14 research outputs found

    CEBS—Chemical Effects in Biological Systems: a public data repository integrating study design and toxicity data with microarray and proteomics data

    Get PDF
    CEBS (Chemical Effects in Biological Systems) is an integrated public repository for toxicogenomics data, including the study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. CEBS contains data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. CEBS is designed to permit the user to query the data using the study conditions, the subject responses and then, having identified an appropriate set of subjects, to move to the microarray module of CEBS to carry out gene signature and pathway analysis. Scope of CEBS: CEBS currently holds 22 studies of rats, four studies of mice and one study of Caenorhabditis elegans. CEBS can also accommodate data from studies of human subjects. Toxicogenomics studies currently in CEBS comprise over 4000 microarray hybridizations, and 75 2D gel images annotated with protein identification performed by MALDI and MS/MS. CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Additionally, clinical chemistry and histopathology findings from over 1500 animals are included in CEBS. CEBS/BID: The BID (Biomedical Investigation Database) is another component of the CEBS system. BID is a relational database used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee (in preparation). BID has been shared with Health Canada and the US Environmental Protection Agency. CEBS is available at http://cebs.niehs.nih.gov. BID can be accessed via the user interface from https://dir-apps.niehs.nih.gov/arc/. Requests for a copy of BID and for depositing data into CEBS or BID are available at http://www.niehs.nih.gov/cebs-df/

    An analysis of extensible modelling for functional genomics data

    Get PDF
    BACKGROUND: Several data formats have been developed for large scale biological experiments, using a variety of methodologies. Most data formats contain a mechanism for allowing extensions to encode unanticipated data types. Extensions to data formats are important because the experimental methodologies tend to be fairly diverse and rapidly evolving, which hinders the creation of formats that will be stable over time. RESULTS: In this paper we review the data formats that exist in functional genomics, some of which have become de facto or de jure standards, with a particular focus on how each domain has been modelled, and how each format allows extensions. We describe the tasks that are frequently performed over data formats and analyse how well each task is supported by a particular modelling structure. CONCLUSION: From our analysis, we make recommendations as to the types of modelling structure that are most suitable for particular types of experimental annotation. There are several standards currently under development that we believe could benefit from systematically following a set of guidelines

    Standardization Initiatives in the (eco)toxicogenomics Domain: A Review

    Get PDF
    The purpose of this document is to provide readers with a resource of different ongoing standardization efforts within the ‘omics’ (genomic, proteomics, metabolomics) and related communities, with particular focus on toxicological and environmental applications. The review includes initiatives within the research community as well as in the regulatory arena. It addresses data management issues (format and reporting structures for the exchange of information) and database interoperability, highlighting key objectives, target audience and participants. A considerable amount of work still needs to be done and, ideally, collaboration should be optimized and duplication and incompatibility should be avoided where possible. The consequence of failing to deliver data standards is an escalation in the burden and cost of data management tasks

    MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics

    Get PDF
    Background: The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5-6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions. Description: MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML) are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at http://dbkgroup.org/memo/. Conclusions: The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion

    Pluripotent Stem Cell Biology

    Get PDF
    Pluripotent stem cells have the potential to revolutionize treatment options for a range of diseases and conditions. This book presents recent advances in our understanding of the biological mechanisms of stem cell self-renewal, reprograming and regeneration. Also covered are novel methodological advances in the culture, purification and use of stem cells, as well as the ethical and moral dilemmas of embryo donation and adoption. These advances will shape the utilization of stem cells for future basic and applied applications
    corecore