1,505 research outputs found

    CARO: The Common Anatomy Reference Ontology

    Get PDF
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities to classify developmental structures. Definitions for the types and relationships are being generated by a consortium of investigators from diverse backgrounds to ensure applicability to all organisms. CARO will support the coordination of cross-species ontologies at all levels of anatomical granularity by cross-referencing types within the cell type ontology (CL) and the Gene Ontology (GO) Cellular Component ontology. A complete cross-species CARO could be utilized in other ontologies for cross-product generation

    CARO: The Common Anatomy Reference Ontology

    Get PDF
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities to classify developmental structures. Definitions for the types and relationships are being generated by a consortium of investigators from diverse backgrounds to ensure applicability to all organisms. CARO will support the coordination of cross-species ontologies at all levels of anatomical granularity by cross-referencing types within the cell type ontology (CL) and the Gene Ontology (GO) Cellular Component ontology. A complete cross-species CARO could be utilized in other ontologies for cross-product generation

    vHOG, a multispecies vertebrate ontology of homologous organs groups

    Get PDF
    Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species. Results: vHOG is a multispecies anatomical ontology for the vertebrate lineage. It is based on the HOGs used in the Bgee database of gene expression evolution. vHOG version 1.4 includes 1184 terms, follows OBO principles and is based on the Common Anatomy Reference Ontology (CARO). vHOG only describes structures with historical homology relations between model vertebrate species. The mapping to species-specific anatomical ontologies is provided as a separate file, so that no homology hypothesis is stated within the ontology itself. Each mapping has been manually reviewed, and we provide support codes and references when available. Availability and implementation: vHOG is available from the Bgee download site (http://bgee.unil.ch/), as well as from the OBO Foundry and the NCBO Bioportal websites. Contact: [email protected]; [email protected]

    A Gross Anatomy Ontology for Hymenoptera

    Get PDF
    Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information—millions of statements about hymenopteran phenotypes—remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology, phylogenetic, taxonomic, and morphological research can be actualized. Inherent mechanisms for feedback and content delivery demonstrate the effectiveness of remote, collaborative ontology development and facilitate future refinement of the HAO

    The Spider Anatomy Ontology (SPD)—A Versatile Tool to Link Anatomy with Cross-Disciplinary Data

    Get PDF
    Spiders are a diverse group with a high eco-morphological diversity, which complicates anatomical descriptions especially with regard to its terminology. New terms are constantly proposed, and definitions and limits of anatomical concepts are regularly updated. Therefore, it is often challenging to find the correct terms, even for trained scientists, especially when the terminology has obstacles such as synonyms, disputed definitions, ambiguities, or homonyms. Here, we present the Spider Anatomy Ontology (SPD), which we developed combining the functionality of a glossary (a controlled defined vocabulary) with a network of formalized relations between terms that can be used to compute inferences. The SPD follows the guidelines of the Open Biomedical Ontologies and is available through the NCBO BioPortal (ver. 1.1). It constitutes of 757 valid terms and definitions, is rooted with the Common Anatomy Reference Ontology (CARO), and has cross references to other ontologies, especially of arthropods. The SPD offers a wealth of anatomical knowledge that can be used as a resource for any scientific study as, for example, to link images to phylogenetic datasets, compute structural complexity over phylogenies, and produce ancestral ontologies. By using a common reference in a standardized way, the SPD will help bridge diverse disciplines, such as genomics, taxonomy, systematics, evolution, ecology, and behavior.Fil: Ramirez, Martin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Michalik, Peter. Ernst Moritz Arndt UniversitÀt Greifswald. Institut fur Geographie und Geologie; Alemani

    Uberon: towards a comprehensive multi-species anatomy ontology

    Get PDF
    The lack of a single unified species-neutral ontology covering the anatomy of a variety of metazoans is a hindrance to translating model organism research to human health. We have developed an Uber-anatomy ontology to fill this need, filling the gap between the CARO upper-level ontology and species-specific anatomical ontologies

    The OBO Foundry: Coordinated Evolution of Ontologies to Support Biomedical Data Integration

    Get PDF
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing a process of coordinated reform, and new ontologies being created, on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable, logically well-formed, and to incorporate accurate representations of biological reality. We describe the OBO Foundry initiative, and provide guidelines for those who might wish to become involved in the future

    An improved ontological representation of dendritic cells as a paradigm for all cell types

    Get PDF
    The Cell Ontology (CL) is designed to provide a standardized representation of cell types for data annotation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL’s utility for cross-species data integration. To address this problem, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL). DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. 104. Barry Smith, “Toward a Realistic Science of Environments”, Ecological Psychology, 2009, 21 (2), April-June, 121-130. Abstract: The perceptual psychologist J. J. Gibson embraces a radically externalistic view of mind and action. We have, for Gibson, not a Cartesian mind or soul, with its interior theater of contents and the consequent problem of explaining how this mind or soul and its psychological environment can succeed in grasping physical objects external to itself. Rather, we have a perceiving, acting organism, whose perceptions and actions are always already tuned to the parts and moments, the things and surfaces, of its external environment. We describe how on this basis Gibson sought to develop a realist science of environments which will be ‘consistent with physics, mechanics, optics, acoustics, and chemistry’
    • 

    corecore