1,907,065 research outputs found

    Biogenesis of cytochrome c1

    Get PDF
    The biogenesis of cytochrome c1 involves a number of steps including: synthesis as a precursor with a bipartite signal sequence, transfer across the outer and inner mitochondrial membranes, removal of the first part of the presequence in the matrix, reexport to the outer surface of the inner membrane, covalent addition of heme, and removal of the remainder of the presequence. In this report we have focused on the steps of heme addition, catalyzed by cytochrome c1 heme lyase, and of proteolytic processing during cytochrome c1 import into mitochondria. Following translocation from the matrix side to the intermembrane-space side of the inner membrane, apocytochrome c1 forms a complex with cytochrome c1 heme lyase, and then holocytochrome c1 formation occurs. Holocytochrome c1 formation can also be observed in detergent-solubilized preparations of mitochondria, but only after apocytochrome c1 has first interacted with cytochrome c1 heme lyase to produce this complex. Heme linkage takes place on the intermembrane- space side of the inner mitochondrial membrane and is dependent on NADH plus a cytosolic cofactor that can be replaced by flavin nucleotides. NADH and FMN appear to be necessary for reduction of heme prior to its linkage to apocytochrome c1. The second proteolytic processing of cytochrome c1 does not take place unless the covalent linkage of heme to apocytochrome c1 precedes it. On the other hand, the cytochrome c1 heme lyase reaction itself does not require that processing of the cytochrome c1 precursor to intermediate size cytochrome c1 takes place first. In conclusion, cytochrome c1 heme lyase catalyzes an essential step in the import pathway of cytochrome c1, but it is not involved in the transmembrane movement of the precursor polypeptide. This is in contrast to the case for cytochrome c in which heme addition is coupled to its transport directly across the outer membrane into the intermembrane space

    Long-distant contribution and χc1\chi_{c1} radiative decays to light vector meson

    Full text link
    The discrepancy between the PQCD calculation and the CLEO data for χc1γV\chi_{c1}\to \gamma V (V=ρ0,ω,ϕV=\rho^0,\,\omega,\,\phi) stimulates our interest in exploring extra mechanism of χc1\chi_{c1} decay. In this work, we apply an important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study χc1γV\chi_{c1}\to \gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of χc1γV\chi_{c1}\to \gamma V are consistent with the corresponding CLEO data of χc1γV\chi_{c1}\to \gamma V. We expect further experimental measurement of χc1γV\chi_{c1}\to \gamma V at BES-III, which will be helpful to test the hadronic loop effect on χc1\chi_{c1} decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.

    Search for the Z_1(4050)^+ and Z_2(4250)^+ states in B̅ ^0→χ_(c1)K^-π^+ and B^+→χ_(c1)K_S^0π^+

    Get PDF
    We search for the Z_1(4050)^+ and Z_2(4250)^+ states, reported by the Belle Collaboration, decaying to χ_(c1)π^+ in the decays B̅ ^0→χ_(c1)K^-π^+ and B^+→χ_(c1)K_S^0π^+ where χ_(c1)→J/ψγ. The data were collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e^+e^- collider operating at center-of-mass energy 10.58 GeV, and correspond to an integrated luminosity of 429  fb^(-1). In this analysis, we model the background-subtracted, efficiency-corrected χ_(c1)π^+ mass distribution using the Kπ mass distribution and the corresponding normalized Kπ Legendre-polynomial moments, and then test the need for the inclusion of resonant structures in the description of the χ_(c1)π^+ mass distribution. No evidence is found for the Z_1(4050)^+ and Z_2(4250)^+ resonances, and 90% confidence level upper limits on the branching fractions are reported for the corresponding B-meson decay modes

    Quantitative Assessment of the Anatomical Footprint of the C1 Pedicle Relative to the Lateral Mass: A Guide for C1 Lateral Mass Fixation

    Get PDF
    Study Design: Anatomic study. Objectives: To determine the relationship of the anatomical footprint of the C1 pedicle relative to the lateral mass (LM). Methods: Anatomic measurements were made on fresh frozen human cadaveric C1 specimens: pedicle width/height, LM width/height (minimum/maximum), LM depth, distance between LM’s medial aspect and pedicle’s medial border, distance between LM’s lateral aspect to pedicle’s lateral border, distance between pedicle’s inferior aspect and LM’s inferior border, distance between arch’s midline and pedicle’s medial border. The percentage of LM medial to the pedicle and the distance from the center of the LM to the pedicle’s medial wall were calculated. Results: A total of 42 LM were analyzed. The C1 pedicle’s lateral aspect was nearly confluent with the LM’s lateral border. Average pedicle width was 9.0 ± 1.1 mm, and average pedicle height was 5.0 ± 1.1 mm. Average LM width and depth were 17.0 ± 1.6 and 17.2 ± 1.6 mm, respectively. There was 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle, which constituted 41% ± 9% of the LM’s width. The distance from C1 arch’s midline to the medial pedicle was 13.5 ± 2.0 mm. The LM’s center was 1.6 ± 1 mm lateral to the medial pedicle wall. There was on average 3.5 ± 0.6 mm of the LM inferior to the pedicle inferior border. Conclusions: The center of the lateral mass is 1.6 ± 1 mm lateral to the medial wall of the C1 pedicle and approximately 15 mm from the midline. There is 6.9 ± 1.5 mm of bone medial to the medial C1 pedicle. Thus, the medial aspect of C1 pedicle may be used as an anatomic reference for locating the center of the C1 LM for screw fixation

    Effects of weak anchoring on C1 and C2 chevron structures

    Get PDF
    We present a theoretical study of the effect of weak anchoring on the transition between C1 and C2 chevron structures in smectic C liquid crystals. We employ a continuum theory which allows for variable cone, azimuthal and layer tilt angles. Equilibrium profiles for the director cone and azimuthal angles in the C1 and C2 states are calculated from the standard Euler-Lagrange minimisation of the total energy of the system. By comparing the total energies of the C1 and C2 states we can determine the globally stable chevron profile and calculate the critical temperature for the C1-C2 transition, which depends on anchoring strength and pretilt angle variations

    WSRT and VLA Observations of the 6 cm and 2 cm lines of H2CO in the direction of W 58 C1(ON3) and W 58 C2

    Get PDF
    Absorption in the J{K-K+} = 2{11}-2{12} transition of formaldehyde at 2 cm towards the ultracompact HII regions C1 and C2 of W 58 has been observed with the VLA with an angular resolution of ~0.2'' and a velocity resolution of ~1 km/s. The high resolution continuum image of C1 (ON 3) shows a partial shell which opens to the NE. Strong H2CO absorption is observed against W 58 C1. The highest optical depth (tau > 2) occurs in the SW portion of C1 near the edge of the shell, close to the continuum peak. The absorption is weaker towards the nearby, more diffuse compact HII region C2, tau<~0.3. The H2CO velocity (-21.2 km/s) towards C1 is constant and agrees with the velocity of CO emission, mainline OH masers, and the H76 alpha recombination line, but differs from the velocity of the 1720 MHz OH maser emission (~-13 km/s). Observations of the absorption in the J{K-K+} = 1{10}-1{11} transition of formaldehyde at 6 cm towards W 58 C1 and C2 carried out earlier with the WSRT at lower resolution (~4''x7'') show comparable optical depths and velocities to those observed at 2 cm. Based on the mean optical depth profiles at 6 cm and 2 cm, the volume density of molecular hydrogen n(H2) and the formaldehyde column density N(H2CO) were determined. The n(H2) is ~6E4 /cm**3 towards C1. N(H2CO) for C1 is ~8E14 /cm**2 while that towards C2 is ~8E13 /cm**2.Comment: AJ in press Jan 2001, 14 pages plus 6 figures (but Fig. 1 has 4 separate parts, a through d). Data are available at http://adil.ncsa.uiuc.edu/document/00.HD.0

    Hereditary angioedema (HAE) in children and adolescents : a consensus on therapeutic strategies

    Get PDF
    Hereditary angioedema due to C1 inhibitor (C1 esterase inhibitor) deficiency (types I and II HAE-C1-INH) is a rare disease that usually presents during childhood or adolescence with intermittent episodes of potentially life-threatening angioedema. Diagnosis as early as possible is important to avoid ineffective therapies and to properly treat swelling attacks. At a consensus meeting in June 2011, pediatricians and dermatologists from Germany, Austria, and Switzerland reviewed the currently available literature, including published international consensus recommendations for HAE therapy across all age groups. Published recommendations cannot be unconditionally adopted for pediatric patients in German-speaking countries given the current approval status of HAE drugs. This article provides an overview and discusses drugs available for HAE therapy, their approval status, and study results obtained in adult and pediatric patients. Recommendations for developing appropriate treatment strategies in the management of HAE in pediatric patients in German-speaking countries are provided.Conclusion Currently, plasma-derived C1 inhibitor concentrate is considered the best available option for the treatment of acute HAE-C1-INH attacks in pediatric patients in German-speaking countries, as well as for short-term and long-term prophylaxis
    corecore