4 research outputs found

    CFBM - A Framework for Data Driven Approach in Agent-Based Modeling and Simulation

    Get PDF
    Recently, there has been a shift from modeling driven approach to data driven approach in Agent Based Modeling and Simulation (ABMS). This trend towards the use of data-driven approaches in simulation aims at using more and more data available from the observation systems into simulation models [1, 2]. In a data driven approach, the empirical data collected from the target system are used not only for the design of the simulation models but also in initialization, evaluation of the output of the simulation platform. That raises the question how to manage empirical data, simulation data and compare those data in such agent-based simulation platform. In this paper, we first introduce a logical framework for data driven approach in agent-based modeling and simulation. The introduced framework is based on the combination of Business Intelligence solution and a multi-agent based platform called CFBM (Combination Framework of Business intelligence and Multi-agent based platform). Secondly, we demonstrate the application of CFBM for data driven approach via the development of a Brown Plant Hopper Surveillance Models (BSMs), where CFBM is used not only to manage and integrate the whole empirical data collected from the target system and the data produced by the simulation model, but also to initialize and validate the models. The successful development of the CFBM consists not only in remedying the limitation of agent-based modeling and simulation with regard to data management but also in dealing with the development of complex simulation systems with large amount of input and output data supporting a data driven approach

    Real-time supply chain simulation: a big data-driven approach

    Get PDF
    Simulation of Supply Chains comprises huge amounts of data, resulting in numerous entities flowing in the model. These networks are highly dynamic systems, where entities' relationships and other elements evolve with time, paving the way for real-time Supply Chain decision-support tools capable of using real data. In light of this, a solution comprising of a Big Data Warehouse to store relevant data and a simulation model of an automotive plant, are being developed. The purpose of this paper is to address the modelling approach, which allowed the simulation model to automatically adapt to the data stored in a Big Data Warehouse and thus adapt to new scenarios without manual intervention. The main characteristics of the conceived solution were demonstrated, with emphasis to the real-time and the ability to allow the model to load the state of the system from the Big Data Warehouse.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2019 and by the Doctoral scholarship PDE/BDE/114566/2016 funded by FCT, the Portuguese Ministry of Science, Technology and Higher Education, through national funds, and co-financed by the European Social Fund (ESF) through the Operational Programme for Human Capital (POCH)

    On the use of simulation as a Big Data semantic validator for supply chain management

    Get PDF
    Simulation stands out as an appropriate method for the Supply Chain Management (SCM) field. Nevertheless, to produce accurate simulations of Supply Chains (SCs), several business processes must be considered. Thus, when using real data in these simulation models, Big Data concepts and technologies become necessary, as the involved data sources generate data at increasing volume, velocity and variety, in what is known as a Big Data context. While developing such solution, several data issues were found, with simulation proving to be more efficient than traditional data profiling techniques in identifying them. Thus, this paper proposes the use of simulation as a semantic validator of the data, proposed a classification for such issues and quantified their impact in the volume of data used in the final achieved solution. This paper concluded that, while SC simulations using Big Data concepts and technologies are within the grasp of organizations, their data models still require considerable improvements, in order to produce perfect mimics of their SCs. In fact, it was also found that simulation can help in identifying and bypassing some of these issues.This work has been supported by FCT (Fundacao para a Ciencia e Tecnologia) within the Project Scope: UID/CEC/00319/2019 and by the Doctoral scholarship PDE/BDE/114566/2016 funded by FCT, the Portuguese Ministry of Science, Technology and Higher Education, through national funds, and co-financed by the European Social Fund (ESF) through the Operational Programme for Human Capital (POCH)
    corecore