4 research outputs found

    At-Speed Path Delay Test

    Get PDF
    This research describes an approach to test metastability of flip-flops with help of multiple at-speed capture cycles during delay test. K longest paths per flip-flop test patterns are generated, such that a long path on one clock cycle feeds a long path on the next clock cycle, and so on. Traditional structural delay tests do not test whether time borrowing or stealing is working correctly, since only a single at-speed cycle is tested. To detect path delay faults for the multi-cycle paths, it is necessary to start a path at a register and end at a register while passing through another register, testing the longest paths between each pair of registers. This requires three or more at-speed cycles, rather than the two of traditional Launch on Capture test. This produces power supply noise closer to functional mode, and permits the testing of flip-flop metastability and time-borrowing latches, that cannot be tested by any other structural test technique. The path generation algorithm uses the circuit structure, and then the paths are sequentially justified using Boolean Satisfiability algorithms. The algorithm has been implemented in C++ on an Intel Core i7 machine. Experiments have been performed on various ISCAS benchmark circuits in both robust and non-robust path generation technique to evaluate our approach

    Runtime Monitoring for Dependable Hardware Design

    Get PDF
    Mit dem Voranschreiten der Technologieskalierung und der Globalisierung der Produktion von integrierten Schaltkreisen eröffnen sich eine Fülle von Schwachstellen bezüglich der Verlässlichkeit von Computerhardware. Jeder Mikrochip wird aufgrund von Produktionsschwankungen mit einem einzigartigen Charakter geboren, welcher sich durch seine Arbeitsbedingungen, Belastung und Umgebung in individueller Weise entwickelt. Daher sind deterministische Modelle, welche zur Entwurfszeit die Verlässlichkeit prognostizieren, nicht mehr ausreichend um Integrierte Schaltkreise mit Nanometertechnologie sinnvoll abbilden zu können. Der Bedarf einer Laufzeitanalyse des Zustandes steigt und mit ihm die notwendigen Maßnahmen zum Erhalt der Zuverlässigkeit. Transistoren sind anfällig für auslastungsbedingte Alterung, die die Laufzeit der Schaltung erhöht und mit ihr die Möglichkeit einer Fehlberechnung. Hinzu kommen spezielle Abläufe die das schnelle Altern des Chips befördern und somit seine zuverlässige Lebenszeit reduzieren. Zusätzlich können strahlungsbedingte Laufzeitfehler (Soft-Errors) des Chips abnormales Verhalten kritischer Systeme verursachen. Sowohl das Ausbreiten als auch das Maskieren dieser Fehler wiederum sind abhängig von der Arbeitslast des Systems. Fabrizierten Chips können ebenfalls vorsätzlich während der Produktion boshafte Schaltungen, sogenannte Hardwaretrojaner, hinzugefügt werden. Dies kompromittiert die Sicherheit des Chips. Da diese Art der Manipulation vor ihrer Aktivierung kaum zu erfassen ist, ist der Nachweis von Trojanern auf einem Chip direkt nach der Produktion extrem schwierig. Die Komplexität dieser Verlässlichkeitsprobleme machen ein einfaches Modellieren der Zuverlässigkeit und Gegenmaßnahmen ineffizient. Sie entsteht aufgrund verschiedener Quellen, eingeschlossen der Entwicklungsparameter (Technologie, Gerät, Schaltung und Architektur), der Herstellungsparameter, der Laufzeitauslastung und der Arbeitsumgebung. Dies motiviert das Erforschen von maschinellem Lernen und Laufzeitmethoden, welche potentiell mit dieser Komplexität arbeiten können. In dieser Arbeit stellen wir Lösungen vor, die in der Lage sind, eine verlässliche Ausführung von Computerhardware mit unterschiedlichem Laufzeitverhalten und Arbeitsbedingungen zu gewährleisten. Wir entwickelten Techniken des maschinellen Lernens um verschiedene Zuverlässigkeitseffekte zu modellieren, zu überwachen und auszugleichen. Verschiedene Lernmethoden werden genutzt, um günstige Überwachungspunkte zur Kontrolle der Arbeitsbelastung zu finden. Diese werden zusammen mit Zuverlässigkeitsmetriken, aufbauend auf Ausfallsicherheit und generellen Sicherheitsattributen, zum Erstellen von Vorhersagemodellen genutzt. Des Weiteren präsentieren wir eine kosten-optimierte Hardwaremonitorschaltung, welche die Überwachungspunkte zur Laufzeit auswertet. Im Gegensatz zum aktuellen Stand der Technik, welcher mikroarchitektonische Überwachungspunkte ausnutzt, evaluieren wir das Potential von Arbeitsbelastungscharakteristiken auf der Logikebene der zugrundeliegenden Hardware. Wir identifizieren verbesserte Features auf Logikebene um feingranulare Laufzeitüberwachung zu ermöglichen. Diese Logikanalyse wiederum hat verschiedene Stellschrauben um auf höhere Genauigkeit und niedrigeren Overhead zu optimieren. Wir untersuchten die Philosophie, Überwachungspunkte auf Logikebene mit Hilfe von Lernmethoden zu identifizieren und günstigen Monitore zu implementieren um eine adaptive Vorbeugung gegen statisches Altern, dynamisches Altern und strahlungsinduzierte Soft-Errors zu schaffen und zusätzlich die Aktivierung von Hardwaretrojanern zu erkennen. Diesbezüglich haben wir ein Vorhersagemodell entworfen, welches den Arbeitslasteinfluss auf alterungsbedingte Verschlechterungen des Chips mitverfolgt und dazu genutzt werden kann, dynamisch zur Laufzeit vorbeugende Techniken, wie Task-Mitigation, Spannungs- und Frequenzskalierung zu benutzen. Dieses Vorhersagemodell wurde in Software implementiert, welche verschiedene Arbeitslasten aufgrund ihrer Alterungswirkung einordnet. Um die Widerstandsfähigkeit gegenüber beschleunigter Alterung sicherzustellen, stellen wir eine Überwachungshardware vor, welche einen Teil der kritischen Flip-Flops beaufsichtigt, nach beschleunigter Alterung Ausschau hält und davor warnt, wenn ein zeitkritischer Pfad unter starker Alterungsbelastung steht. Wir geben die Implementierung einer Technik zum Reduzieren der durch das Ausführen spezifischer Subroutinen auftretenden Belastung von zeitkritischen Pfaden. Zusätzlich schlagen wir eine Technik zur Abschätzung von online Soft-Error-Schwachstellen von Speicherarrays und Logikkernen vor, welche auf der Überwachung einer kleinen Gruppe Flip-Flops des Entwurfs basiert. Des Weiteren haben wir eine Methode basierend auf Anomalieerkennung entwickelt, um Arbeitslastsignaturen von Hardwaretrojanern während deren Aktivierung zur Laufzeit zu erkennen und somit eine letzte Verteidigungslinie zu bilden. Basierend auf diesen Experimenten demonstriert diese Arbeit das Potential von fortgeschrittener Feature-Extraktion auf Logikebene und lernbasierter Vorhersage basierend auf Laufzeitdaten zur Verbesserung der Zuverlässigkeit von Harwareentwürfen
    corecore