5,607 research outputs found

    CSI/MMC studies for improving jitter performance for large multi-payload platforms

    Get PDF
    This report includes: (1) introduction to mirror motion compensation (MMS); (2) EOS platform model and disturbance definition; (3) instrument jitter response; (4) modeling uncertainties, which includes frequency, damping, lag filter, and mirror inertia; (5) multiple disturbances; (6) feedback; and (7) summary

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Schematic Cut elimination and the Ordered Pigeonhole Principle [Extended Version]

    Full text link
    In previous work, an attempt was made to apply the schematic CERES method [8] to a formal proof with an arbitrary number of {\Pi} 2 cuts (a recursive proof encapsulating the infinitary pigeonhole principle) [5]. However the derived schematic refutation for the characteristic clause set of the proof could not be expressed in the formal language provided in [8]. Without this formalization a Herbrand system cannot be algorithmically extracted. In this work, we provide a restriction of the proof found in [5], the ECA-schema (Eventually Constant Assertion), or ordered infinitary pigeonhole principle, whose analysis can be completely carried out in the framework of [8], this is the first time the framework is used for proof analysis. From the refutation of the clause set and a substitution schema we construct a Herbrand system.Comment: Submitted to IJCAR 2016. Will be a reference for Appendix material in that paper. arXiv admin note: substantial text overlap with arXiv:1503.0855

    Importing SMT and Connection proofs as expansion trees

    Get PDF
    Different automated theorem provers reason in various deductive systems and, thus, produce proof objects which are in general not compatible. To understand and analyze these objects, one needs to study the corresponding proof theory, and then study the language used to represent proofs, on a prover by prover basis. In this work we present an implementation that takes SMT and Connection proof objects from two different provers and imports them both as expansion trees. By representing the proofs in the same framework, all the algorithms and tools available for expansion trees (compression, visualization, sequent calculus proof construction, proof checking, etc.) can be employed uniformly. The expansion proofs can also be used as a validation tool for the proof objects produced.Comment: In Proceedings PxTP 2015, arXiv:1507.0837

    Solar electric propulsion mission requirements study Final report

    Get PDF
    Analysis of solar electric propulsion for unmanned exploration of solar syste
    corecore