22,584 research outputs found

    Cone beam CT of the musculoskeletal system : clinical applications

    Get PDF
    Objectives: The aim of this pictorial review is to illustrate the use of CBCT in a broad spectrum of musculoskeletal disorders and to compare its diagnostic merit with other imaging modalities, such as conventional radiography (CR), Multidetector Computed Tomography (MDCT) and Magnetic Resonance Imaging. Background: Cone Beam Computed Tomography (CBCT) has been widely used for dental imaging for over two decades. Discussion: Current CBCT equipment allows use for imaging of various musculoskeletal applications. Because of its low cost and relatively low irradiation, CBCT may have an emergent role in making a more precise diagnosis, assessment of local extent and follow-up of fractures and dislocations of small bones and joints. Due to its exquisite high spatial resolution, CBCT in combination with arthrography may be the preferred technique for detection and local staging of cartilage lesions in small joints. Evaluation of degenerative joint disorders may be facilitated by CBCT compared to CR, particularly in those anatomical areas in which there is much superposition of adjacent bony structures. The use of CBCT in evaluation of osteomyelitis is restricted to detection of sequestrum formation in chronic osteomyelitis. Miscellaneous applications include assessment of (symptomatic) variants, detection and characterization of tumour and tumour-like conditions of bone. Teaching Points: Review the spectrum of MSK disorders in which CBCT may be complementary to other imaging techniques. Compare the advantages and drawbacks of CBCT compared to other imaging techniques. Define the present and future role of CBCT in musculoskeletal imaging

    Feasibility of MV CBCT-based treatment planning for urgent radiation therapy: dosimetric accuracy of MV CBCT-based dose calculations.

    Get PDF
    Unlike scheduled radiotherapy treatments, treatment planning time and resources are limited for emergency treatments. Consequently, plans are often simple 2D image-based treatments that lag behind technical capabilities available for nonurgent radiotherapy. We have developed a novel integrated urgent workflow that uses onboard MV CBCT imaging for patient simulation to improve planning accuracy and reduce the total time for urgent treatments. This study evaluates both MV CBCT dose planning accuracy and novel urgent workflow feasibility for a variety of anatomic sites. We sought to limit local mean dose differences to less than 5% compared to conventional CT simulation. To improve dose calculation accuracy, we created separate Hounsfield unit-to-density calibration curves for regular and extended field-of-view (FOV) MV CBCTs. We evaluated dose calculation accuracy on phantoms and four clinical anatomical sites (brain, thorax/spine, pelvis, and extremities). Plans were created for each case and dose was calculated on both the CT and MV CBCT. All steps (simulation, planning, setup verification, QA, and dose delivery) were performed in one 30 min session using phantoms. The monitor units (MU) for each plan were compared and dose distribution agreement was evaluated using mean dose difference over the entire volume and gamma index on the central 2D axial plane. All whole-brain dose distributions gave gamma passing rates higher than 95% for 2%/2 mm criteria, and pelvic sites ranged between 90% and 98% for 3%/3 mm criteria. However, thoracic spine treatments produced gamma passing rates as low as 47% for 3%/3 mm criteria. Our novel MV CBCT-based dose planning and delivery approach was feasible and time-efficient for the majority of cases. Limited MV CBCT FOV precluded workflow use for pelvic sites of larger patients and resulted in image clearance issues when tumor position was far off midline. The agreement of calculated MU on CT and MV CBCT was acceptable for all treatment sites

    Four-dimensional Cone Beam CT Reconstruction and Enhancement using a Temporal Non-Local Means Method

    Full text link
    Four-dimensional Cone Beam Computed Tomography (4D-CBCT) has been developed to provide respiratory phase resolved volumetric imaging in image guided radiation therapy (IGRT). Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. In this work, we propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. We define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms are implemented on GPU to achieve a high computational efficiency. The reconstruction algorithm and the enhancement algorithm generate visually similar 4D-CBCT images, both better than the FDK results. Quantitative evaluations indicate that, compared with the FDK results, our reconstruction method improves contrast-to-noise-ratio (CNR) by a factor of 2.56~3.13 and our enhancement method increases the CNR by 2.75~3.33 times. The enhancement method also removes over 80% of the streak artifacts from the FDK results. The total computation time is ~460 sec for the reconstruction algorithm and ~610 sec for the enhancement algorithm on an NVIDIA Tesla C1060 GPU card.Comment: 20 pages, 3 figures, 2 table

    Comparison of Online 6 Degree-of-Freedom Image Registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for Intracranial Radiosurgery.

    Get PDF
    PURPOSE: The study was aimed to compare online 6 degree-of-freedom image registrations of TrueBeam cone-beam computed tomography and BrainLab ExacTrac X-ray imaging systems for intracranial radiosurgery. METHODS: Phantom and patient studies were performed on a Varian TrueBeam STx linear accelerator (version 2.5), which is integrated with a BrainLab ExacTrac imaging system (version 6.1.1). The phantom study was based on a Rando head phantom and was designed to evaluate isocenter location dependence of the image registrations. Ten isocenters at various locations representing clinical treatment sites were selected in the phantom. Cone-beam computed tomography and ExacTrac X-ray images were taken when the phantom was located at each isocenter. The patient study included 34 patients. Cone-beam computed tomography and ExacTrac X-ray images were taken at each patient\u27s treatment position. The 6 degree-of-freedom image registrations were performed on cone-beam computed tomography and ExacTrac, and residual errors calculated from cone-beam computed tomography and ExacTrac were compared. RESULTS: In the phantom study, the average residual error differences (absolute values) between cone-beam computed tomography and ExacTrac image registrations were 0.17 ± 0.11 mm, 0.36 ± 0.20 mm, and 0.25 ± 0.11 mm in the vertical, longitudinal, and lateral directions, respectively. The average residual error differences in the rotation, roll, and pitch were 0.34° ± 0.08°, 0.13° ± 0.09°, and 0.12° ± 0.10°, respectively. In the patient study, the average residual error differences in the vertical, longitudinal, and lateral directions were 0.20 ± 0.16 mm, 0.30 ± 0.18 mm, 0.21 ± 0.18 mm, respectively. The average residual error differences in the rotation, roll, and pitch were 0.40°± 0.16°, 0.17° ± 0.13°, and 0.20° ± 0.14°, respectively. Overall, the average residual error differences wer

    Effect of time lapse on the diagnostic accuracy of cone beam computed tomography for detection of vertical root fractures

    Get PDF
    Accurate and early diagnosis of vertical root fractures (VRFs) is imperative to prevent extensive bone loss and unnecessary endodontic and prosthodontic treatments. The aim of this study was to assess the effect of time lapse on the diagnostic accuracy of cone beam computed tomography (CBCT) for VRFs in endodontically treated dog’s teeth. Forty-eight incisors and premolars of three adult male dogs underwent root canal therapy. The teeth were assigned to two groups: VRFs were artificially induced in the first group (n=24) while the teeth in the second group remained intact (n=24). The CBCT scans were obtained by NewTom 3G unit immediately after inducing VRFs and after one, two, three, four, eight, 12 and 16 weeks. Three oral and maxillofacial radiologists blinded to the date of radiographs assessed the presence/absence of VRFs on CBCT scans. The sensitivity, specificity and accuracy values were calculated and data were analyzed using SPSS v.16 software and ANOVA. The total accuracy of detection of VRFs immediately after surgery, one, two, three, four, eight, 12 and 16 weeks was 67.3%, 68.7%, 66.6%, 64.6%, 64.5%, 69.4%, 68.7%, 68% respectively. The effect of time lapse on detection of VRFs was not significant (p>0.05). Overall sensitivity, specificity and accuracy of CBCT for detection of VRFs were 74.3%, 62.2%, 67.2% respectively. Cone beam computed tomography is a valuable tool for detection of VRFs. Time lapse (four months) had no effect on detection of VRFs on CBCT scans. © 2016, Associacao Brasileira de Divulgacao Cientifica. All rights reserved

    The assessment of maxillofacial soft tissue and intracranial calcifications via cone-beam computed tomography

    Get PDF
    Abstract: Background: Cone-beam Computed Tomography (CBCT) scans obtained with larger field of view let us see various incidental findings, anatomical variations and pathologies, like intracranial and soft tissue calcifications. Objective: The purpose of this retrospective study was to determine the prevalence of intracranial and soft tissue calcifications via CBCT. Methods: Full volume (maxillofacial region) scans of 290 patients achieved for various reasons were investigated by blinded two dentomaxillofacial radiologists. Demographic data of the patients were saved. The findings were categorized and statistically analyzed with descriptive statistics, crosstabs and chi-square tests. Results: Totally 290 patients aged between 24 and 81 years old (mean age ± standard deviation: 49±14) consisting of 155 females (53.4%) and 135 males (46.6%) were examined in the study. The most common calcifications were pineal gland calcification (64.5%), followed by tonsillolith (34.1%), petroclinoid ligament calcification (33.4%), Intracranial Internal Carotid Artery Calcifications (IICAC) (18.3%), Extracranial Internal Carotid Artery Calcifications (EICAC) (8.3%) and the others (1.7%, equally sialolith, antrolith and choroid plexus calcification), respectively. Conclusion: Tonsillolith, EICAC and IICAC showed an increase with age. EICAC was seen more in females, conversely petroclinoid ligament calcification was seen more in males. There was a statistically significant correlation between EICAC and IICAC
    corecore