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Abstract: Synthetic aperture radar (SAR) data provides an appealing opportunity for all-weather
day or night Earth surface monitoring. The European constellation Sentinel-1 (S1) consisting of
S1-A and S1-B satellites offers a suitable revisit time and spatial resolution for the observation of
croplands from space. The C-band radar backscatter is sensitive to vegetation structure changes and
phenology as well as soil moisture and roughness. It also varies depending on the local incidence
angle (LIA) of the SAR acquisition’s geometry. The LIA backscatter dependency could therefore
be exploited to improve the retrieval of the crop biophysical variables. The availability of S1 radar
time-series data at distinct observation angles holds the feasibility to retrieve leaf area index (LAI)
evolution considering spatiotemporal coverage of intensively cultivated areas. Accordingly, this
research presents a workflow merging multi-date S1 smoothed data acquired at distinct LIA with a
Gaussian processes regression (GPR) and a cross-validation (CV) strategy to estimate cropland LAI
of irrigated winter wheat. The GPR-S1-LAI model was tested against in situ data of the 2020 winter
wheat campaign in the irrigated valley of Colorador river, South of Buenos Aires Province, Argentina.
We achieved adequate validation results for LAI with R2

CV = 0.67 and RMSECV = 0.88 m2 m−2. The
trained model was further applied to a series of S1 stacked images, generating temporal LAI maps
that well reflect the crop growth cycle. The robustness of the retrieval workflow is supported by
the associated uncertainties along with the obtained maps. We found that processing S1 smoothed
imagery with distinct acquisition geometries permits accurate radar-based LAI modeling throughout
large irrigated areas and in consequence can support agricultural management practices in cloud-
prone agri-environments.

Keywords: leaf area index; Sentinel-1; time-series; local incidence angle; Whittaker smoother;
Gaussian processes regression

1. Introduction

Remote sensing synthetic aperture radar (SAR) satellites have ample potential for the
monitoring of vegetation biophysical variables [1–3]. Radar, as a valuable Earth observation
(EO) source, allows all-weather image acquisition even during day or night time. In most
tropical and cloudy regions, the usage of optical satellite imagery is often restricted to cloud-
free acquired scenes typically related to a dry season [4]. This condition makes SAR data
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attractive for year-round cropland biophysical variable retrieval [5]. In recent years, the
exponential evolution of EO as an applied science has generated an unprecedented amount
of research using SAR satellite data for crop trait monitoring over large areas, e.g., [6–12].
At the field scale, various studies have employed radar backscatter to find a relationship
between the electromagnetic signal and vegetation dynamics [7]. Ferrazzoli et al. [13] found
a strong correlation between C-band HV-polarized backscatter and the biomass of colza,
wheat, and alfalfa crops (R2 = 0.75). Frequently, cross-polarized (CP) radar backscatter is
most sensitive to volume scattering mechanisms such as those produced by the vegetation.
High correlations have been found between C-Band CP backscatter and crop biophysical
variables such as leaf area index (LAI) and biomass [13,14].

The radar backscatter signal is influenced by cropland biomass and the three-dimensional
structure of vegetation [15] and also by the ground soil moisture and roughness [16]. The
radar acquisition geometry configurations used for the observations play a significant
role [17–19]. Regarding vegetation trait retrieval based on radar signals, monitoring of
wheat croplands deserves special attention. Multiple studies have explored the backscatter-
vegetation structure interaction for winter wheat crops [20–25]. There is consensus that
the vegetation backscatter merges the contribution of the soil-canopy interaction (surface
scattering) with the backscatter from the canopy layer (volumetric scattering). Regarding
wheat plant structure, the following dominant backscatter sources can be distinguished:
stem, leaves, and ears [20]. The wheat phenological stage plays a significant role in the
vegetation scattering detected by the spaceborne radar instruments [26].

SAR time-series data has been used to track the complete phenological cycle of summer
(sunflower, maize, and soybean) and winter (barley, rapeseed, and wheat) crops [27]. SAR
imagery for cropland monitoring strongly depends on the radar backscatter incidence
angle, thus, it is one of the most critical obstacles [28]. The local incidence angle (LIA) is
depicted by the incident radar beam and the normal to the surface, considering local relief,
typically derived from a digital elevation model (DEM) [29]. When a homogeneous crop
paddock is monitored regularly using radar data, the variability of the backscatter can be
attributed, among others, to the LIA of the acquired radar scenes. LIA values between
35º and 40º maximize the vegetation’s volumetric scattering increasing the path length of
the radar signal [30]. At the other extreme, incidence angles lower than 30º increase the
ground surface scattering related mainly to soil moisture and roughness [31]. For scenes
observed at shallow incidence angles, the backscatter is lower than those acquired at steeper
incidence angles; in consequence, the same backscatter element in a radar resolution cell
has distinct and incomparable values of backscatter coefficient for distinct local incidence
angles of observation [32,33]. Accounting for angularity, Kaplan et al. [22] studied two
transformations that allow the collective usage of Sentinel-1 (S1) imagery for agricultural
monitoring of wheat, tomatoes, and cotton in Israel. They normalized the local incidence
angle to improve the empirical prediction of LAI.

S1 is a C-band SAR satellite constellation of the Copernicus program belonging to
the European Space Agency (ESA). As the pre-defined observation strategy over land, S1
defines the interferometric wide swath (IW) mode. This mode is available for most of
the applications in dual-polarization (VV and VH), at 10 × 10 m spatial resolution in a
swath of 250 km [34]. S1 mission consisting of S1-A and S1-B satellites provides exhaustive
monitoring of Earth’s surface once every 6 days at the equator, in a single pass (ascending
or descending) for one specific relative orbit. In intensive agriculture sites where several
S1 relative orbits lead to multiple-path radar observations, dense time-series of sundry
acquisition geometries can be obtained for the same cropland. Vegetation’s structure
geometry, as a proxy of the radar backscatter, changes as a function of the local incidence
angle and plants’ growth [16].

The S1 polarimetric bands VH and VV at the C-band provide relevant information on
surface scattering (VV polarization) and vegetation volumetric scattering (VH polarization),
which allows monitoring of soil moisture and roughness as well as vegetation biophys-
ical parameters. The relationship between the S1 polarimetric bands and the vegetation



Remote Sens. 2022, 14, 5867 3 of 23

traits can be linear or nonlinear. Harfenmeister et al. [35] applied linear and exponential
regressions to assess the correlation between absolute and relative vegetation water content,
LAI and plant height, and the S1 VH + VV bands. The nonlinear relationship between the
S1 polarimetric data and vegetation properties, such as LAI, can be learned by machine
learning regression algorithms (MLRA). Considering this strategy, in the last few decades,
a variety of MLRAs have been auspiciously applied for recovery tasks mainly on optical
data, e.g., decision trees, artificial neural networks, or kernel-based methods [36,37]. Gaus-
sian process regression (GPR) [38] arose as a advantageous kernel-based non-parametric
regression and has been broadly utilized in studies retrieving vegetation’s traits from EO
data [39–47]. GPR as probabilistic MLRA also provides the uncertainty of the estimates
making it an appealing option for vegetation trait confidence mapping.

Research in time-series remote sensing data is receiving large attention. The construc-
tion of high spatio-temporal data cubes derived from multi-temporal EO images requires
the implementation of a data smoothing process to facilitate the processing and analysis of
time-series [48]. The Whittaker smoother emerged as an attractive algorithm for filtering
EO data in the presence of data gaps [49]. The algorithm is easy and intuitive to use, often
gives superior results faster than the widely used Savitzky–Golay smoother [50].

When it comes to the viability of generating vegetation trait maps from S1 time-series
data, several experimental studies made use of the polarimetric bands considering the same
relative orbit [17,51]. However, the backscatter variation at distinct local incidence angles
for crop biophysical variables monitoring has been left largely unexploited. Therefore, and
with the ambition to improve vegetation trait retrieval, this research aims to assess the
potential of combining S1-A and S1-B C-band high-resolution SAR data acquired at distinct
local incidence angles. To assess the possibilities of continuously monitoring cropland’s
traits with a space-based strategy, this study carries out the development of an S1-based LAI
retrieval workflow devoted to irrigated winter wheat cropland monitoring in Argentina.
Given the above-sketched general framework, the following three sub-objectives can be
defined: (1) to develop a GPR model for an explicit quantification of winter wheat LAI from
S1-A and S1-B smoothed data acquired at multiple local incidence angles; (2) to generate
accurate S1-based maps of the wheat LAI with the inclusion of associated uncertainties
over an intensive irrigated agroecosystem; and (3) to evaluate LAI time-series identifying
phenological stages over the selected study site.

2. Materials and Methods
2.1. Theoretical Background

Aiming to describe the theoretical framework implemented in our research, this section
presents the mathematical formulations of the Gaussian processes regression algorithm
(Section 2.1.1) and the optimized Whittaker smoother (Section 2.1.2).

2.1.1. Gaussian Processes Regression

During the last decade, GPR has been widely adopted for bio-geo science applica-
tions [52]. GPR generalizes the Gaussian probability distribution in a function’s space. This
means an expected covariance between values of the function at a given point [38]. In short,
a GPR model establishes a relation between the input (here: S1 polarimetric bands) x ∈ RB

and the output variable (vegetation’s biophysical variable to be retrieved) y ∈ R. Being
x= [x1,. . . , xB] ∈ RB the S1 polarimetric training dataset and y ∈ R the model’s output
estimates, the mean expected value ŷ for a given x∗ can be expressed in the form:

ŷ∗ = f (x∗) =
N

∑
i=1

αikθ(xi, x∗) + α0, (1)

where {xi}N
i=1 are the S1 polarimetric features used in the learning (or training) phase,

αi ∈ R is the weight assigned to each one of them, α0 a constant value (bias) of the regression
function, and kθ is a covariance function (or kernel) assessing the similarity between the
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test S1 polarimetric data x∗ and all N xi in the training dataset. The regression kernel is
parameterized by a set of parameters θ = [v, σn, σ1, . . . σB].

The core of GPR as a kernel method relies on a convenient definition of the covariance
function. We implemented automatic relevance determination (ARD) as a kernel function
kθ , which can be noted as:

k
(
xi, xj

)
= v exp

− B

∑
b=1

(
xb

i − xb
j

)2

2σ2
b

+ σ2
nδij, (2)

where xb
i represents the feature f of the input vector xi, v is a scaling factor, σb is the standard

deviation of the observations assumed to be noisy, σf is the length scale per S1 input feature
(b = 1,. . . , B), and δij is the correlation length scale parameter.

ARD is a widely used covariance function that typically suffices to address most of
the remote-sensing-based applications [39]. The weights αi are obtained by an automatic
optimization process. The 1/σb values represent the relevance of the S1 polarimetric feature
used to train the GPR model [53,54].

2.1.2. Optimized Whittaker Smoother

Here, we present the Whittaker [55] smoother and interpolator mathematical theory.
Whittaker smoother is usually regarded as an example of a non-parametric regression
algorithm [56]. He proposed solving a regularized least-squares problem in which a scalar
parameter determines the trade-off between fidelity to the data and smoothness of the
filtered sequence [57].

Given a sequence of n measurements {y1 , y2 , . . . , yn}, a positive real number λ, and
a positive integer p < n, find the sequence {x1 , x2 , . . . , xn} that minimizes:

λ
n

∑
j=1

(
yj − xj

)2
+

n−p

∑
j=1

(
∆pxj

)2 (3)

where ∆ is the forward difference operator:

∆xj = xj+1 − xj (4)

∆2xj = ∆
(
∆xj
)
= xj+2 − 2xj+1 + xj (5)

The first term in the sum in Equation (3) measures fidelity to the data, and the second
measures smoothness, in that sense, the polynomial of degree p− 1 means maximal smooth-
ness. The parameter λ determines the strength of the smoothing. General applications
require that λ needs to be tuned over several orders of magnitude (10, 100, 1000). Optimal
values of λ should provide a smooth curve that reveals the true nature of the data whilst
removing roughness and randomness [58].

Let yT and xT be of the form:

yT = [y1 y2 . . . yn] (6)

xT = [x1 x2 . . . xn] (7)

The objective function in Equation (3) can be written as:

λ(y− x)T(y− x) + xT MT Mx (8)

where M is a (n− p)xn differencing matrix. Given p = 2 and n = 6, the resulting M matrix
looks like follows:
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M =


1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1

 (9)

The minimizer of Equation (8) is the solution of the normal equations:

Ax̂ = λ y (10)

where

A = λ I + MT M (11)

The solution can be obtained via:

x̂ =
(

I + λ−1MT M
)−1

y (12)

or,

x̂ = y− λ−1MT Mx̂ (13)

As an optional second parameter, the default second-order smoother (p = 2) will work
fine for almost all signals, and the first p moments of the data are preserved. One popular
approach to solve Equation (13) is to perform a search for an optimal criterion over a
fine grid of λ values seeking to minimize the loss function. The use of generalized cross-
validation (GCV) [59] emerges as an appealing alternative to deal with this issue. With
this automatic method of choosing the smoothing parameter, λ is selected to minimize the
GCV score:

n−1
n

∑
j=1

( yj − x̂j

1− n−1trace(λA−1)

)2

(14)

Cross-validation aims to optimize the predictions of miss-out sample data. The
prediction accuracy increases when the correlation between neighbor samples is exploited
rather than utilizing the values of a smoothed trend [49]. The V-curve was proposed
by Frasso and Eilers [60] as a tool to explore the smoothing parameter space. It is a
modification on Hutchinson and Hoog [61] L-curve, which is a plot of (ψ,φ), evaluated on
a fine grid of log λ, with:

ψ = log ∑
j

ωi
(
yj − x̂j

)2 , φ = log ∑
j

(
∆p

xj

)2
(15)

The Whittaker smoother combined with the V-curve for the optimal selection of the
smoothing parameter λ, is a simple, fast, and powerful tool for EO data processing [49].

2.2. Study Site

The study site is located in the South of Buenos Aires Province, Argentina. The
Bonaerense valley of the Colorado river (BVCR) is an intensively cultivated and irrigated
Agri-environment occupying 91,163 ha, that includes horticulture, pastures, and cereals [62].
Most of the agricultural practices in the study region have been possible thanks to gravity
irrigation [63]. To address our study, we selected three winter wheat paddocks belonging
to the 2020 crop campaign in the BVCR (see Figure 1).
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Figure 1. Test fields of irrigated winter wheat in the study site. True color S2 image of 27 December
2020, partly adapted from [63]. Reference system: WGS84 (EPSG 4326).

2.2.1. Characteristics and Environment of the Study Region

The Buenos Aires Province’s southern segment made up of the Villarino and Patagones
districts, has a temperate Mediterranean arid steppe climate according to the Köppen’s
climate classification [64]. The landscape presents aridity features in the vicinity of the Río
Negro Province. Rainfall is greatest in autumn and decreases from the north to the south-
west, with 483.5 mm on average. The estimated annual water deficit in the irrigated area is
322 mm on average, while in the extreme South of the territory it exceeds 400 mm [65]. The
rainfall regime alternates between periods with water abundance and extreme droughts.
The average annual temperature is 14.8 ºC, with the lowest records of 1.6 ºC registered in
July and the highest values at around 30 ºC for January. The annual frost-free period is
more than 240 days in the East of the territory.

In the BVCR irrigated area, cropland productivity is affected by two soil issues. Pri-
marily, soil salinity is related to low drainage capacity and soil cutting, which is associated
with surface conditioning labors performed to obtain optimal water drainage. In general,
the soils are Entic Hapludoll with sandy-to-sandy loam texture according to the USDA Soil
Taxonomy classification [66], with levels of organic matter close to 2.3% [67]. Due to its
texture, water retention is low, and the risk of erosion is high.

2.2.2. Winter Wheat Cropland Development and Properties in the BVCR

When periods of drought occur in the initial stages of wheat development, lack of
crop uniformity is usually observed, attributed to the physio-chemical composition of
the soil [68]. In the middle of the booting stage, the color of the cropland is generally
darker in the less soil-worn sectors. Wheat croplands require low salinity content soils
(<4 dS m−1), neutral pH, high phosphorus concentration (>20 ppm P-soluble), and a good
level of organic matter (>1.5%) [69]. The soil must be prepared for the conduction of water,
usually under the modality of planks situated every 10 to 14 m [69]. Long-term cycle wheat
can be sowed by the end of May, whereas this condition can be extended to the middle of
August for short-term cycle wheat [69]. In all cases, it is recommended to take care that the
soil profile is recharged with moisture in the planting stage. It is recommended to adjust
the seed dose to obtain between 250 and 350 plants m−2 during the sowing time. If the
profile was effectively recharged for the planting period, the wheat meets the tillering stage
without suffering water deficit. After that, at the beginning of the jointing (stem elongation),
it is recommended to carry out irrigation when the first visible knot appears, another in
pre-flowering (booting), and the third when the heading of the crop has finished.
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2.3. Field Data Collection for Training and Validation

Three winter wheat paddocks were sown simultaneously on 25 June 2020. Fertilization
was applied in two instances throughout the plants’ tillering stage, first by the end of August
2020 and second by the middle of September with 200 kg ha−1 of nitrogen (Urea: 46-0-0)
manually uniformly distributed. Three gravity irrigations were performed throughout the
crop cycle during late August, middle of September, and late November. A comprehensive
overview of the BVCR’s wheat campaign 2020 and an exhaustive description of the cropland
management and experimental design are provided by Caballero et al. [63]. A total of 9
Elementary Sampling Units (ESU) were visited periodically during the wheat development
periods from August to December. Each ESU was restricted to a 10 × 10 m area, analogous
to the pixel size of the post-processed S1 imagery.

LAI samples were acquired utilizing the PocketLAI R Smart-App [70]. Six observations
(n = 6) were performed per ESU and then averaged to boost statistics robustness (See
Table 1). Winter wheat phenology was established regarding secondary growth stages
defined by the Zadoks-scale [71] and registered in the in situ 2020 database. Winter wheat
field data and land use were collected by a group of professionals at the Hilario Ascasubi
Experimental Station (HAEE) belonging to the National Institute of Agricultural Technology
(INTA), Argentina. The HAEE’s land use for the 2020 cropland campaign is displayed in
Figure 2.

Table 1. LAI in situ measured database.

Wheat Variable Sampling Date Range Mean SD

LAI
(m2 m−2)

3-Sep-20 0.16–0.30 0.23 0.05
17-Sep-20 0.56–1.54 0.94 0.29
2-Oct-20 1.59–3.81 2.57 0.66

19-Oct-20 1.53–3.27 2.62 0.51
2-Nov-20 2.78–5.05 4.12 0.63
16-Nov-20 3.31–5.39 4.02 0.80
30-Nov-20 3.29–4.75 4.08 0.50
16-Dec-20 3.97–5.64 4.68 0.43

Figure 2. Study site 2020 land use. Reference system: WGS84 (EPSG 4326).
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2.3.1. Winter Wheat Phenology and Meteorological Data Trend

The meteorological data were supplied by the INTA-Hilario Ascasubi weather station
situated in the study site “39.38ºN, 62.62ºW” (Villarino district—Buenos Aires Province)
very close to the wheat crop paddocks selected for this study. Available meteorological
stations can be queried through the following website: http://siga.inta.gob.ar/#/ (accessed
on 19 September 2022). A time-series consisting of daily soil temperature at 10 cm (ºC)
and precipitation (mm) data ranging from the 1 September 2020 to 31 December 2020
were downloaded and analyzed. Figure 3, shows the wheat plant phenological stages
evolution (described by the Zadoks-scale), irrigation and fertilization moments, and the
meteorological data trend.

Figure 3. Meteorological data, soil temperature at 10 cm, and rainfall in the BVCR study site against
winter wheat phenological stages.

2.4. Sentinel-1 SAR Data Processing

An automatic-processing chain was developed using the Sentinel-1 Toolbox provided
by SNAP (Sentinel Application Platform) software version 8.0 https://step.esa.int/main/
snap-8-0-released/ (accessed on 20 September 2022). We downloaded from ESA’s website
https://scihub.copernicus.eu/ (accessed on 19 September 2022), a total of 35 S1-A and S1-B
images between 27 August 2020 to 12 January 2021 consisting of Ground Range Detected
(GRD) IW products in dual polarization VV+VH, providing a 6-day revisited time over the
study site. The selected relative orbit numbers (RON) or S1 paths were 141 for S1-A and 68
for S1-A and S1-B both orbits are descendent. The S1 acquisition time was around 6:20 h
local time. The local incidence angle over the winter wheat paddocks varies from roughly
30º to 37º for path 141 and from 40º to 47º for path 68. First, the S1 precise orbits were
applied to all S1 images followed by a thermal noise-removing process. Subsequently, the
S1 scenes were calibrated radiometrically obtaining the normalized backscatter coefficient
γ0 (Gamma Naught). Afterward, the range doppler terrain correction was utilized to
geocode the images precisely using the Shuttle Radar Topography Mission (SRTM) high-
resolution DEM. The resulting spatial resolution for the S1 IW-GRD product without
multi-looking was set to 10 × 10 m. Following this, the pre-processed S1 images were
filtered to minimize the speckle effect. We selected the IDAN filter (Intensity-Driven-
Adaptive-Neighborhood) [72] with the following filter configuration parameters: Adaptive
Neighbor Size = 5, Number of Looks = 2. Finally, the S1 pre-processed images were spatially
filtered by applying a 3 × 3 mean filter and restricted to the study site.

http://siga.inta.gob.ar/#/
https://step.esa.int/main/snap-8-0-released/
https://step.esa.int/main/snap-8-0-released/
https://scihub.copernicus.eu/
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Considering that the S1 images have distinct observation paths, a sub-pixel accurate
fine coregistration process is mandatory to ensure that each ground target contributes to the
same (range, azimuth) pixel in all the S1 observed scenes [73]. We employed the following
fine coregistration configuration parameters: Resampling type = None, Initial offset method
= Orbit, Number off ground control points = 2000, RMS threshold (pixel accuracy) = 0.05,
Warp polynomial order = 1, Interpolation method = Cubic convolution (6 points). Table 2
shows the correspondence between in situ sampling dates and S1 acquisitions.

Table 2. Field campaign and Sentinel-1 acquisition dates.

Sampling Date S1-A Path 141 S1-A Path 68 S1-B Path 68 ∆ Days (AVG)

3-Sep-20 1-Sep-20 8-Sep-20 2-Sep-20 3
17-Sep-20 13-Sep-20 20-Sep-20 26-Sep-20 5
2-Oct-20 7-Oct-20 2-Oct-20 8-Oct-20 4
19-Oct-20 19-Oct-20 14-Oct-20 20-Oct-20 2
2-Nov-20 31-Oct-20 7-Nov-20 1-Nov-20 3

16-Nov-20 12-Nov-20 19-Nov-20 13-Nov-20 3

2.5. Sentinel-1 Time-Series Smoothing and Interpolation

The Whittaker smoother for time-series interpolation was implemented in Python
version 3.6.13 (https://www.python.org/downloads/release/python-3613/, accessed
on 22 September 2022) utilizing the vam.whittaker version 2.0.2 (https://github.com/
WFP-VAM/vam.whittaker, accessed on 22 September 2022) core functionality used in
the MODIS Assimilation and Processing Engine (MODAPE) package version 1.0.0 (https:
//github.com/WFP-VAM/modape, accessed on 22 September 2022). The algorithm imple-
mentation is based on the Whittaker–Eilers smoother exhaustively described by Eilers [74]
and Atzberger and Eilers [75]. The use of specific sparse matrix routines makes the smoother
fast and memory efficient. We run an optimization process to find the optimal smoothing
parameter λ. The amount of smoothing was optimized by applying the V-curve, a variation
on the L-curve. The algorithm handles missing data points easily [49] (see Section 2.1.2).

2.6. Experimental Setup

The LAI sample database was bounded between 3 September and 2 November 2020
seeking to prioritize the response of the LAI retrieval model within the vegetation greenness
stage [63]. Additionally, 12 samples of non-vegetated surfaces were included in the field
data aiming to improve the versatility of the cropland LAI retrieval model. We conducted
the following strategies to find the best-fitted model for LAI retrieval based on S1 data.
We first divided the tests into two groups to facilitate managing the statistics results. The
first group comprises the S1 polarimetric preprocessed data without smoothing and the
second set of tests involves the implementation of the optimized Whittaker smoother. We
analyzed separately the performance of each S1 single-orbit data (path 141 for S1-A and
path 68 for S1-A and S1-B) and then the contribution of merging multiple incidence angles
for training the GPR-S1-LAI models and the result of applying it to the band stacked S1
images. Aiming to ensure more robust retrieval results and to use the collected in situ
measurements to the fullest, next, a 10-fold cross-validation (CV) [76] sampling scheme
was applied. CV splits the available data into k subsets (k = 10). From these k sub-datasets,
k − 1 sub-datasets are selected as a training dataset (51 data points, 5 on average in each
sub-dataset) and a single k sub-dataset (5 data points) is used during the testing stage. The
CV process is repeated iteratively k times [37]. The performance of the GPR-S1-LAI models
was assessed using diverse goodness-of-fit metrics: the coefficient of determination (R2),
the mean absolute error (MAE) (see Equation (17)), the root mean square error (RMSE) (see
Equation (18)), the normalized root mean square error (NRMSE) (see Equation (19)), and
the total time (training and validation) for the execution of the MLRA were registered. We
present bellow the formulation used for R2, MAE, RMSE and NRMSE calculations:

https://www.python.org/downloads/release/python-3613/
https://github.com/WFP-VAM/vam.whittaker
https://github.com/WFP-VAM/vam.whittaker
https://github.com/WFP-VAM/modape
https://github.com/WFP-VAM/modape
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R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2

(16)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (17)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (18)

NRMSE =
RMSE

(ymax − ymin)
(19)

where {yi}N
i=1 are the N winter wheat LAI measured values used for model training,

{ŷi}N
i=1 are the LAI estimated values based on S1 polarimetric data, (ymax − ymin) is the in

situ measurement range, and y is the mean of the LAI in situ measured values.

2.7. Delineation of Retrieval Workflow

The entire S1-based retrieval workflow is visualized in Figure 4. Three well-differentiated
structural blocks are detailed, starting with an S1 preprocessing section, followed by field data
collection, and the probabilistic inference of LAI applying GPR models to S1 interpolated data.
In brief, the implemented workflow consists of the following four main steps:

1. Pe-processing of the multiple relative orbit number S1 VH+VV polarization imagery:
S1-A path 141, 68 and S1-B path 68;

2. Building the in situ database containing multitemporal field LAI measurements from
the BVCR site and S1 post-processed interpolated polarimetric data,

3. Training S1 data with GPR algorithms and applying the retrieval model to obtain LAI;
4. seasonal mapping of LAI over irrigated winter wheat fields and corresponding uncer-

tainties using the GPR-S1-LAI model.

The GPR processing was entirely operated within the Automated Radiative Transfer
Model Operator (ARTMO) toolbox [77]. ARTMO was developed as a modular graphical
user interface in Matlab, to automate the simulation of Radiative Transfer Modeling [40]
and mapping applications. More information can be found at: http://artmotoolbox.com/
(accessed 20 September 2022).

http://artmotoolbox.com/
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Figure 4. Retrieval workflow for the GPR-S1-LAI modeling using multiple local incidence angles of
S1 polarimetric data, partly adapted from [63]. The output maps show our S1-derived LAI maps over
the BVCR study area.

3. Results
3.1. Optimized S1 Stack Selection for LAI Modeling

We first explored the contribution of the S1 SAR data at distinct local incidence angles
and its effect on the LAI retrieval models’ statistics. To do so, the S1 backscatter response
for the winter wheat cropland was analyzed by plotting the VV and VH time series of
polarimetric data for the distinct S1 local incidences angles. Figure 5a,b displays the S1
VH and VV trend along the crop’s phenological development. A noticeable difference
can be appreciated when the S1-A path 141 SAR data is plotted against path 68 for both
polarizations. Besides the lack of temporal synchronicity between S1-A acquisitions, an
amplitude offset can be attributed to the differences in the local incidence angle of both S1
paths. Figure 5c, shows the S1 local incidence angle histograms for all winter wheat pixels
at the study site. There is a glaring overlap between S1-A and S1-B LIA values for path 68,
this results from the fact that both satellites share the same relative orbit number. The mean
LIA value for S1 path 141 is around 33º whereas for path 68 it is approximately 43º.
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Figure 5. S1-A acquisition trends over the study site. (a) Time-series of S1-A VH polarization data for
path 141 against path 68. (b) Time-series of S1-A VV polarization data for path 141 against path 68.
(c) S1 Local incidence angle histograms.

Table 3 presents the regression statistics when the S1 original data are used to train the
retrieval models in contrast with the case in which the optimized Whittaker smoother is
applied to the data. It can be noted that the increase of R2 and the decrease of MAE, RMSE,
and NRMSE values in general terms when all S1 acquisitions at distinct local incidence
angles are used to train the LAI retrieval models.

Table 3. Regression statistics for winter wheat LAI retrieval modeling using S1 time-series data.

Regression Statistics for Winter Wheat LAI Retrieval Models Using S1 Time-Series Data

S1 Data MLRA MAE [m2 m−2] RMSE [m2 m−2] NRMSE [%] R2 Time [s]

S1-A-P141 GPR[2B] 1.33 1.48 33.02 0.15 0.1219
S1-A-P68 GPR[2B] 1.16 1.38 30.74 0.34 0.0662
S1-B-P68 GPR[2B] 1.22 1.45 32.30 0.44 0.0893

S1-AB-P141-68 GPR[6B] 0.93 1.04 23.24 0.68 0.1305

Regression statistics for winter wheat LAI retrieval models using S1 time-series smoothed data

S1-A-P141 GPR[2B] 1.10 1.27 27.28 0.38 0.2638
S1-A-P68 GPR[2B] 0.63 0.86 18.60 0.67 0.0756
S1-B-P68 GPR[2B] 1.20 1.40 30.20 0.13 0.1247

S1-AB-P141-68 GPR[6B] 0.50 0.66 14.21 0.85 0.1525
S1-AB-P141-68 GPRCV [6B] 0.68 0.88 18.91 0.67 0.0117

Figure 6 shows the scatter plots of estimated against in situ measured LAI values. We
analyzed three algorithm training scenarios. The first contemplates S1 non-smoothed data
for multiple local incidence angle acquisitions (see Figure 6a). In the second, the effect of
smoothing the data is studied by training the six bands (6B) GPR-S1-LAI model with 70%
of in situ samples (see Figure 6b). Finally, the third scenario investigates the contribution of
a 10-fold CV strategy during the model training stage (see Figure 6c). Obtained R2, MAE,
RMSE, and NRMSE statistics denote high agreements between retrieved and measured
wheat LAI. The GPR uncertainties are also provided in the standard deviation (SD) form
expressed by vertical bars.

3.2. Winter Wheat Seasonal LAI Mapping

The 10-fold GPRCV retrieval model was subsequently applied to the S1 stacked images
for LAI mapping purposes. The S1 scenes are characterized by areas of intense agricultural
usage covering a variety of crop types (see Figure 2). The wheat croplands are flat, and the
vegetation growth is uniform; hence, the S1 backscatter signal is not affected by adverse
acquisition geometrical effects, such as radar shadow, foreshortening, and layover. Land
covers such as man-made surfaces, water bodies, or bare soil in the study region were
excluded from the S1 stacked scenes by applying a vectorial mask.
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Figure 6. Measured vs. estimated winter wheat LAI along 1:1-line, including uncertainty intervals.
(a) LAI model estimates using multiple local incidence angles of S1 non-smoothed time-series data;
(b) LAI model estimates using S1 smoothed time-series data at multiple local incidence angle acquisi-
tions and 70% of the data for model training; (c) LAI model estimates using S1 smoothed time-series
data at multiple local incidence angle acquisitions and 10-fold CV for model training.

The eight S1-derived maps of winter wheat LAI for the BVCR 2020 campaign are
shown in Figure 7. The winter wheat sown in the study site took place by the end of June
2020. The emergence of the plant stem and three tillers was noticeable in late August. By
the beginning of November 2020, wheat plants are in the anthesis (flowering) stage, leading
to the maximum retrieving values of LAI with 3.78 m2 m−2 on average. The senescence
arrives by the middle of November 2020, while harvest takes place by the first days of
January 2021.

Figure 7. Seasonal mapping of LAI (m2 m−2) of croplands in the BVCR for the winter wheat campaign
2020, retrieved by the GPRCV model using S1 polarimetric data from multiple local incidence angles
acquisitions and in situ measured LAI data.

Absolute uncertainty maps are also provided in the form of SD (see Figure 8). The asso-
ciated uncertainty maps can serve as a quality layer, e.g., to exclude uncertain areas [78,79].
Generally, the GPR model produced sufficiently low LAI uncertainties (i.e., less than
0.6 m2 m−2 on average) from the start of the season to the maximum greenness, with
higher values over the senescence stage, a period in which uncertainty can reach up to
1.25 m2 m−2 values.
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Figure 8. Seasonal mapping of LAI-SD (m2 m−2) of croplands in the BVCR for the winter wheat
campaign 2020, retrieved by the GPRCV model using S1 polarimetric data from multiple local
incidence angles acquisitions and in situ measured LAI data.

We computed the histograms of the retrieved LAI values for the winter wheat pad-
docks pursuing to visualize the dispersion of LAI values and their trend over time. On
every date on which the S1-derived LAI map was obtained, we analyze the probability
density function (PDF) of all pixels. We focused on paddocks 321, 322, and 323 for the
BVCR 2020 field campaign. Two PDFs were explored: Weibull [80] and non-parametric
Kernel probability density distribution [81]. We calculated the mean (µ) and the standard
deviation (σ) values of the Weibull distribution. The results are shown in Figure 9.

Figure 9. Temporal evolution of probability density function of LAI (m2 m−2) for the winter wheat
paddocks 321, 323, and 323 at the study site. LAI observed samples in each graph correspond to
S1-derived LAI estimations.

3.3. Time-Series Trend of Retrieved LAI and Associated Uncertainty

This section explores the winter wheat’s LAI seasonal evolution along the BVCR 2020
campaign. The GPR-S1-LAI model was applied to a total of nine S1 stacked scenes with the
aim of reproducing, as faithful as possible, the LAI curve of the winter wheat crop. The
LAI retrieved curve evolution for the three selected winter paddock in the study region
is displayed in Figure 10a. The GPRCV model uncertainties were mapped in the form of
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SD to represent the variability of the LAI retrieved values (see Figure 10b). The figures
show the temporal LAI and LAI-SD trends of the averaged nine ESUs (solid line), and
the mean of the in situ measured LAI values (green dots). Only the first five wheat LAI
measurements were plotted, excluding those samples acquired on November 16 and 30
and also 16 December 2020.

Figure 10. Seasonal evolution of wheat cropland over the three paddocks at the BVCR study sites
described by LAI, mean values of nine ESUs within the cropland limits, and the associated uncertainty,
plotted as vertical bars. (a) LAI estimates; (b) LAI uncertainty (SD).

For the three wheat paddocks in the study site, LAI increased from the plants’ emer-
gence stage onwards and decreased after tillering. Abrupt drops in LAI in January 2021
suggest a harvest event. Considering the availability of the land use data for the BVCR 2020
campaign presented in Figure 2, the LAI temporal evolution of all wheat paddocks in the
study site was determined by averaging all pixels inside each parcel´s bounds. Figure 11
displays the retrieved LAI temporal trend for all the winter paddocks at the study site
for the BVCR 2020 campaign. Despite lacking cropland management information for all
winter wheat paddocks, the LAI trend over time shows consistency with the development
of wheat plants in the study region’s environment (see Sections 2.2.1 and 2.2.2).

Figure 11. Seasonal evolution of LAI for all winter wheat paddocks in the BVCR study sites. The
estimate uncertainty is represented as vertical bars. (a) Wheat paddock 323; (b) Wheat paddock 321;
(c) Wheat paddock 322; (d) Wheat paddock 310; (e) Wheat paddock 311; (f) Wheat paddock 312;
(g) Wheat paddock 313; (h) Wheat paddock 314; (i) Wheat paddock 101; (j) Wheat paddock 102.

4. Discussion

We explored the suitability of multi-S1 data for all-weather LAI wheat monitoring.
We aimed to build a radar-based retrieval workflow based on multiple S1-A and S1-B
acquisitions at distinct local incidence angles and in situ measurements of irrigated winter
wheat LAI from the BVCR 2020 campaign. In the following, LAI retrieval performance and
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uncertainties (Section 4.1), sensitivity of S1 backscatter to winter wheat LAI (Section 4.2),
the role of S1 acquisition geometry (Section 4.3), and finally the potential of seasonal trends
identification based on S1 polarimetric data for wheat agronomic management (Section 4.4)
are discussed.

4.1. LAI Retrieval Performance and Uncertainties

In terms of local incidence angles, regressions parameters at 43º (path 68) outperformed
those obtained at 33º (path 141). This is in line with the vegetation-acquisition geometry
dependency of the radar-acquired scenes (see Figure 5 and Table 3). When both descendent
orbits (141 and 68) were used to train the GPR-S1-LAI retrieval model, an appreciable
R2 increase occurred compared to the use of single-orbit polarimetric data. This can be
attributed to additional information on the vegetation structure of the different dates and
from distinct angles of observation. This achievement is remarkable because mapping
winter wheat LAI using multiple S1 observations at distinct local incidence angles has not
yet been evaluated so far. We found a significant improvement in the R2 and RMSE of
the GPR-S1-LAI model after applying the data smoothing process based on the optimized
Whittaker smoother (see Table 3).

Based on the information presented in Table 3, we can conclude that the best results
were obtained for model S1-AB-P141-68, with NRMSE < 15% and R2 of 0.85 m2 m−2.
Nevertheless, and despite achieving these high-accuracy retrieval parameters, we focused
on the CV model, seeking to fully exploit the training dataset. The CV strategy provided
greater robustness to the LAI retrieval model, while preserving relatively high accuracy.
The GPRCV-based LAI model of winter wheat yielded a relatively high R2 with 0.67 and a
low RMSE of 0.88 m2 m−2.

The LAI estimates based on our approach suggested superior performance over those
presented in previous studies. For instance, Bousbih et al. [17] analyzed the potential
of S1 radar data for retrieving LAI of cereals in agricultural areas over the Kairouan
Plain (Tunisia, North Africa). They achieved R2 = 0.25 using dual polarimetric radar data
acquired from a single angle of observation. Hosseini et al. [51] used full-polarimetric
(HH+HV+VH+VV) RADARSAT-2 data for soybean and corn LAI mapping achieving
R2 = 0.64 RMSE = 0.63 m2 m−2 and R2 = 0.66 and RMSE = 0.75 m2 m−2, respectively.

Regarding the LAI retrieval uncertainties, two issues deserve to be adequately ad-
dressed. First, S1 SAR images are conditioned by the radar’s inherent speckle noise, which
affects the VH and VV backscatter amplitude of adjacent pixels of homogeneous moni-
tored cropland. This speckle noise, mainly due to the relative phase of individual scatters
within a resolution cell, increases the uncertainty of the LAI estimates. Consequently, the
S1-based LAI values have high dispersion between retrieving dates (see Figure 9). When
a particular scatter element is observed at distinct local incidence angles repeatedly on
time, this random speckle effect can be mitigated. Multiple radar observations increase
the amount of information, minimizing the entropy of the data and the uncertainty of
the estimates. Considering world locations where ascending and descending orbits of S1
are both available, the approach presented in this study constitutes an auspicious line of
research. Secondly, the in situ measurements (see Table 1) were collected during the wheat
growing season, which renders the models more robust and confident. It can be noticed
that in situ LAI sample values show a different pattern than the SAR LAI estimates in
late November and December 2020 (see Figure 10), while field trait data show high LAI
values, S1-based retrieved LAI show a reduction during this timeframe. After the anthesis,
the photosynthetic activity of winter wheat plants decreases leading to the beginning of
the senescence process. The moisture content of wheat plant stems, leaves, and ears is
considerably reduced by this time affecting the radar backscatter. The in situ measured
database was then restricted between 3 September to 2 November 2020 seeking to preserve
the consistency of the LAI retrieved values along the green vegetative stages of the winter
wheat crop. The final GPR-S1-LAI model is therefore better adapted toward green vege-
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tation states. Hence, the uncertainty of the developed models will increase during later
(mature/senescent) growing stages.

4.2. Sensitivity of S1 Backscatter to Winter Wheat LAI

LAI can be differentiated into LAI green and LAI brown. The green leaf area index
(LAIG) represents the photosynthetically active leaves of the plants, and is thus also the
most common type of LAI [82]. The brown leaf area index (LAIB), represents the normal-
ized leaf area, which is senescent and losing photosynthetic function [79,83]. During the
greenness stage, wheat plant development is usually modeled by LAIG. From the first days
of August to 16 November 2020, winter wheat plants remain green. During this period,
LAIG increased as the wheat plants grow. By 16 November 2020, crop senescence started,
and the share of brown leaves increased. From this point on, the LAIG starts decreasing
constantly until reaches zero value at the harvest date. Consequently, the S1 backscatter
at VH and VV polarization remained stable at low values (see Figure 5). Additionally, by
16 December 2020, the wheat heads became completely dry, thus, the C-band backscatter
decreases to reach the lower monitored values at this stage, the vegetation becomes trans-
parent to the radar signal and the soil moisture is very low because irrigation is stopped.
These structural changes in the canopy lead to an increased volume scattering of the
ground targets that can be mainly distinguished at VH polarization. Mattia et al. [20] and
Satalino et al. [84] found that when the heads of wheat plants emerged, the backscatter
changed drastically. They also highlighted the importance of the heading stage as a turning
point at which the C-band radar backscatter becomes essentially sensitive to soil moisture
rather than wheat plants’ biomass variations. During the senescence phase (from the
greenness maximum until wheat plants have completed the dehydration process), LAI
measurements are indeed represented by the total LAI (LAIT), thus LAIT = LAIG + LAIB,
implying that the LAI is defined by green and brown leaf structures [79,83]. The splitting of
the analysis into two periods (greenness and senescence) was studied by Che et al. [85], who
analyzed the temporal trend of the LAI of vegetation in Shandong Province, China. They
set up a breakpoint of two curves (LAIG and LAIB) that occurs during the flowering period
(anthesis) when the wheat has reached its full height. As radar is sensitive to the canopy’s
moisture and structure, it implies a certain sensitivity to LAIT . Nasrallah et al. [24] studied
the temporal profiles of the widely known Normalized Difference Vegetation Index (NVDI)
based on Sentinel-2 optical data and the S1 backscatter at VH and VV polarizations. The
authors remarked on the high sensitivity of the SAR signal to winter wheat phenological
cycle, in comparison to the time-series of NDVI [27].

4.3. Role of S1 Acquisition Geometry

The LAI temporal trend for all winter wheat paddocks in the study site is presented in
Figure 11. Even though winter wheat croplands are typically homogeneously distributed,
the spatial orientation of the rows in the wheat paddocks was not uniform between the
cropland locations. For example, in the three selected winter wheat paddocks for in situ
data collection (paddocks 321, 322, and 323), the rows were oriented from west-southwest
to east-northeast, while in paddocks 101 and 102, the orientation was from north-northwest
to south-southeast. In addition, the rows for paddocks 311–314 were from west to east,
while in paddock 310, the rows were oriented from west-southwest to east-northeast.
This difference in the spatial orientation of rows can be more noticeable during the first
development stages of winter wheat plants, such as seedling growth and tillering, when
the soil is not yet fully covered by vegetation. The S1 radar signal during this period is
governed by the soil moisture dynamic, which differs from one winter wheat paddock
to another, giving the difference in soil irrigation conditions and surface roughness. The
S1 C-band radar backscatter was affected by the spatial orientation of the rows which
varied for the winter wheat paddocks in the study region. This is based on the dependency
of the target’s radar cross-section (RCS) on the satellite’s relative angle [22], thus even
minimal changes in the target aspect significantly affect the RCS [18] (see Figure 5). The
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descending orbits 141 and 68 were used to perform early morning measurements when
dew may become a confounding factor [11,35]. During morning hours of the S1 acquisition,
the cropland relative humidity is high and the soil moisture increases causing backscatter
alterations of the SAR signal [86,87]. Fortunately, the S1 overpass time was similar for both
orbits (around 6:20 h local time), leading to a comparable influence of the dew effect for all
S1 acquisitions. After heading had occurred, the soil contribution is considerably reduced
and the volumetric backscattering of the vegetation’s canopy became more significant at
43º. This finding was noted by several previous studies [20,26,88,89].

Inconsistencies between the trend of the LAI in Figure 11 can be noticed for winter
wheat paddocks 101, 102, and most importantly, in paddock 310 (peak LAI is end-of-
October and then decreases) and the in situ measurements (highest LAI values were
observed throughout November and December). These differences may be attributed to
the fact that each crop parcel has been managed by different farmers at the study site
regardless of the scope of this research. Other factors accounting for this issue are crop
row orientation, the inherent SAR speckle noise, and the tri-dimensional plant structure
of winter wheat detected by the S1 radar instrument. In addition, wheat paddocks 101
and 102 were harvested on 18 December 2020, while 321, 322, and 323 on 4 January 2021.
Ultimately, the S1-derived LAI decreases suddenly for all winter wheat paddocks between
18 December 2020 and 5 January 2021, which is due to the harvest period. After these dates,
there is an increase in LAI values in January for paddocks 101, 102, and 310, which is due
to post-harvest land management practices. The sensitivity to surface soil moisture and
roughness also increases by this time.

4.4. Potential of Seasonal Trend Identification Based on S1 Polarimetric Data for Wheat
Agronomic Management

S1-based LAI mapping represents an attractive all-weather strategy for space-based
monitoring of croplands, particularly in cloudy agriculture areas such as the BVCR. Charac-
teristics of the study region were addressed in Section 2.2.1 and the irrigated winter wheat
development and properties in Section 2.2.2. This valuable information can support an
agronomic analysis of the winter wheat phenology in the study region. A summary of the
most important points concerning the previous sections (see Sections 2.2.1, 2.2.2 and 2.3.1),
and the innovative S1-based LAI mapping model is given next.

The LAI response was evaluated for a typical wheat extensive crop condition at a
productive scale at the BVRC. Agronomic nutritional and water requirement management
was performed to enable maximum yield potential. We can appreciate the development of a
typical phenological curve concerning each of the sampling dates. A positive evolution was
observed in LAI measurements in response to fertilizer and irrigation applications during
the vegetative stage of the crop (first five sampling dates). The registered precipitation
at the study site along the crop phenological cycle was representative of the expected
averaged value of the BVCR semi-arid region (see Section 2.2.1).

In Figure 10a, a noticeable decline in LAI evolution from 5 November (3.78 m2 m−2)
to 25 November 2020 (2.65 m2 m−2) was observed. This coincides with the stages of the
ontogenetic cycle of the wheat crop at the study site and with the warm temperatures
recorded for those dates (see Figure 3), thus accelerating the rate of crop development
and promoting flowering. In addition, as the photoperiod increases in November in the
southern hemisphere, crop stages are shorter [90]. The observed decline is explained by
the crop cycle interchange related to changing the apex to the reproductive stage and the
beginning of spikelet differentiation [91]. The onset of tillering occurs after the appearance
of the terminal spikelet at the apex. The beginning of internode elongation determines a
change in assimilate partitioning within the plant, which is mainly destined for the growth
of the stem, and consequently, the production of tillers ceases. From that moment on, and
depending on the available resources, tiller mortality will occur, defining at the end of
this process the number of spikelets per unit area [92]. Therefore, it is possible to make
an analogy between the beginning of elongation and the moment when the estimated
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S1-derived LAI decreases similar to the results obtained by other authors [24,27]. This
evidence confirms the capability of S1 radar data to detect changes that are diagnostic of
wheat crop phenology [93], especially over cloud-prone agriculture areas.

5. Conclusions

Merging distinct incidence angle observations of SAR potentially provides a richer
source of information related to vegetation structure than single narrow observations,
and can thus efficiently support all-weather cropland monitoring applications. Here, we
presented an S1-based retrieval workflow for operational mapping of LAI optimized for
an irrigated winter wheat cropland located in the South of Buenos Aires Province in
Argentina. The implemented retrieval method used the advantages of integrating two
distinct S1 descending relative orbits. Physical interaction between the radar signal at
distinct acquisition geometries and the vegetation structure provided complementary
information for LAI retrieval. We chose GPR as a solid probabilistic MLRA for the retrieval
of LAI, given the advantage of delivering associated uncertainties along with the estimates,
so assisting in the reliability assessment of the LAI retrieval.

The GPRCV model for retrieving LAI over winter wheat was validated with relatively
high accuracy against in situ data RMSE = 0.88 m2 m−2 and R2 = 0.67. The established
GPRCV LAI model was posteriorly applied to a series of S1 stacked imagery of the growing
season of 2020 over the BVCR study site. The resulting maps suggest spatiotemporal
consistency with winter wheat growth in the region, however, the transferability of the
retrieval model to other cropland environments remains to be carefully analyzed. We
conclude that dense S1 time-series data at both ascending and descending orbits present an
appealing opportunity for year-round monitoring of cultivated areas. Additional research
is required to assess if this workflow is applicable to other vegetation structures and
environmental conditions.
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