77 research outputs found

    Advances in Radar Remote Sensing of Agricultural Crops: A Review

    Get PDF
    There are enormous advantages of a review article in the field of emerging technology like radar remote sensing applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working in this field

    Quantifying Irrigated Winter Wheat LAI in Argentina Using Multiple Sentinel-1 Incidence Angles

    Get PDF
    Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and phenology as well as soil moisture and roughness. It also varies depending on the local incidence angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI) evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina. We achieved adequate validation results for LAI with R2CV = 0.67 and RMSECV = 0.88 m2 m−2. The trained model was further applied to a series of S1 stacked images, generating temporal LAI maps that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by the associated uncertainties along with the obtained maps. We found that processing S1 smoothed imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout large irrigated areas and in consequence can support agricultural management practices in cloud-prone agri-environments.EEA Hilario AscasubiFil: Caballero, Gabriel. Technological University of Uruguay (UTEC). Agri-Environmental Engineering; UruguayFil: Caballero, Gabriel. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Pezzola, Alejandro. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Winschel, Cristina Ines. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Casella, Alejandra. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Clima y Agua; ArgentinaFil: Sanchez Angonova, Paolo Andres. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Hilario Ascasubi; ArgentinaFil: Orden, Luciano. Universidad Miguel Hernández. Centro de Investigación e Innovación Agroalimentaria y Agroambiental. GIAAMA Reseach Group; EspañaFil: Berger, Katja. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Berger, Katja. Mantle Labs GmbH; AustriaFil: Verrelst, Jochem. University of Valencia. Image Processing Laboratory (IPL); EspañaFil: Delegido, Jesús. Universidad de Valencia. Image Processing Laboratory (IPL); Españ

    Идентификация сельскохозяйственных культур с использованием радарных изображений

    Get PDF
    One of the most important tasks in practical agricultural activity is the identification of agricultural crops, both those growing in individual fields at the moment and those that grew in these fields earlier. To reduce the complexity of the identification process in recent years, data from remote sensing of the Earth (remote sensing), including the values of vegetation indices calculated during the growing season, have been used. At the same time, processing optical satellite images and obtaining reliable index values is often difficult, which is due to cloud cover during the shooting. To solve this problem, the article suggests using the seasonal course curve of the radar vegetation index with double polarization (DpRVI) as the main indicator characterizing agricultural crops. In the period 2017-2020, 48 radar images of the Khabarovsk Municipal District of the Khabarovsk Territory from the Sentinel-1 satellite were received and processed to identify crops in the experimental fields of the Far Eastern Research Institute of Agriculture (FEARI) (resolution 22 m, shooting interval - 12 days). Soybeans and oats were the main identified crops. Pixels of fields not occupied by these crops (forage grasses, abandoned fields) were also added. The series of values of DpRVI were obtained both for individual pixels and fields, and approximated series for three classes. The approximation was carried out using the Gaussian function, the double logistic function, the square and cubic polynomials. It is established that the optimal approximation algorithm is the use of a double logistic function (the average error was 4.6%). On average, the approximation error of the vegetation index for soybeans did not exceed 5%, for perennial grasses – 8.5%, and for oats - 11%. For experimental fields with a total area of 303 hectares with a known crop rotation, the classification was carried out by the weighted method of k nearest neighbors (the training sample was formed according to the data of 2017-2019, the test sample -2020). As a result, 90% of the fields were correctly identified, and the overall pixel classification accuracy was 73%, which made it possible to identify the discrepancy between the actual boundaries of the fields declared to identify abandoned and swampy areas. Thus, it is established that the DpRVI index can be used to identify agricultural crops in the south of the Far East and serve as the basis for the automatic classification of arable land.Одной из наиболее важных задач в практической сельскохозяйственной деятельности является идентификация сельскохозяйственных культур, произрастающих на отдельных полях в данный момент и ранее. Для снижения трудоемкости процесса идентификации в последние годы используются данные дистанционного зондирования Земли (ДЗЗ), в том числе значения индексов, рассчитываемые по ходу периода вегетации. При этом обработка оптических спутниковых снимков и получение достоверных значений индексов зачастую бывает затруднено из-за облачности во время съемки. Для решения этой проблемы в статье предложено использовать в качестве основного показателя, характеризующего сельскохозяйственную культуру, кривую сезонного хода радарного вегетационного индекса с двойной поляризацией (DpRVI). В период 2017-2020 гг. для идентификации культур на опытных полях Дальневосточного научно-исследовательского института сельского хозяйства (ДВ НИИСХ) было получено и обработано 48 радарных снимков Хабаровского муниципального района Хабаровского края со спутника Sentinel-1 (разрешение 22 м, интервал съемки − 12 дней). В качестве основных идентифицируемых культур выступали соя и овес. Также были добавлены пиксели полей, не занятых данными культурами (кормовые травы, заброшенные поля). Были получены ряды значений DpRVI как для отдельных пикселей и полей, так и аппроксимированные ряды для трех классов. Аппроксимация проводилась с использованием функции Гаусса, двойной логистической функции, квадратного и кубического полиномов. Установлено, что оптимальным алгоритмом аппроксимации является использование двойной логистической функции (средняя ошибка составила 4,6%). В среднем, ошибка аппроксимации индекса вегетации для сои не превышала 5%, для многолетних трав – 8,5%, а для овса – 11%. Для опытных полей общей площадью 303 га с известным севооборотом была проведена классификация взвешенным методом k ближайших соседей (обучающая выборка сформирована по данным 2017-2019 гг, тестовая -2020 г.). В результате верно идентифицировано 90% полей. Общая точность классификации по пикселям составила 73%, что позволило выявить несоответствие реальных границ полей заявленным, определить заброшенные и заболоченные участки. Таким образом, установлено, что индекс DpRVI может быть использован для идентификации сельскохозяйственных культур юга Дальнего Востока и служить основой для автоматического классифицирования пахотных земель

    Идентификация сельскохозяйственных культур с использованием радарных изображений

    Get PDF
    Одной из наиболее важных задач в практической сельскохозяйственной деятельности является идентификация сельскохозяйственных культур, произрастающих на отдельных полях в данный момент и ранее. Для снижения трудоемкости процесса идентификации в последние годы используются данные дистанционного зондирования Земли (ДЗЗ), в том числе значения индексов, рассчитываемые по ходу периода вегетации. При этом обработка оптических спутниковых снимков и получение достоверных значений индексов зачастую бывает затруднено из-за облачности во время съемки. Для решения этой проблемы в статье предложено использовать в качестве основного показателя, характеризующего сельскохозяйственную культуру, кривую сезонного хода радарного вегетационного индекса с двойной поляризацией (DpRVI). В период 2017-2020 гг. для идентификации культур на опытных полях Дальневосточного научно-исследовательского института сельского хозяйства (ДВ НИИСХ) было получено и обработано 48 радарных снимков Хабаровского муниципального района Хабаровского края со спутника Sentinel-1 (разрешение 22 м, интервал съемки − 12 дней). В качестве основных идентифицируемых культур выступали соя и овес. Также были добавлены пиксели полей, не занятых данными культурами (кормовые травы, заброшенные поля). Были получены ряды значений DpRVI как для отдельных пикселей и полей, так и аппроксимированные ряды для трех классов. Аппроксимация проводилась с использованием функции Гаусса, двойной логистической функции, квадратного и кубического полиномов. Установлено, что оптимальным алгоритмом аппроксимации является использование двойной логистической функции (средняя ошибка составила 4,6%). В среднем, ошибка аппроксимации индекса вегетации для сои не превышала 5%, для многолетних трав – 8,5%, а для овса – 11%. Для опытных полей общей площадью 303 га с известным севооборотом была проведена классификация взвешенным методом k ближайших соседей (обучающая выборка сформирована по данным 2017-2019 гг, тестовая -2020 г.). В результате верно идентифицировано 90% полей. Общая точность классификации по пикселям составила 73%, что позволило выявить несоответствие реальных границ полей заявленным, определить заброшенные и заболоченные участки. Таким образом, установлено, что индекс DpRVI может быть использован для идентификации сельскохозяйственных культур юга Дальнего Востока и служить основой для автоматического классифицирования пахотных земель

    Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data

    Get PDF
    Sentinel-1 Synthetic Aperture Radar (SAR) data have provided an unprecedented opportunity for crop monitoring due to its high revisit frequency and wide spatial coverage. The dual-pol (VV-VH) Sentinel-1 SAR data are being utilized for the European Common Agricultural Policy (CAP) as well as for other national projects, which are providing Sentinel derived information to support crop monitoring networks. Among the Earth observation products identified for agriculture monitoring, indicators of vegetation status are deemed critical by end-user communities. In literature, several experiments usually utilize the backscatter intensities to characterize crops. In this study, we have jointly utilized the scattering information in terms of the degree of polarization and the eigenvalue spectrum to derive a new vegetation index from dual-pol (DpRVI) SAR data. We assess the utility of this index as an indicator of plant growth dynamics for canola, soybean, and wheat, over a test site in Canada. A temporal analysis of DpRVI with crop biophysical variables (viz., Plant Area Index (PAI), Vegetation Water Content (VWC), and dry biomass (DB)) at different phenological stages confirms its trend with plant growth dynamics. For each crop type, the DpRVI is compared with the cross and co-pol ratio (σVH0/σVV0) and dual-pol Radar Vegetation Index (RVI = 4σVH0/(σVV0 + σVH0)), Polarimetric Radar Vegetation Index (PRVI), and the Dual Polarization SAR Vegetation Index (DPSVI). Statistical analysis with biophysical variables shows that the DpRVI outperformed the other four vegetation indices, yielding significant correlations for all three crops. Correlations between DpRVI and biophysical variables are highest for canola, with coefficients of determination (R2) of 0.79 (PAI), 0.82 (VWC), and 0.75 (DB). DpRVI had a moderate correlation (R2≳ 0.6) with the biophysical parameters of wheat and soybean. Good retrieval accuracies of crop biophysical parameters are also observed for all three crops.This work was supported by the Spanish Ministry of Science, Innovation and Universities, the State Agency of Research (AEI) and the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P

    Multi-Annual Evaluation of Time Series of Sentinel-1 Interferometric Coherence as a Tool for Crop Monitoring

    Get PDF
    Interferometric coherence from SAR data is a tool used in a variety of Earth observation applications. In the context of crop monitoring, vegetation indices are commonly used to describe crop dynamics. The most frequently used vegetation indices based on radar data are constructed using the backscattered intensity at different polarimetric channels. As coherence is sensitive to the changes in the scene caused by vegetation and its evolution, it may potentially be used as an alternative tool in this context. The objective of this work is to evaluate the potential of using Sentinel-1 interferometric coherence for this purpose. The study area is an agricultural region in Sevilla, Spain, mainly covered by 18 different crops. Time series of different backscatter-based radar vegetation indices and the coherence amplitude for both VV and VH channels from Sentinel-1 were compared to the NDVI derived from Sentinel-2 imagery for a 5-year period, from 2017 to 2021. The correlations between the series were studied both during and outside the growing season of the crops. Additionally, the use of the ratio of the two coherences measured at both polarimetric channels was explored. The results show that the coherence is generally well correlated with the NDVI across all seasons. The ratio between coherences at each channel is a potential alternative to the separate channels when the analysis is not restricted to the growing season of the crop, as its year-long temporal evolution more closely resembles that of the NDVI. Coherence and backscatter can be used as complementary sources of information, as backscatter-based indices describe the evolution of certain crops better than coherence.This research work was supported by the the European Space Agency under Project SEOM-S14SCI-Land (SInCohMap), and by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (Project PID2020-117303GB-C22)

    Exploring the effects of crop growth differences on radar vegetation index response and crop height estimation using dynamic monitoring model

    Get PDF
    Synthetic aperture radar (SAR) has emerged as a promising technology for monitoring crop plant height due to its ability to capture the geometric properties of crops. Radar vegetation index (RVI) has been extensively utilized for qualitative and quantitative remote sensing monitoring of vegetation growth dynamics. However, the combination of crop, growing environment, and temporal dynamics makes crop monitoring data a complex task. Despite the relatively simple underlying mechanisms of this phenomenon, there is still a need for more research to identify specific vegetation structures that correspond to changes in the response of vegetation indices. Building upon this premise, this study utilized a dynamic monitoring model to conduct dynamic monitoring of plant height for three common crops: rice, wheat, and maize. The findings revealed that (1) models developed for specific spatial and temporal scales of particular crop varieties may not accurately predict crop growth in different regions or with different varieties in a timely manner, due to growth variations; (2) these models maintain accuracy over a range of plant heights, such as rice at around 70cm, wheat at around 50cm, and maize at around 150cm; (3) among the three crops, planting density was identified as the main factor influencing the differences in RVI response. This research contributes to our comprehension of the dynamic response of RVI to different growth conditions in crops, and offers valuable insights and references for agricultural monitoring

    Использование радиолокационных данных для мониторинга состояния посевов сельскохозяйственных культур на юге Дальнего Востока России

    Get PDF
    The use of SAR data to monitoring agricultural crops is a promising area of research designed to complement existing methods and technologies based on the analysis of multispectral images. The main advantages of vegetation indices calculated from SAR data include their sensitivity to the polarimetric properties of the backscatter intensity, its scattering characteristics, and independence from cloud cover. This is especially important for the territory of the south of the Russian Far East, whose monsoon climate provides humid and cloudy weather during the period when crops gain maximum biomass. For arable lands in the Khabarovsk Territory and the Amur Region, a total of 64 Sentinel-1 SAR images were obtained from May to October 2021. For each date, the values of the DpRVI, RVI, VH/VV indices were calculated and time series were constructed for the entire observation period for individual fields (342 fields in total). NDVI time series were constructed from Sentinel-2 multispectral images using a cloud mask. The characteristics of time series extremes were calculated for different types of arable land: soybeans, oats, and fallows. It was shown that for each crop the seasonal curves DpRVI, RVI, VH/VV had a characteristic appearance. It was found that the DpRVI demonstrated the highest stability – the coefficients of variation of the seasonal variation of DpRVI were significantly lower than those for RVI and VH/VV. It was also revealed that the similarity between the curves of these indices remained for regions quite distant from each other - the Khabarovsk Territory and the Amur Region. The main characteristics of the seasonal variation of time series of radar indices were calculated in comparison with NDVI - the magnitude of the maximum, the date of the maximum and the values of the coefficient of variation for these indicators. It was found, firstly, that the values of these indicators in different regions are similar to each other; secondly, the variability of the maximum and the day of the maximum for DpRVI is lower than for RVI and VH/VV; thirdly, the variability of the maximum and the day of the maximum for DpRVI is comparable to NDVI. Thus, time series of radar indices DpRVI, RVI, VH/VV for the main types of agricultural lands in the south of the Far East have distinctive features and can be used in classification problems, yield modeling and crop rotation control.Использование радиолокационных спутниковых данных в мониторинге сельскохозяйственных культур является перспективным дополнением методов и технологий, базирующихся на анализе мультиспектральных изображений. К основным достоинствам радиолокационных вегетационных индексов относится их чувствительность к поляриметрическим свойствам принимаемого сигнала, а также независимость от облачности. Это особенно важно для территории юга российского Дальнего Востока, муссонный климат которого обеспечивает влажную и облачную погоду в период набора сельскохозяйственными культурами максимальной биомассы. Для оценки возможностей радиолокационных спутниковых данных на примере пахотных земель Хабаровского края и Амурской области были проанализированы 64 снимка космического аппарата Sentinel-1 за период наблюдений с мая по октябрь 2021 года. Для каждого снимка были рассчитаны значения индексов DpRVI, RVI, VH/VV и построены временные ряды для всего периода наблюдений по отдельным полям (всего 342 поля). По мультиспектральным снимкам Sentinel-2 с использованием маски облачности были построены временные ряды NDVI. Были рассчитаны характеристики экстремумов временных рядов для разных типов пахотных земель: сои, овса, и залежи. Показано, что для каждой сельхозкультуры кривые сезонного хода DpRVI, RVI, VH/VV имели характерный вид. Установлено, что индекс DpRVI продемонстрировал наиболее высокую устойчивость – коэффициенты вариации сезонного хода DpRVI были существенно ниже показателей для RVI и VH/VV. Также было выявлено, что сходство между сезонным ходом индексов сохранялось для удаленных друг от друга регионов – Хабаровского края и Амурской области. Были рассчитаны основные характеристики сезонного хода временных рядов радиолокационных индексов в сравнении с NDVI – величина максимума, дата наступления максимума и вариабельность этих показателей. Установлено, во-первых, что значения этих показателей в разных регионах схожи между собой; во-вторых, вариабельность максимума и дня наступления максимума для DpRVI ниже, чем для RVI и VH/VV; в-третьих, вариабельность максимума и дня наступления максимума для DpRVI сопоставима с NDVI. Таким образом, можно сделать вывод о том, что временные ряды радиолокационных индексов DpRVI, RVI, VH/VV для основных типов сельскохозяйственных земель Дальнего Востока имеют отличительные особенности и могут быть использованы в задачах классификации, моделирования урожайности и контроля севооборота

    Radar Remote Sensing of Agricultural Canopies: A Review

    Full text link
    corecore