68 research outputs found

    Final report of the EURISOL Design Study (2005-2009) A Design Study for a European Isotope-Separation-On-Line Radioactive Ion Beam Facility

    Get PDF
    European Commission Contract N°515768 RIDS Published by GANI

    Elements of Ion Linear Accelerators, Calm in The Resonances, Other_Tales

    Full text link
    The main part of this book, Elements of Linear Accelerators, outlines in Part 1 a framework for non-relativistic linear accelerator focusing and accelerating channel design, simulation, optimization and analysis where space charge is an important factor. Part 1 is the most important part of the book; grasping the framework is essential to fully understand and appreciate the elements within it, and the myriad application details of the following Parts. The treatment concentrates on all linacs, large or small, intended for high-intensity, very low beam loss, factory-type application. The Radio-Frequency-Quadrupole (RFQ) is especially developed as a representative and the most complicated linac form (from dc to bunched and accelerated beam), extending to practical design of long, high energy linacs, including space charge resonances and beam halo formation, and some challenges for future work. Also a practical method is presented for designing Alternating-Phase- Focused (APF) linacs with long sequences and high energy gain. Full open-source software is available. The following part, Calm in the Resonances and Other Tales, contains eyewitness accounts of nearly 60 years of participation in accelerator technology. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10)Comment: 652 pages. Some hundreds of figures - all images, there is no data in the figures. (September 2023) The LINACS codes are released at no cost and, as always,with fully open-source coding. (p.2 & Ch 19.10

    IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems

    Get PDF
    IFMIF sera constitué de deux accélérateurs de deutons délivrant des faisceaux continus de 125mA et d énergie 40MeV qui bombarderont une cible de lithium liquide. Face à cette très haute puissance faisceau de 10 MW, de nouveaux défis doivent être relevés pour le développement de tels accélérateurs. C est pour cette raison qu a été prise la décision de construire un accélérateur prototype, LIPAc (Linear IFMIF Prototype Accelerator) ayant les mêmes caractéristiques faisceau qu IFMIF, mais avec une énergie limitée à 9MeV. Dans le cadre de cette thèse, des instruments de diagnostics faisceau ont été développés pour IFMIF et LIPAc. Ces diagnostics concernent des moniteurs de pertes faisceau ainsi que des profileurs transverse de faisceau travaillant en mode intercepteur ou non.Pour la surveillance des pertes faisceau, des chambres à ionisation et des détecteurs au diamant ont été testés et calibrés en neutrons et en g dans la gamme en énergie de LIPAc. Lors de ces expériences, pour la première fois des diamants ont été testés avec succès à des températures cryogéniques. Pour les profileurs interceptant le faisceau, des simulations thermiques ont été réalisées afin d assurer leur bon fonctionnement. Pour les profileurs n interceptant pas le faisceau, des moniteurs basés sur l ionisation du gaz résiduel (IPM) contenu dans le tube faisceau ont été développés. Un prototype a été construit et testé, puis s inspirant de ce retour d expérience les IPMs finals ont été conçus et construits. Pour contrecarrer la charge d espace générée par le faisceau, un algorithme a été élaboré afin de reconstruire le profil réel du faisceau.The IFMIF accelerator will accelerate two 125mA continuous wave (cw) deuteron beams up to 40MeV and blasts them onto a liquid lithium target to release neutrons. The very high beam power of 10MW pose unprecedented challenges for the accelerator development. Therefore, it was decided to build a prototype accelerator, the Linear IFMIF Prototype Accelerator (LIPAc), which has the very same beam characteristic, but is limited to 9 MeV only. In the frame of this thesis, diagnostics devices for IFMIF and LIPAc have been developed. The diagnostics devices consist of beam loss monitors and interceptive as well as non-interceptive profile monitors. For the beam loss monitoring system, ionization chambers and diamond detectors have been tested and calibrated for neutron and g radiation in the energy range expected at LIPAc. During these tests, for the first time, diamond detectors were successfully operated at cryogenic temperatures. For the interceptive profilers, thermal simulations were performed to ensure safe operation. For the non-interceptive profiler, Ionization Profile Monitors (IPMs) were developed. A prototype has been built and tested, and based on the findings, the final IPMs were designed and built. To overcome the space charge of accelerator beam, a software algorithm was written to reconstruct the actual beam profile.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    4th CARE-HHH-ABI Workshop on Simulation of BPM Front-End Electronics and Special Mechanical Designs

    Get PDF

    Linac4 Technical Design Report

    Get PDF
    Linac4 is an H- linear accelerator, intended to replace Linac2 as injector to the PS Booster (PSB). By delivering to the PSB a beam at 160 MeV energy, Linac4 will provide the conditions to double the brightness and intensity of the beam from the PSB, thus removing the first bottleneck towards higher brightness for the LHC and simplifying operation. Moreover, this new linac constitutes an essential component of any of the envisaged LHC upgrade scenarios and could open the way to future extensions of the CERN accelerator complex towards higher performance. This Technical Design Report presents a detailed technical overview of the Linac4 design as it stands at end 2006

    Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010

    Get PDF
    The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in the coming decade and beyond.<p></p> The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p> Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p> The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations are presented on the following pages. For the interested public, a short summary brochure has been produced to accompany the Forward Look.<p></p&gt
    • …
    corecore