 0) and the Gaus-
sian free field (s = 1). The field (−∆)−s/2W can also be understood as a standard Gaussian
in the Hilbert space with inner product(

(−∆)s/2f, (−∆)s/2g
)

=
(
(−∆)sf, g

)
, (3)

as we will explain (in the LGF context) in Section 1.4.
The Hurst parameter of an FGFs is the quantity

H = s− d/2.

The Hurst parameter describes the scaling relation that an instance h of the FGFs possesses:
if a > 0 is a constant, then h(az) has the same law as |a|Hh(z). Note that for the LGF we
have H = 0 and s = d/2. The fact that H = 0 is related to the fact that, as a random
generalized function, the LGF is exactly invariant under conformal transformations of the
domain (without rescaling the range) in any dimension, which is not true of FGFs when
s 6= d/2.3

When d = 1 and s ∈ (1/2, 3/2), we have H ∈ (0, 1) and the FGFs is (up to multiplicative
constant; see [LSSW14]) the fractional Brownian motion with Hurst parameter H.
It is a Gaussian random function h : R → R, except that instead of requiring h(0) = 0
(which would break the translation invariance of the process) we generally consider h to be
defined only modulo a global additive constant. This means that while the quantity h(t) is
not a well-defined random variable when t is fixed, the quantity h(t1)−h(t2) is a well-defined
random variable when t1 and t2 are given. The law of this process, the fractional Brownian
motion with Hurst parameter H, is then determined by the variance formula

Var
(
h(t1)− h(t2)

)
= |t1 − t2|2H .

3If Φ is a conformal automorphism of Rd, then we define the pullback h ◦Φ−1 of h to be the distribution
defined by (h ◦ Φ−1, φ̃) = (h, φ) whenever φ is a test function and φ̃ = |Φ′|−dφ ◦ Φ−1. (Here |Φ′|d is the
Jacobian—since Φ is conformal, this means that |Φ′(z)| is the factor by which Φ stretches distances of pairs
of points near z. And (h, φ) is the value of the distribution h integrated against φ.) Note that if h is a
continuous function (viewed as a distribution via the map φ→

∫
φ(z)h(z)dz), then h◦Φ−1 is the continuous

function given by the ordinary composition of h and Φ−1 (with this function again being interpreted as a
distribution).
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(Covariances of the form Cov
(
h(t1) − h(t2), h(t3) − h(t4)

)
can be derived from this.) More

general FGFs correlation formulas, which apply when H 6∈ (0, 1), are explained in [LSSW14].
When d = 1, the LGF corresponds to s = 1/2 and is thus in some sense the limit of the

fractional Brownian motion processes as H decreases to 0.4 For each d ≥ 1, it turns out that
when s ∈ (d/2, d/2+1) the FGFs is an a.s. continuous random function and has the property
that its restriction to any one-dimensional line has the law of a fractional Brownian motion
(up to a global additive constant)[LSSW14].5 In this range, FGFs is often called a fractional
Brownian field and has been studied in a variety of contexts (see e.g. [Lin93, BG99, ZS02]).
If s = (d + 1)/2 then the restriction of FGFs to any one-dimensional line is a Brownian
motion (up to a global additive constant), and the FGFs itself is known as Lévy’s Brownian
motion [Lév54, McK63, Lév65, Cie75]. The LGF in any dimension d ≥ 1 can be understood
as the limit of these (continuous) fractional Brownian fields obtained when s decreases to
d/2.

When s ≤ d/2 the FGFs can only be defined as a random distribution, and not as a
continuous function. In this sense, the value s = d/2 corresponding to the LGF is critical:
it divides FGFs fields that (like Brownian motion) can be defined as random a.s. continuous
functions from those that (like the LGF and the GFF) can only be defined as random
generalized functions [LSSW14].

1.3 Basic definitions

We recall a few basic definitions and facts that can be found in many textbooks on Fourier
analysis (see, e.g., Chapter 11 of [HN01]). Fix d ≥ 0. The Schwartz space S is the
space of smooth complex-valued functions on Rd whose partial derivatives all decay super-
polynomially. In other words,

S = {φ ∈ C∞(Rd) : ‖φ‖α,β <∞ ∀α, β},

where α and β are multi-indices (i.e., d-tuples of non-negative integers) and

||φ||α,β = sup
x∈Rd

|xαDβφ(x)|,

where xα and Dβ respectively mean product of multi-order α of the d coordinates of x,
and partial derivative of multi-order β with respect to those coordinates. One can define a
countable family of semi-norms by

φ→ sup
x∈Rd

|xαDβφ(x)|,

4When d = 1 the derivative of an FGFs process is always an FGFs−1 process, and hence all FGFs
process are obtained by starting with either a fractional Brownian motion or an LGF, and then integrating
or differentiating some integer number of times. From this, it is clear that if an FGFs, for s ∈ (1/2, 3/2],
is defined modulo additive constant, then the distributional derivatives FGFs−1, FGFs−2, etc. are defined
without an additive constant. Thus FGFs is defined as a random distribution without an additive constant
when s ≤ 1/2. Since the FGFs, for s ∈ (1/2, 3/2], is defined modulo additive constant, the indefinite
integrals FGFs+1, FGFs+2, etc. are respectively defined modulo linear polynomials, quadratic polynomials,
etc.[LSSW14]

5It is shown more generally in [LSSW14] that if s > 0, d ≥ 1, and k ≥ 1 then the FGFs in dimension d
can in some sense be obtained as the restriction of a (d+k) dimensional FGFs+k/2 to a d dimensional plane.
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for multi-indices α and β. These semi-norms are actually norms when restricted to S,
and they induce a locally convex topology on S, w.r.t. which S is metrizable, complete,
and separable [Pie72]. A tempered distribution h is a continuous linear map from the
Schwartz space to C. For φ ∈ S, we write (h, φ) for the value of this map applied to φ.
Let T denote the space of tempered distributions. Derivatives and integrals of tempered
distributions are defined by integration by parts

(Dβh, φ) = (−1)|β|(h,Dβφ),

where |β| is the sum of the indices of β, and the product of h with a function like xα can be
defined by

(xαh, φ) = (h, xαφ).

At first glance, T appears to be a fairly large and unwieldy space. However, the Schwartz
representation theorem states that for any u ∈ T , there is a finite collection uαβ : Rd → C of
bounded continuous functions, |α|+ |β| ≤ k, for some k <∞, such that

u =
∑

|α|+|β|≤k

xβDαuαβ.

In other words, tempered distributions are just (finite sums of) products of polynomials
and derivatives of bounded continuous functions [Mel07]. Another way to say this is that
T is the smallest linear space that contains all bounded continuous functions and is closed
under differentiation and monomial multiplication. (Equivalently, it is the smallest linear
space that includes the bounded continuous functions and is closed under differentiation and
the Fourier transform — see the Fourier transform discussion below.) It is often natural to
equip T with the weak-∗ topology (i.e., the weakest topology for which the maps h→ (h, φ)
are continuous for each φ ∈ S). In this topology h1, h2, . . . converge to h if and only if
(h1, φ), (h2, φ), . . . converge to (h, φ) for all φ ∈ S.

We also use (·, ·) to denote the standard L2(Rd) inner product defined by (f, g) =∫
f(x)ḡ(x)dx, where z̄ denotes the complex conjugate of z. (One can define this inner

product for elements of S and extend it to all of L2(Rd) by noting that L2(Rd) is the Hilbert
space completion of S w.r.t. this norm.) Throughout this paper, we define the Fourier trans-
form using the normalization that makes it a unitary transformation on the complex function
space L2(Rd), namely:

f̂(ω) := (2π)−d/2
∫
Rd

f(x)e−iω·xdx,

so that

f(x) = (2π)−d/2
∫
Rd

f̂(ω)eiω·xdω.

The Fourier transform is a continuous one-to-one operator on Schwartz space that changes
differentiation Dα to multiplication by xα, and vice versa. The Fourier transform also pre-
serves the L2 norm. Since S is dense in L2(Rd), the operator can be continuously extended to
a map from L2(Rd) to L2(Rd). The Fourier transform defined on S also induces a one-to-one
operator on the space T of tempered distributions: if h is a tempered distribution, then the
definition of ĥ is fixed by the identity for φ ∈ S

(ĥ, φ̂) = (h, φ). (4)
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Note that if h ∈ L2(Rd) then the map φ→ (h, φ) defined via the L2(Rd) inner product can
also be understood as a tempered distribution. When h ∈ L2(Rd) ⊂ T , the two definitions
of the Fourier transform given above (for L2(Rd) and for T ) coincide. We stress again that
the Fourier transform fixes each of the three spaces S ⊂ L2(Rd) ⊂ T .

A tempered distribution modulo additive constant can be understood in two
ways: as an equivalence class of tempered distributions (with two tempered distributions
considered equivalent if their difference is a constant function), or as a continuous linear
functional defined only on the subspace S0 of Schwartz space consisting of functions φ with∫
φ(z)dz = 0. It is not hard to see that these two notions are equivalent. A continuous linear

map φ→ (h, φ) on S is determined by its restriction to S0 together with the value of (h, φ)
for one fixed φ ∈ S \S0 (and knowing this value is equivalent to knowing the global additive
constant). Let T0 denote the space of tempered distributions modulo additive constant.

The Fourier transform of an element of T0, defined via (4) as above, is a continuous
linear functional on the Fourier transform of S0, i.e., on the subspace Ŝ0 of Schwartz space
consisting of functions that vanish at zero. Accordingly, denote by T̂0 the set of continuous
linear functionals on Ŝ0, so that T̂0 is the Fourier transform of T0.

A standard example of a random distribution is white noise: recall that the white noise
W on Rd is the so-called “standard Gaussian” random variable associated with the L2 inner
product (·, ·) on Rd. This means that if f1, f2, . . . are an orthonormal basis for L2(Rd), then
an instance of white noise can be written as W =

∑
i αifi, where the αi are i.i.d. N(0, 1) (i.e.,

normal with mean zero, variance one). The sum
∑

i αifi almost surely diverges pointwise,
but for each ρ ∈ L2(Rd), we can write

(W, ρ) :=
∑
i

(αifi, ρ),

a sum that converges almost surely. The random variables (W, ρ), for ρ ∈ L2(Rd) form a
Hilbert space of centered (i.e., mean-zero) Gaussian random variables with covariances given
by

Cov
[
(W, ρ1), (W, ρ2)

]
= (ρ1, ρ2). (5)

for all test functions ρ1 and ρ2 in L2. Hilbert spaces of centered Gaussian random variables
(where the covariance is the inner product) are discussed in much more detail in the reference
text [Jan97].

Note that, in particular, if ρ1 and ρ2 have disjoint support then (W, ρ1) and (W, ρ2)
are independent. Also, although there a.s. exist exceptional elements ρ ∈ L2(Rd) for which∑

i(αifi, ρ) does not converge, the sum does a.s. converge for all elements of S, and this allows
W to be a.s. defined as an element of T . This fact is explained (with more references and
detail) in [LSSW14]. White noise can be defined as the unique centered Gaussian random
tempered distribution for which (5) applies.

A complex white noise takes the form W1 + iW2 where W1 and W2 are independent
and each is a (real) white noise as defined above. The Fourier transform of a complex white
noise is itself a complex white noise.

Denote by ∆ the Laplacian operator. Note that ∆ is a continuous operator on S. If
f ∈ T then we can define −∆f via the integration by parts formula

(−∆f, φ) := (f,−∆φ),

8



for φ ∈ S. Thus the Laplacian also makes sense as a map from T to itself. Next, observe that
if ρ = (−∆)f then ρ̂(ω) = f̂(ω)|ω|2. That is, the operation −∆ corresponds to multiplication
of the Fourier transform by the function ω → |ω|2, in the sense that if φ ∈ S then(

(−∆)f, φ
)

= (| · |2f̂ , φ̂) := (f̂ , | · |2φ̂).

We can now define the powers (−∆)s/2 of the Laplacian, where s ∈ R, as the operators
that multiply a function’s Fourier transform by | · |s.(

(−∆)s/2f, φ
)

:= (| · |sf̂ , φ̂) = (f̂ , | · |sφ̂). (6)

However, we observe that multiplication by | · |s describes a continuous function from S to
itself only when s/2 is a non-negative integer: for other values of s, the RHS of (6) only
formally makes sense if all derivatives of φ̂ vanish at zero. Thus, in the most straightforward
sense, our definition of Laplacian powers only applies for positive integer values of s/2.
Another way to say this is to note that the middle expression in (6) is not necessarily defined,
because the product of a tempered distribution and a not-necessarily-smooth function like
| · |s is not necessarily a tempered distribution.

However, we can still consider on a case-by-case basis whether we can make sense of | · |sf̂
as a tempered distribution. If not, we can always at least make sense of the RHS of (6)
for some subspace of test functions φ. (For example, the RHS of (6) makes sense at least
whenever φ̂ and all of its derivatives vanish at the origin.) We take (6) to be the definition
of (−∆)s/2f , with the understanding that this restriction to a subspace of test functions is
sometimes necessary.

A more in depth discussion of the domain and range of the operator (−∆)s/2 appears
in the FGF survey [LSSW14], which also contains additional references to the functional
analysis literature. What will be important for us is that (−∆)s/2f is well-defined as a
tempered distribution modulo a global additive constant when f is a complex white noise
(in which case f̂ is also a complex white noise) and s = −d/2. This fact is derived in
[LSSW14] as a consequence of the Bochner-Minlos theorem. In this case, | · |sf̂ is a complex
white noise times the deterministic real valued function | · |s. This implies that if φ̂ is a real
test function in the Schwartz space then the real part of (| · |sf̂ , φ̂) has variance given by∫ (
|ω|sφ̂(ω)

)2
dω =

∫
|ω|−d

(
φ̂(ω)

)2
dω, which is easily seen to be finite if and only if φ̂(0) = 0.

(Similar statements hold for the imaginary part.) In this case, considering (−∆)s/2f only as
a tempered distribution modulo additive constant (i.e., as an element of T0) corresponds to
restricting to the subspace S0 of test functions φ for which φ̂(0) = 0.

1.4 LGF definitions

We will generally define the LGF to be a real-valued generalized function h (so that (h, φ)
is real when φ is real). However, we remark that it is often natural to consider a complex
analog of the LGF by writing h1 + ih2, where each hi is an independent real LGF. We will
give several equivalent definitions of the LGF on Rd below, each of which has a real and a
complex analog. In the definitions involving Fourier transforms, note that requiring h to be

real is formally equivalent to imposing the symmetry ĥ(z) = ĥ(−z). We will explain some
of the equivalences directly in the statement of Proposition 1.1 below.

9



Proposition 1.1. Each of the LGF definitions listed below describes a random element h of
T0. The corresponding probability measures on T0 are equivalent (up to multiplying h by a
deterministic constant).

1. A random h ∈ T0 (i.e., a random distribution modulo global additive constant) whose
law is the centered Gaussian determined by the covariance formula

Cov
[
(h, φ1), (h, φ2)

]
=

∫
Rd×Rd

− log |y − z|φ1(y)φ2(z)dydz, (7)

for all test functions φ1 and φ2 in S0.

2. A “standard Gaussian” in a particular Hilbert space that we view as a subspace of T0.
To construct that Hilbert space, first note that each element of S can be interpreted as
an element of T0 (by considering its equivalence class modulo global additive constant).
Then consider the Hilbert space closure of S ⊂ T0 w.r.t. the inner product

(f, g)d :=
(
| · |df̂ , ĝ

)
=
(
f̂ , | · |dĝ

)
=

∫
Rd

|z|df̂(z)ĝ(z)dz. (8)

The statement that h is a “standard Gaussian” means that we can write

h =
∑
i

αifi (9)

where αi are i.i.d. centered normal random variables and the fi are an orthonormal
basis for the Hilbert space described above. The sum converges a.s. within the space
T0.

3. A standard Gaussian in a particular Hilbert space: namely, the Hilbert space closure
of S ⊂ T0 w.r.t. the inner product

(f, g)d :=
(
(−∆)d/2f, g

)
=
(
f, (−∆)d/2g

)
=
(
(−∆)d/4f, (−∆)d/4g

)
, (10)

where (·, ·) denotes the standard L2 inner product and ∆ is the Laplacian. This
definition is formally equivalent to Definition 2 once one posits the identity

̂(−∆)af = | · |2af̂

and the fact that f → f̂ is an isometry of L2(Rd). This definition is especially natural
when d is a multiple of 4, since in this case (−∆)d/4 is a local operator on S, and
(f, f)d is simply the square of the L2 norm of (−∆)d/4f . Note that (−∆)d/2 is still a
local operator if d is merely a multiple of 2, which gives us an easy way to define the
middle expressions of (10). For odd values of d, one has to define (−∆)d/4 via Fourier
transforms (which amounts to returning to Definition 2).

4. A standard Gaussian in a particular Hilbert space: namely, the Hilbert space closure
of S ⊂ T0 w.r.t. the inner product

(f, g)d :=
(
(−∆)(d−2)/2f, g

)
∇ =

(
f, (−∆)(d−2)/2g

)
∇ =

(
(−∆)(d−2)/4f, (−∆)(d−2)/4g

)
∇,

10



where (·, ·)∇ denotes the standard Dirichlet inner product (f, g)∇ :=
∫
∇f(x)·∇g(x)dx.

This is equivalent to Definition 3 by the identity

(f, g)∇ = (−∆f, g) = (f,−∆g).

Nonetheless, this definition is especially natural when d− 2 is a multiple of 4, since in
this case (−∆)(d−2)/4 is a local operator and (f, f)d is simply the Dirichlet energy of
(−∆)(d−2)/4f .

5. (−∆)−d/4W where W is a real white noise. (Since W is by definition the standard
Gaussian in the Hilbert space L2(Rd), where the inner product is (f, g), this definition
is equivalent to Definition 3.)

6. The real part of the Fourier transform of |z|−d/2W (z), where W is complex white noise
on Rd. (This is formally equivalent to Definition 2, since |z|−d/2W (z) is the standard
Gaussian in the Hilbert space with inner product given by the RHS of (8).)

Proof. The Hilbert spaces described are all equivalent by definition. The fact that the
sums converge in T0 is shown in [LSSW14].

Proposition 1.2. If φ is a conformal automorphism of Rd, then the law of h◦φ agrees with
the law of h.

Proof. Consider the inversion map φ(z) = z/|z|2 and suppose that µ and ν are finite signed
measures on Rd, each with total mass zero. Then either direct calculation or geometrical
reasoning gives |z||w||z 1

|z|2 − w
1
|w|2 | = |z

|w|
|z| − w

|z|
|w| | = |z − w| and hence∫

log |z − w|dµ(z)dν(w) =

∫
log |φ(z)− φ(w)|dµ(z)dν(w).

By Definition 1 of Proposition 1.1, this implies the invariance of the law of the LGF under
the inversion map φ. A similar calculation implies invariance when φ is a translation or a
dilation. The proposition now follows from the well known fact (Liouville theorem) that for
d > 2 all conformal automorphisms of Rd are compositions of inversions, translations and
dilations.

Next, we would like to say that, in some sense, applying the operator “multiplication
by | · |−d/2” (which fails to be defined on the entire space of tempered distributions) to a
function’s Fourier transform corresponds to applying the operator “convolution with | · |−d/2”
(which also fails to be defined on the entire space of tempered distributions) to the function
itself. The first definition in the proposition below is inspired by this idea.

Proposition 1.3. The following are equivalent to the definitions given in Proposition 1.1.

1. A formal convolution of a real white noise W and the function |z|−d/2. Formally, this
means that h(a) =

∫
W (z)|a−z|−d/2dz, but this integral is almost surely undefined for

any given a (which makes sense, since the h we seek to define this way is a distribution,
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not a function, and cannot be defined pointwise). However, one can define hε to be
the convolution of W with

ψε(z) := |z|−d/21ε<|z|<1/ε.

This object can be defined pointwise, and we can construct h by taking the limit in
law as ε→ 0.

2. The formal integral

h(a) =

∫
C(a)

W
(
(x, y)

)
dxdy, (11)

where C(a) := {(x, y) : x ∈ Rd and 0 ≤ y ≤ |x− a|−d} and W is a real white noise on
Rd×[0,∞). The h defined this way is a distribution, not a function, and can be defined
precisely by first replacing C(a) with the subset Cε(a) := C(a)∩{(x, y) : ε < y < ε−1}
(so that the the approximation hε thus defined is a random continuous function), and
we can construct h by taking the limit in law as ε→ 0.

Proof. We will sketch the proof here. In each of the two cases above, we can compute
the variance of (hε, ρ) explicitly (assuming ρ is Schwartz with mean zero) and check that
as ε → 0 it converges to the variance of (h, ρ) when h an instance of the LGF. Since the
hε are all Gaussian, it follows from this that the hε converge in law to the LGF as ε → 0.
For any fixed ρ, the convergence also holds in L2, which implies almost sure convergence of
(hε, ρ) to a limit. A similar argument shows that for any countable dense collection of ρi,
the restriction of (hε, ·) converges almost surely to a limit with the law of the LGF restricted
to these test functions.

Definition 2 in Proposition 1.3 involves integrating white noise over an extra dimension
of space: intuitively one has a different white noise for each y (a convolution of white noise
with the indicator function of a ball) and h is the integral of these processes over y ∈ [0,∞).
This construction will in fact turn out to be closely related to another construction of the
LGF as a continuum analog of the additive Mandelbrot cascade, which we will describe in
Section 2. This construction, explained in more detail in Section 2, involves averaging a
continuum of rescaled instances of a stationary bounded-variance Gaussian random function
on Rd. Section 4 will describe a variety of ways to obtain the LGF as an integral of this sort,
following the method of Kahane.

One can find in [LSSW14] more detail on how to enlarge the space of test functions
beyond the Schwartz space. We cannot make sense of (h, ρ) when ρ is a δ-function (which
would correspond to h being defined pointwise) but we can sometimes make sense of (h, ρ)
when ρ represents a measure supported on a set of dimension strictly between 0 and d, so
that, for example, (h, ρ) represents the mean value of h on a line-segment. We will see that
(7) still holds for the random variables (h, ρ) defined this way. This allows one to make
precise the following so-called restriction property of the LGF (which is a special case of
a more general result explained in [LSSW14]):

Proposition 1.4. If h is an LGF on Rd, and a lower-dimensional subspace Λ of Rd is fixed,
then the restriction of h to Λ is an LGF on Λ.
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Proposition 1.4 is actually immediate from (7) once we know that (h, ρ) is well-defined
for test functions ρ supported on the lower dimensional subspace. The reader familiar with
the 2D GFF may find this property intriguing. It implies that no matter what d is, the
restriction of h to any fixed two-dimensional slice of Rd is just an ordinary 2D GFF. The
higher dimensional LGF can thus be understood as a way to couple together all of these
Gaussian free fields (one for each two-dimensional plane). All of the structure that exists
for the 2D GFF can be found on a two-dimensional slice of an LGF in Rd. For example, as
mentioned earlier, it was shown in [SS12] that even though the 2D GFF is a distribution,
not a continuous function, it is possible to define continuous zero-height “contour lines” of
the GFF, which are forms of the Schramm-Loewner evolution (SLE). Although we are not
able to do this, it seems natural to try to rigorously construct a level surface of the 3D LGF
(as in Figure 1) by joining together the contour lines defined on each plane in a family of
parallel planar slices of R3.

Sections 3 and 4 will establish Markov properties of h, decompositions of h into indepen-
dent sums, joint laws for the averages of h on circles and spheres, and various schemes for
approximating h.
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2 Comparison to cascades

If one types “log-correlated Gaussian field” into an online search engine, one finds that there
has a been a good deal of research on random fields that have approximately logarithmic
correlations (as opposed to the exactly logarithmic correlations enjoyed by the LGF).6 In
practice, many of the tools that are useful for studying the LGF can be applied equally well
to Gaussian random functions with approximately logarithmic correlations.

To motivate the definition of the LGF and build some intuition, we will first describe
one of these closely related families of random generalized functions: the so-called additive

6In contrast to our specific usage here, the phrase “log-correlated Gaussian field” is sometimes used more
broadly to describe approximately logarithmic fields.
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(a) Y1 (b) Y2

(c) Y3 (d) Y4

Figure 2: Possible instances of the independent random functions Y1, Y2, Y3, and Y4, re-
stricted to the unit square [0, 1]2 (with function values indicated by grey scale). The sum∑∞

k=0 Yk is a well-defined random distribution on R2. The sum
∑∞

k=−∞ Yk is well-defined as
a random distribution, modulo global additive constant, on [0,∞)2.

cascades constructed from branching random walks. In their simplest form, additive cas-
cades are defined as follows. Let Y0 be a random function from Rd to R that assigns an
independent mean-zero, unit-variance Gaussian random variable to each unit cube of Zd —
i.e., each cube obtained by translating [0, 1]d by an element of Zd. (The value assigned to
the measure-zero boundaries between cubes does not matter.) For each integer k, let Yk be
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an independent random function on Rd such that

Yk(·) =LAW Y0(2
k·). (12)

Thus, for each k the function Yk is a.s. piecewise constant, assigning a different random
value to each cube obtained by translating [0, 2−k]d by an element of 2−kZd, as illustrated in
Figure 2. We mention without proof the following facts. (These are not hard to verify, but
it would be a distraction to give detailed proofs here.)

1. The infinite sum
∑∞

k=0 Yk a.s. converges in the space of distributions to a limiting ran-
dom distribution (generalized function) Y + whose law is invariant under translations
of Rd by integer vectors (elements of Zd). In other words, there is a.s. a distribu-
tion Y + such that for each smooth, compactly supported test function φ, we have
(Y +, φ) =

∑∞
k=0(Yk, φ).

2. The infinite sum

Y = Y0 +
∞∑
k=1

(Yk + Y−k) (13)

also converges to a limit in the space of distributions understood modulo additive
constant (which amounts to limiting the space of test functions φ to those whose
global mean is zero) if we restrict our attention to [0,∞)d ⊂ Rd. This follows from
the convergence of

∑∞
k=0 Yk and the fact that if φ is compactly supported in [0,∞)d,

then the function Y−k is a.s. constant on the support of φ for all sufficiently large
k. However, the discontinuity of Zn := Y0 +

∑n
k=1(Yk + Y−k) at the origin becomes

arbitrarily large as n→∞, so the limit does not converge on all of Rd.

3. Suppose x1, x2 are distinct points in [0,∞)d with irrational coordinates. Let L(x1, x2)
be the smallest k such that x1 and x2 lie in different cubes of 2−kZd. Observe that
Yk(x1) = Yk(x2) a.s. when k < L(x1, x2) and Yk(x1) and Yk(x2) are independent when
k ≥ L(x1, x2). This implies that

Cov
(
Zn(x1), Zn(x2)

)
= n+ L(x1, x2) (14)

whenever n is larger than |L(x1, x2)|. When we compute covariances of differences (and
n > |L(x1, x2)|) the n terms on the right side of (14) cancel out:

Cov
[
Zn(x1)−Zn(x2), Zn(x3)−Zn(x4)

]
= L(x1, x3)−L(x1, x4)−L(x2, x3) +L(x2, x4).

Taking the n → ∞ limit, we obtain that for any smooth mean-zero test functions φ1

and φ2 compactly supported on [0,∞)d,

Cov
[
(Y, φ1), (Y, φ2)

]
=

∫
[0,∞)d×[0,∞)d

L(y, z)φ1(y)φ2(z)dydz. (15)

The LGF is a continuum version of the random distribution Y defined above, satisfying
(7) in place of (15), which amounts to replacing L(x, y) by − log |x − y|. (Note that the
function L(x, y) is in some sense a discrete analog of the function − log2 |x− y|.) However,
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unlike Y , the LGF is defined on all of Rd and it has a law that is invariant under arbitrary
translations, rotations, and dilations (and not only dilations by powers of 2). Nonetheless,
we will see in Section 4 that the LGF can still be defined via (12) and (13) provided we
replace Y0 with an appropriate stationary bounded-variance Gaussian random function on
Rd (indeed there are many choices for Y0 that suffice). This Y0 can take the form of a white
noise convolved with a bump function, so that Y0(x1) and Y0(x2) are independent when
|x1 − x2| is large enough. Alternatively, we can let Yk denote the portion of the integral in
(11) corresponding to 2dk < y < 2d(k+1). (It is easy to see that (12) holds for the Yk defined
this way.)

Thus, much of the intuition suggested by the cascade model (where each k represents a
“scale” and there is an independent constant-order-variance noise at each scale) is valid for
the LGF as well.

Remark 2.1. A more general class of random distributions on [0,∞)d (modulo additive
constant) can be constructed by replacing

∑
k∈Z Yk with

∑
k∈Z α

kYk. The latter are invariant
under transformations that dilate the domain [0,∞)d by a factor of 2 and the range R by a
factor of α. Just as

∑
k∈Z Yk is analogous to the LGF, the more general family

∑
k∈Z α

kYk
is analogous to the general family of FGFs.

Remark 2.2. If in the construction of Y above we made Y0 constant on integer translations
of [−1/2, 1/2]d, instead of integer translations of [0, 1]d, then the corresponding random
distribution Y could be defined on all of Rd, instead of just on [0,∞)d, since the support of
any compactly supported test function lies in 2k[−1/2, 1/2]d when k is large enough.

3 Orthogonal decompositions and Markov properties

3.1 Conditional expectation on a bounded domain

Consider a bounded subdomain D ⊂ Rd. Let HARMD be the (f, g)LGF Hilbert-space closure
of the space of smooth functions f for which (−∆)d/2f = 0 on D. Let SUPPD be the Hilbert-
space closure of the space of smooth, compactly supported functions on D. The following is
a relatively simple observation (see [LSSW14] for a proof of a generalization of this statement
that applies to general d and s; an analogous result for the GFF appears in [She07]):

Proposition 3.1. The spaces HARMD and SUPPD are orthogonal subspaces, and indeed
they form an orthogonal decomposition of the entire LGF Hilbert space described by (3).

The projection of an instance h of the LGF onto HARMD gives the conditional expecta-
tion of h in D given the values of h outside of D. Similarly, we can define the zero-boundary
LGF on D to be the projection of h onto SUPPD (a construction explained more generally
in [LSSW14]). When d is even, the operator (−∆)d/2 is simply a positive integer power of
the ordinary Laplacian, and the functions in HARMD satisfy ∆d/2f = 0. Thus, to under-
stand conditional expectations of h on D (given the observed field outside of D) one needs
to understand what functions in HARMD are like.

16



3.2 Radially symmetric functions

In light of the previous section, it will be useful to us to better understand functions g that
satisfy (−∆)d/2g = 0. We begin with spherically symmetric functions. The following is a
straightforward calculation of the Laplacian of powers of the d-dimensional norm function
x→ |x|:

g(x) = |x|k =⇒ ∆g(x) = k(k + d− 2)|x|k−2, (16)

and

g(x) = log |x| =⇒ ∆g(x) = (d− 2)|x|−2. (17)

Note that ∆g(x) = 0 away from the origin if d = 2 and g(x) = log |x|; and similarly,
∆g(x) = 0 away from the origin if d 6= 2 and either g(x) = |x|2−d (in which case g(x) is a
multiple of Green’s function) or g(x) = |x|0. This implies the following:

Proposition 3.2. Suppose d ≥ 2 is even. We have (−∆)d/2g(x) = 0 for x ∈ R \ {0}
whenever g(x) = log |x|. If g(x) = |x|k then we have (−∆)d/2g(x) = 0 for x ∈ R \ {0} if and
only if k is even and 2− d ≤ k ≤ d− 2.

Readers familiar with the Gaussian free field in dimension d = 2 will recall that the
radially symmetric harmonic functions, namely the linear span of the function 1 and log | · |,
play an important role. Within this linear span, we can find a function that takes any
specified value on the circle ∂Br(0) and any other specified value on ∂Bs(0), where 0 < r < s.
The function can be interpreted as the expectation of a free field on the annulus {z : r <
|z| < s} with these boundary conditions. Proposition 3.2 suggests that in a general even
dimension d, the analogous space is spanned by d spherically harmonic functions. Within
the linear span of these functions, we can find a function such that it and its first d/2 − 1
radial derivatives take specified values on ∂Br(0) and ∂Bs(0). We interpret this function as
the expectation of the LGF with the specified values and derivative values on the annulus
boundary.

3.3 Other spherical harmonics

We follow here the spherical coordinate decomposition given for the GFF in [JLS14]. We
write the Laplacian in spherical coordinates as

∆ = r1−d
∂

∂r
rd−1

∂

∂r
+ r−2∆Sd−1 . (18)

A polynomial ψ ∈ R[x1, . . . , xd] is called harmonic if ∆ψ is the zero polynomial. (It is called
bi-harmonic, tri-harmonic, etc. if ∆2ψ = 0, ∆3ψ = 0, etc.) Suppose that ψ is harmonic and
homogeneous of degree k. Letting f = ψ|Sd−1 , we have ψ(ru) = f(u)rk for all u ∈ Sd−1 and
r ≥ 0. Setting (18) to zero at r = 1 yields

∆Sd−1f = −k(k + d− 2)f,

i.e., f is an eigenfunction of ∆Sd−1 with eigenvalue −k(k + d− 2). Note that the expression
−k(k + d − 2) is unchanged when the nonnegative integer k is replaced with the negative
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integer k′ := −(d− 2)− k. Thus f(u)rk
′

is also harmonic on Rd \ {0}. We can also use (18)
to precisely derive the bi-harmonic, tri-harmonic, etc. functions that are given by f(u)g(r)
in spherical coordinates where f is spherical harmonic.

We mention a few basic results about spherical harmonics that appear, e.g., in [SW71].
Assume d ≥ 2. Let Ak be the set of homogenous degree k harmonic polynomials on Rd and
let Hk be the space of functions on the unit sphere Sd−1 ⊂ Rd obtained by restriction from
Ak. Then the dimension of Hk is given by(

d+ k − 1

d− 1

)
−
(
d+ k − 3

d− 1

)
,

which is finite. An important property is that the spaces Hk are pairwise orthogonal (for
the standard inner product of L2(Sd−1)) and the sum is dense in L2(Sd−1).

Now we will discuss how to describe the LGF in spherical coordinates, which will give us
a natural way to describe a higher dimensional Gaussian field with a countable collection of
one-dimensional Gaussian fields. (A more general version of this story appears in [LSSW14].)
For each k, let {ψk,j} be an orthonormal basis of Hk, where 1 ≤ j ≤ dimHk. Then let Hk,j

denote the space of functions on all of Rd that have the form

ψ(ur) = ψk,j(u)f(r),

whenever u is in the unit sphere and r ∈ [0,∞), with f : [0,∞) → R being a continuous
and sufficiently smooth function. More precisely, let Hk,j be the Hilbert space closure, with
respect to the inner product (·, ·)d, of the set of smooth functions of this type.

Note that the LGF is a standard Gaussian on the Hilbert space spanned by the orthogonal
subspaces Hk,j. Thus, we can write an instance h of the LGF as a sum

h =
∞∑
k=0

dimHk∑
j=1

hk,j,

where the hk,j are independent standard Gaussians on the space Hk,j.
Note that by the definition of the spaces Hk,j, we can write:

hk,j(ru) = h̃k,j(r)ψk,j(u),

for u ∈ Sd−1 and r ∈ [0,∞), where h̃k,j is a one-dimensional Gaussian field from [0,∞) to
R.

In order to describe h̃k,j, it is useful to recall the spherical coordinate Laplacian (18).
Indeed, we have

∆ψ(ur) = r1−d
∂

∂r

(
rd−1f ′(r)

)
ψk,j(u)− k(k + d− 2)r−2ψ(ur) (19)

=
(
r−1(d− 1)f ′(r) + f ′′(r)− k(k + d− 2)r−2f(r)

)
ψk,j(u). (20)

(21)

This gives us a definition of the Laplacian restricted to the space Hk,j, i.e.

Lk,d(r, f)(r) := r−1(d− 1)f ′(r) + f ′′(r)− k(k + d− 2)r−2f(r).
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This restriction can now be viewed as a one-dimensional object: i.e, an operator that maps
a function on [0,∞) to another function on [0,∞). Therefore, h̃k,j is the standard Gaussian
on the Hilbert space defined by the scalar product∫ ∞

0

rd−1(−Lk,d)d/2(r, f)(r)g(r)dr.

When d is a multiple of four, we can write this as∫ ∞
0

rd−1(−Lk,d)d/4(r, f)(r)(−Lk,d)d/4(r, g)(r)dr.

When d is two more than a multiple of 4, we can use the identity

(f, g)d =
(
(−∆)(d−2)/4f, (−∆)(d−2)/4g

)
∇.

In each case, we find that the corresponding norm obtained on functions f : R+ → R is an
integral over r of a quantity depending on r, f(r), f ′(r), f ′′(r), . . . , f (d/2+1)(r).

It turns out that the hk,j are continuous functions when d ≥ 2 and are d/2 − 1 times
differentiable for general even d > 2 [LSSW14]. From this and the above discussion it follows
that if we are given the values and first d/2 − 1 derivatives of h̃k,j at a fixed value s, then
conditionally the restriction of h̃k,j to [0, s) is independent of the restriction of h̃k,j to (s,∞].

By combining the results for each of the Hk,j spaces, we obtain the entire conditional law
of the LGF inside of a sphere of radius s, given the values of the LGF outside. We find in
particular that this law only depends on the values and first d/2 − 1 derivatives of each of
the h̃k,j at s. This is the Markov property mentioned in the introduction. Since the LGF is
conformally invariant, these observations also determine the conditional law of the LGF on
one side of a d− 1 dimensional hyperplane given its values on the other side.

Finally, we remark that one could in principle also write r = et for t ∈ R, and write the
Laplacian in terms of the t parameter. In this way, one would obtain a map from functions
on all of R to functions on all of R. The (small) advantage to this approach is that the
conformal symmetry with respect to the change r → 1/r then reduces to a symmetry with
respect to the change t → −t. In t coordinates, one has both translation and reflection
invariance of the Laplacian operator.

4 Cutoffs and approximations

4.1 Kahane decomposition

We discuss different kinds of “cutoffs” which are essentially ways to write the LGF (or analogs
on unbounded or bounded domains) as a sum of two independent pieces, one of which looks
like the LGF on small scales (but looks approximately constant on large scales) and one of
which looks like the LGF on large scales (and is approximately constant on small scales).

The most straightforward way to do this is to recall from Proposition 1.1 that when h
is a complex LGF, we can write its Fourier transform ĥ(z) = |z|−d/2W , where W is white
noise. One can write ĥ as a sum of two terms as follows:

ĥ(z) = |z|−d/21|z|≤1W (z) + |z|−d/21|z|>1W (z),
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and applying the inverse Fourier transform to these pieces gives a way to write h as a sum
of two terms. Then, one can decompose further and write h =

∑∞
j=−∞ hj where

ĥj(z) = |z|−d/212j≤z<2j+1W (z).

Since hj and hj+1 agree in law (up to a scaling of space by a constant factor) this construction
is rather analogous to the additive cascade model in Section 2.

4.1.1 Whole plane approximations

We will now discuss a decomposition scheme (in the spirit of the multiplicative chaos con-
structions of Kahane [Kah85, ARV13]) that allows us to decompose the LGF into a contin-
uum of independent pieces, each corresponding to a different scale, in a translation and scale
invariant way. See [DRSV12, DRSV14] for more details and references.

We consider a family of centered stationary Gaussian processes ((Xt(x))x∈Rd)t≥0 where,
for each t ≥ 0, the process (Xt(x))x∈Rd has covariance given by:

Kt(x) = E[Xt(0)Xt(x)] =

∫ et

1

k(ux)

u
du, (22)

for some covariance kernel k satisfying k(0) = 1, of class C1 and vanishing outside a compact
set. It is natural to let k be the covariance kernel describing the convolution of white noise
on Rd with a compactly supported test function. A convenient construction of X is the
following. Write k as the Fourier transform of a smooth nonnegative function g ∈ L2(Rd)
and define

f(x) = (2π)−d/4
√̂
g

in order to get k = f ∗ f . Then we consider a white noise W on Rd × R+ and we define

Xt(x) =

∫
Rd×[1,et]

f(y − ux)u−1/2W (dy, du).

It can be checked that

E[Xt(x)Xt′(x
′)] =

∫ emin(t,t′)

1

k(u(x− x′))
u

du,

in such a way that (22) is valid and the process (Xt(x) −Xs(x))x∈Rd is independent of the
processes

(
(Xu(x))x∈Rd

)
u≤s for all s < t. Put in other words, the mapping t 7→ Xt(·) has

independent increments. This allows to stack independent innovations so as to recover, as
t→∞, a Gaussian random distribution X with covariance kernel given by

E[X(x)X(x′)] =

∫ ∞
1

k(u(x− x′))
u

du.

The important thing is that in this Kahane approach, when one integrates log u from 0 to
∞, one obtains (modulo additive constant) the whole plane LGF. The object one obtains by
just integrating between 0 and t (as we do to obtain Xt) can be understood as the expectation
of the LGF given the information in this range.
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4.1.2 Kahane’s cutoff on bounded domains

Kahane originally considered centered random Gaussian distributions X the covariance ker-
nels of which can be rewritten as

K(x, y) =
∑
n≥1

kn(x, y)

for some sequence (kn)n of continuous covariance kernels. Thus there exists a sequence (Y n)n
of independent centered Gaussian processes such that

E[Y n(x)Y n(y)] = kn(x, y).

A sequence of cutoffs/approximations of X is then given by

∀x ∈ D ⊂ Rd, Xn(x) =
n∑
k=1

Y k(x).

From now on, we stick to the notations of Subsection 3.1. As suggested in [DS11] in the case
of the two-dimensional GFF, a natural choice of cutoffs/approximations of the LGF can be
achieved by choosing

kn(x, y) = (−λn)−
d
2 en(x)en(y),

corresponding to Y n(x) = (−λn)−
d
4βnen(x), where λn and en denote the eigenvalues and

eigenfunctions of the Dirichlet Laplacian on D, and βn i.i.d. centered normal random vari-
ables. The important point here is that the approximating sequence (Xn)n can be almost
surely defined as a function of the whole LGF distribution X in terms of projections onto
an orthonormal basis of the Dirichlet Laplacian.

In dimension 2, a construction of the GFF with Dirichlet boundary conditions, close to
that in Subsection 4.1.1, has been suggested in [RV11]. Consider a bounded open domain D
of R2. The Green function of the Laplacian can then be rewritten as

GD(x, y) =

∫ ∞
0

pD(t, x, y)dt,

where pD is the (sub-Markovian) semi-group of a Brownian motion B killed upon touching
the boundary of D, namely for a Borel set A ⊂ D,∫

A

pD(t, x, y) dy = P x(Bt ∈ A, TD > t),

with TD = inf{t ≥ 0, Bt 6∈ D}. Note that, for each t > 0, pD(t, x, y) is a continuous
symmetric and positive definite kernel on D. Therefore, by considering a white noise W
distributed on D × R+, we define

Xt(x) =

∫
D×[e−2t,∞]

pD(
s

2
, x, y)W (dy, ds).

One can check that

E[Xt(x)Xt(x
′)] =

∫ ∞
e−2t

pD(s, x, x′) ds,

and that the process (Xt(x) − Xs(x))x∈D is independent of the processes
(
(Xu(x))x∈D

)
u≤s

for all s < t, allowing the possibility of dealing with independent innovations. For finite t,
Xt is a cutoff approximation of the GFF that is obtained by taking t =∞.

21



4.2 LGF in dimension 1: financial volatility and cutoffs

We briefly recall a cutoff-based construction of the LGF that appeared in work on the
volatility of financial markets involving one of the current authors [DRV12]. It is proposed
in [BKM13], based on some empirical data, that the log volatility of many assets (e.g., stocks,
currencies, indices) can be modeled by a Gaussian random distribution hT living in T and
with the following covariance structure (for test functions φ1, φ2):

Cov
[
(hT , φ1), (hT , φ2)

]
=

∫
R×R

log+

T

|y − z|
φ1(y)φ2(z)dydz, (23)

where log+(x) = max(log(x), 0) and T is the so-called correlation length. When calibrated
on real data, one sometimes finds a T which is larger than the calibration window (see
[BKM13]). If T is larger than the window of time being considered, then it makes sense to
replace T by ∞ in (23) and consider the log volatility as an element of T0. This was the
framework considered in [DRV12] to forecast volatility. This gives another construction of
the LGF in dimension 1, namely as the limit when T →∞ of hT in the space T0.
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[DRSV12] Bertrand Duplantier, Rémi Rhodes, Scott Sheffield, and Vincent Vargas. Critical
Gaussian Multiplicative Chaos: Convergence of the Derivative Martingale. ArXiv
e-prints, 2012, 1206.1671. To appear in Ann. Probab. (2014).
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[Lin93] Tom Lindstrøm. Fractional Brownian fields as integrals of white noise. Bull.
London Math. Soc., 25(1):83–88, 1993.

23



[LSSW14] Asad Lodhia, Scott Sheffield, Xin Sun, and Samuel S. Watson. Fractional Gaus-
sian fields: a survey. 2014. In preparation.

[McK63] H.P. McKean, Jr. Brownian motion with a several-dimensional time. Theory of
Probability & Its Applications, 8(4):335–354, 1963.

[Mel07] Richard Melrose. Introduction to microlocal analysis. Lecture notes from courses
taught at MIT, 2007.

[PAA+13] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Ar-
naud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Ban-
day, and et al. Planck 2013 results. XXII. Constraints on inflation. ArXiv e-prints,
March 2013, 1303.5082.

[Pie72] Albrecht Pietsch. Nuclear locally convex spaces, volume 66. Springer-Verlag,
1972.

[ROS14] Xavier Ros-Oton and Joaquim Serra. The Dirichlet problem for the fractional
Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9), 101(3):275–
302, 2014, 1207.5985.
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