

 AT-SPEED PATH DELAY TEST

A Thesis

by

SWATI CHAKRABORTY

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Duncan M. H. Walker

Committee Members, Rabi N. Mahapatra

 Sunil P. Khatri

Head of Department, Dilma Da Silva

May 2015

Major Subject: Computer Engineering

Copyright 2015 Swati Chakraborty

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79651052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

This research describes an approach to test metastability of flip-flops with help of

multiple at-speed capture cycles during delay test. K longest paths per flip-flop test

patterns are generated, such that a long path on one clock cycle feeds a long path on the

next clock cycle, and so on. Traditional structural delay tests do not test whether time

borrowing or stealing is working correctly, since only a single at-speed cycle is tested.

To detect path delay faults for the multi-cycle paths, it is necessary to start a path

at a register and end at a register while passing through another register, testing the

longest paths between each pair of registers. This requires three or more at-speed cycles,

rather than the two of traditional Launch on Capture test. This produces power supply

noise closer to functional mode, and permits the testing of flip-flop metastability and

time-borrowing latches, that cannot be tested by any other structural test technique. The

path generation algorithm uses the circuit structure, and then the paths are sequentially

justified using Boolean Satisfiability algorithms.

 The algorithm has been implemented in C++ on an Intel Core i7 machine.

Experiments have been performed on various ISCAS benchmark circuits in both robust

and non-robust path generation technique to evaluate our approach.

iii

ACKNOWLEDGEMENTS

I would like to express my profound gratitude and respect for my M.S.

Committee Chair and adviser Dr. Duncan M. (Hank) Walker. I would like to thank him

for his guidance, support, encouragement and patience throughout the course of this

research.

I am grateful to my Committee Members Dr. Rabi N. Mahapatra and Dr. Sunil P.

Khatri and would like to express my thanks and respect to them for their suggestions and

encouragement.

I would also like to thank all the faculty, staff and friends in the department.

Finally, thanks to my parents and my husband for their love and support

throughout this journey.

iv

TABLE OF CONTENTS

Page

ABSTRACT ...ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

1. INTRODUCTION .. 1

1.1 Path Delay Test .. 1
1.1.1 Delay Test Problem ... 1
1.1.2 Path Sensitization .. 3

1.1.3 Robust and Non-Robust Path Delay Tests .. 3
1.2 Scan-based Delay Test ... 4

1.2.1 Muxed-D Scan Approach .. 5

1.2.2 Enhanced Scan Approach .. 6

1.3 At Speed Testing .. 7
1.3.1 Launch on Shift ... 7

1.3.2 Launch on Capture .. 8
1.4 KLPG Algorithm .. 10

1.4.1 Pseudo-functional KLPG .. 12

1.5 Boolean Satisfiability ... 13
1.5.1 MiniSat .. 15
1.5.2 Use of SAT in CodGen ... 16

1.6 Structure of the Thesis.. 16

2. MOTIVATION ... 17

2.1 Time Borrowing and Time Stealing ... 17

2.2 Metastability ... 19
2.3 At Speed Test Approach .. 20
2.4 Faster than At-Speed Delay Test .. 21
2.5 Other Related Work ... 22

3. IMPLEMENTATION .. 23

v

3.1 Test Generation Strategy for Enhanced CodGen for Multiple Capture Cycles 23
3.2 Aim at Scan-flops ... 26
3.3 Finding Fan-in and Fan-out Cone .. 27
3.4 Complete Path over Multiple Capture Cycles .. 28

3.5 Tracking the Number of Paths Generated .. 29
3.6 Time-frame Expansion ... 29

4. RESULTS ... 31

4.1 Paths Generated across Different Capture Cycles for Robust and Non-Robust

Case .. 31

4.2 Fault Coverage across Different Capture Cycles for Robust and Non-Robust

Case .. 37

5. CONCLUSIONS AND FUTURE WORK .. 44

REFERENCES ... 46

vi

LIST OF FIGURES

 Page

Figure 1. Delay fault problem definition .. 2

Figure 2. Untestable path ... 3

Figure 3. Scan-based test ... 5

Figure 4. Muxed-D scan cell ... 5

Figure 5. Muxed-D scan design ... 6

Figure 6. Enhanced-scan design ... 7

Figure 7. Launch on Shift ... 8

Figure 8. Launch on Capture .. 9

Figure 9. Justification in LOC .. 9

Figure 10. KLPG algorithm ... 10

Figure 11. Drop in power supply voltage during delay test ... 13

Figure 12. Pseudo functional test ... 13

Figure 13. Time borrowing .. 17

Figure 14. Metastability ... 19

Figure 15. At speed functional test ... 20

Figure 16. Multiple capture cycles in at-speed path delay test .. 24

Figure 17. Flow-chart for CodGen with multiple capture cycles 26

Figure 18. Scan-flop with fan-outs ... 27

Figure 19. Complete path over multiple capture cycles ... 28

Figure 20. # Paths in circuits for different capture cycles for robust case 33

vii

Figure 21. Longest path length in different capture cycles for different circuits for

robust case .. 34

Figure 22. # Paths in circuits for different capture cycles for non-robust case 36

Figure 23. Longest path length in different capture cycles for different circuits in

non-robust case ... 37

Figure 24. Fault coverage across different capture cycles in robust case 39

Figure 25. Fault coverage trend in circuit s1494 across different capture cycles for

robust case .. 40

Figure 26. Fault coverage across different capture cycles in non-robust case 41

Figure 27. Fault coverage trend in circuit s1494 across different capture cycles for

non-robust case ... 42

viii

LIST OF TABLES

 Page

Table 1. # Paths Generated, Longest Path Length, Time for Robust Case, K=1 32

Table 2. # Paths Generated, Longest Path Length, Time for Non-Robust Case, K=1 35

Table 3. Fault coverage in robust case ... 38

Table 4. Fault coverage in non-robust case .. 41

1

1. INTRODUCTION

1.1 Path Delay Test

 Delay testing is used to test delay faults that affect the maximum operating speed

of an integrated circuit. The delay can be modeled by a delay fault model. One of them is

path delay fault model. A path is sequence of gates in the circuit from a primary input to

a primary output and there is a transition at each gate [1]. The gate input on the path is

the on-input and the other inputs are side-inputs [1]. In path delay fault model, a path has

delay fault if the delay of the path exceeds some specified duration [2] [3]. The delay of

a path is the amount of time needed to propagate a signal from the start gate of the path

to the end gate. Many studies have been done to test longest paths in a circuit

[4][5][6][7][8][9].

 As the number of paths in a circuit is exponential in terms of the circuit size,

identification of the longest sensitizable paths through each gate or line is extremely

difficult [10]. To make the test tractable k longest paths per gate are tested in [10]. This

test accounts for both local delay defects (e.g. a logic gate is slow) and global process

variation (several different paths through a gate might be the slowest).

1.1.1 Delay Test Problem

The delay test requires two test patterns or vectors for launching transitions. The

first vector is the initialization vector and the second vector is the test vector. Transitions

are launched into the circuit through the primary inputs (PIs) and pseudo primary inputs

2

(PPIs) and the responses are captured through primary outputs (POs) and pseudo

primary outputs (PPOs) [1].

Figure 1 below illustrates the concept of delay fault through gates. When a rising

transition is put at the input of an inverter, output of the inverter experiences a falling

transition. The delay between the rise and fall transition is determined by the

characteristic of the gate. The shaded region in the picture represents the time in which

the output of the inverter is expected to complete the transition caused by the transition

at the input. When the path from the input to output of the inverter experiences an

additional amount of delay, the falling transition at the output gets shifted outside of the

shaded region. This is characterized as the delay fault.

Figure 1. Delay fault problem definition

 A combinational logic has various paths. The delay of a given path varies with

the number of gates in the path and also by the fan-outs of a given gate. The path with

the longest delay in the circuit is called the critical path. The critical path of a circuit

defines the maximum attainable speed of operation. A delay fault is registered in the

circuit when one or more path delay is more than the clock period of the circuit.

3

1.1.2 Path Sensitization

“A path is said to be testable if a rising/falling transition can propagate from the

primary input to the primary output associated with the path, under certain sensitization

criteria” [11] [12] [13] [14][1]. “If a path is not testable, it is called an untestable or

false path” [15] [16][1]. In case of static sensitization of paths, all the side inputs of the

gates for the path under test should have non-controlling values [2]. Figure 2 below

shows a false path a-c-d which cannot be sensitized because b needs to have a non-

controlling value of 1 for the AND gate and a non-controlling value of 0 for the OR gate

in order to propagate transition along path a-c-d [1].

Figure 2. Untestable path [1]

1.1.3 Robust and Non-Robust Path Delay Tests

Depending on the sensitization criteria, a path can be robustly testable or non-

robustly testable [1]. A robust test will detect a path delay fault irrespective of other

delays in the circuit. However a non-robust test will detect path delay fault if no other

path delay fault is present. For the non-robust test, condition of static sensitization

4

should be satisfied along with the condition that the test vector pair will produce the

required transition at the start of path under test [2].

1.2 Scan-based Delay Test

To test a circuit, several scan flops are inserted into the design for observability

and controllability of the circuit under test. This scan flops are then connected into a

scan-chain. The circuit can be operated in normal functional mode or in scan mode. In

the functional mode, the output will be the functional output. The scan flops will have no

role to play in this case. For testing purposes, there are two distinct operations, first is to

load the test vector and the second is to capture the response. First the scan-mode is

enabled, and the test vector is shifted to the scan register. Then test mode is turned on, in

which the combinational block gets the previously loaded values from the scan flops. In

the next clock cycle, the output scan-flops capture responses from combinational block

and the design is set to scan mode. The results are then shifted out of scan-chain to be

compared against expected responses. Figure 3 explains the scan-chain operation.

5

Figure 3. Scan-based test [17]

Since the flip-flop can hold a single value, to make them apply two patterns there

are two common approaches, one is muxed-D scan and the other is enhanced scan [1].

1.2.1 Muxed-D Scan Approach

Muxed-D scan approach utilizes a muxed-D scan cell. Muxed-D scan cell, shown

in Figure 4, has a 2:1 multiplexer at the input of a D flip-flop. The select input of the

multiplexer is a scan-enable (SE) signal which selects between the functional data (DI)

and scan-input (SI).

Figure 4. Muxed-D scan cell [1]

6

From Figure 5 we can see that since the outputs of a muxed-D scan-cell is

connected to the input of next muxed-D scan-cell, when SE is 1, they function as a

single scan-chain. SE value of 0 is used to capture responses from the combinational

logic into the flops.

Figure 5. Muxed-D scan design [1]

1.2.2 Enhanced Scan Approach

In enhanced scan design, we can apply an arbitrary pair of vectors. In the design

as shown in Figure 6, when the UPDATE signal is 1, the first vector applied to scan-

flops (SFF) is transferred from the scan-flops to the latches (LA). Next UPDATE signal

is set to 0, and the second vector is loaded into the scan-flops. Once the vector is loaded,

UPDATE is made 1 again, and the output response is captured at the scan-cells.

Enhanced scan approach has high delay fault coverage. The hardware overhead is the

downside of enhanced scan.

7

Figure 6. Enhanced-scan design [1]

1.3 At Speed Testing

 The scan-design provides at-speed testing for high speed and high frequency

circuits [1]. Launch On Shift (LOS) and Launch On Capture (LOC) are two at-speed test

schemes [1]. To detect transition fault or path delay fault in intra-clock domain or inter-

clock domain, either of the two could be used.

1.3.1 Launch on Shift

In Launch on Shift (LOS) approach as shown in Figure 7, the last shift clock

pulse is used to launch transition and capture clock pulse is used to capture the response.

In this approach, the scan enable signal switches its value between the launch and

capture clock pulse [1].

8

Figure 7. Launch on Shift [1]

1.3.2 Launch on Capture

The traditional structural test in high-speed circuits shifts the test pattern slowly

into the flip-flops organized as scan chains, during which time the scan enable (SE)

signal is held up. The SE signal is then switched low, so that the circuit is in functional

mode, and applies two at-speed cycles to launch and capture the test results. This is

referred to as launch-on-capture (LOC) test (Figure 8).

9

Figure 8. Launch on Capture [1]

 In LOC approach the test vector is to be justified back by one time-frame as

shown in Figure 9. The initialization vector V1 is generated first, then the next vector

V2 is generated such that a transition can be launched.V2 is a function of the vector V1′,

where V1 and V1′ are same except that they are shifted by one time-frame. The

assignments in V1 and V1′ should not be conflicting [18].

Figure 9. Justification in LOC [18]

10

1.4 KLPG Algorithm

 The KLPG algorithm [10] aims at generating K longest paths through each gate

in a combinational circuit. The paths start at primary inputs and ends at primary outputs.

Paper [18] describes the KLPG algorithm for scan-based sequential circuits. For the

sequential circuits the launch point is a scan-flop and the path is grown until it reaches a

capture point which is another scan-flop. The paths that have been generated are

subjected to a final justification phase. The KLPG algorithm has been implemented in

CodGen.

 The flowchart of the algorithm is given in Figure 10.

Figure 10. KLPG algorithm [18]

11

The three main steps of the KLPG algorithm are path initialization, path growth

and path justification. Given a circuit, we need to find out the sequential observability

and controllability values of the gates in the design. The observability value determines

how easily we can observe the outputs of the gates and controllability is a measure of

how easily we can control the input values. The gates near to the primary outputs are

more observable than those near the primary inputs, whereas gates near the primary

inputs are more controllable than those near to primary outputs. So in order to compute

observability and controllability values, we need to levelize the circuit, which will give

the maximum distance of the gate from a primary input. We also need to compute

esperance of the gates. Thus observability, controllability, esperance, fan-in and fan-out

cones of each gate are calculated in initialization phase.

 During the path growth stage, each gate is added to the pre-existing partial paths

if it meets the sensitization criteria. These partial paths are all saved and stored in the

partial path store sorted according to esperance value. The esperance value is the upper

bound limit on the delay when the partial path grows to a complete path. During this

stage, direct implications are also performed to get the outputs of other gates.

 When a partial path reaches a scan-cell, it becomes a complete path and final

justification is performed on it to check whether all the assigned values are compatible.

Test patterns are obtained in this final step.

After the paths are generated and test vectors found, the test vectors are

compacted to reduce the number of test patterns. Compaction could be of two types:

static compaction and dynamic compaction. Static compaction is performed after the test

12

generation. The paper [19] presents dynamic compaction implementation for KLPG

algorithm. This dynamic implementation does not consider one pattern generated against

the other. It saves the paths in a path pool and whenever a new path is generated, the

assignments for the new path are compared against those in the path pool. By doing

dynamic compaction, the pattern count had been reduced.

The coverage value gives us an idea of how many faults had been detected over

total number of faults. Larger the coverage better is the test. To increase the fault

coverage, top-off transition fault test patterns can be used [1].

1.4.1 Pseudo-functional KLPG

 During the time that the circuit is switching from scan to functional mode, the

currents in the off-chip connections fall to their quiescent values. When the at-speed

cycles are applied, the current demand of the chip rises quickly, but the off-chip

inductance limits the speed that current can be supplied, leading to dI/dt power supply

voltage droop on the chip [20]. This causes the chip to operate more slowly than in

functional mode. In Figure 11 , we could see delay test induced drop in power supply

voltage. So there is a chance that the circuit will operate slowly and good chips may fail

the delay test.

13

Figure 11. Drop in power supply voltage during delay test [20]

The solution is to apply a number of medium-speed preamble cycles after the test

has been scanned in, before the launch and capture. Since these preambles are in

sequential mode, and filter out most non-functional activity, this test in the KLPG

algorithm is referred as pseudo functional KLPG test [21]. The timing diagram is shown

in Figure 12.

Figure 12. Pseudo functional test [21]

1.5 Boolean Satisfiability

 The use of Boolean Satisfiability in generating the test patterns for the circuits

under test has been shown in [22]. The Conjunctive Normal Form (CNF) generation of

an AND gate is described in [22]. If Z=X.Y, then the formula can be written as

14

(Z→(X.Y))((X.Y)→Z). Next all implications are transformed to disjunctions. Hence the

formula for an AND gate is obtained as (~Z+X)(~Z+Y)(~X+~Y+Z). In the CNF, each

sum is a clause. The task is to find an assignment of X, Y and Z such that the formula

evaluates to true. Clauses with two variables are said to be in 2CNF, and clauses with

three variables are in 3CNF. While 2CNF can be solved in polynomial time, 3CNF is a

NP-Complete problem.

 The work in [22] describes how to extract the Conjunctive Normal Form (CNF)

formulas for the faulted and un-faulted circuits. The XOR of the two outputs is included

in the formula to account for the fact that the XOR output will be one, if the two outputs

differ. Although satisfying a CNF formula (SAT) is a NP-Complete problem, most of the

clauses used in the described case are binary clauses.

Applying SAT for test generation is a problem because of the difficulty to

incorporate real delay values. This is avoided in [21] by using a mixed structural-

functional approach, where the paths are generated with structural approach, and during

path justification SAT engine is used. In [23] several techniques are presented to speed

up the path generation with the SAT solvers. The techniques presented are circuit

simplification, Dynamic SAT Solving (DSS), Circuit Observability Don’t Cares (Cir-

ODC) and Approximate Observability Don’t Cares (AODC). In DSS, the structural

information of the circuit is used to speed up SAT solution time. In the path delay test

generation, to speed-up SAT, only the clauses affecting the concerned fan-in and fan-out

cones are turned on, other clauses are turned off.

15

In the paper [24], authors discuss in detail about the implementation of SAT. The

SAT components should determine how to represent the internal data structures, a policy

on direct implication of assignments and the way search for the assignments is to be

done to satisfy the solver. For assignments to the literals, first either a true or false value

is assigned to that literal, and each of the clauses are evaluated for that assignment.

Conflicts in literal assignments are resolved by backtracking some of the assignments

and the search should be continued again to find satisfying assignments. Whenever

some conflict is detected, the clause is added to the learnt clause set, which will be used

in future decision making process. But care should be taken to see that this learnt clause

set does not become too big, as time can be wasted on searching a big learnt clause set.

So the SAT solvers generally prune these clauses.

Cir-ODC is described in detail in [25]. If there is a signal which does not have

any effect in the output of the design with certain logic constraints, then those logic

constraints are don’t-care condition related to the signal. The use of Cir-ODC also helps

to speed-up delay test generation. For optimization, it is necessary to find compatible

ODCs. But generation of compatible ODCs is complex. An efficient algorithm to find

approximate ODCs is presented in [26].

1.5.1 MiniSat

MiniSat is a minimalistic, open-source SAT solver [27]. It has been used in

CodGen because of its modifiability, efficiency and ease of integration.

16

1.5.2 Use of SAT in CodGen

The implementation of SAT in CodGen has been described in [21]. The delay

test requires two vectors for the launch and capture. So for launch on capture, for a

signal in the circuit, two Boolean variables are used to represent the signal in two time-

frames. Similarly for the pseudo-functional test, the signal has to be represented in more

than two time-frames. If the primary inputs are fixed, only one Boolean variable can be

used for all the time frames for the primary inputs. Several features, such as dynamic

SAT solving are present in CodGen [23].

1.6 Structure of the Thesis

In this thesis, we propose a multiple at-speed cycle KLPG algorithm which will

be useful for testing metastability of flops and time-borrowing of latches. The thesis is

organized as follows: In Chapter 2, we present the motivation of the work. In Chapter 3,

we present the implementation strategy for the multiple at-speed capture cycle KLPG

algorithm. Chapter 4 discusses the results, and Chapter 5 concludes the research.

17

2. MOTIVATION

2.1 Time Borrowing and Time Stealing

 In high-speed CMOS circuits, some paths may take longer than one clock cycle

to propagate. This is enabled by time borrowing and time stealing in latch-based designs

[28]. Time borrowing happens in “the case where a logical partition utilizes time left

over (slack time)” by a partition in the previous clock cycle [28]. Time stealing occurs

where “a logical partition utilizes a portion of the time allotted to” the partition in the

next cycle [28].

Figure 13. Time borrowing [29]

18

Figure 13 shows the concept of time borrowing. Figure 13 (a) shows borrowing

time across the pipeline stage boundary and Figure 13 (b) shows borrowing time across

half-cycle boundary.

Time borrowing in a design can be either intentional or unintentional [30]. For

those cases with intentional time borrowing, the design for test is already taken care of.

But even in this case, the actual time-borrowing will vary depending on the test vectors

and the chip under test. The unintentional cases of time-borrowing latches in a chip arise

from variations in fabrication process. Because of this, signals may not arrive at the

inputs of gate at the required time. This causes problem for the test generation. To test

time-borrowing latches, multiple paths that start and end at a latch have to be

concatenated [30].

So time borrowing allows one partition to use more time than is available at the

cost of another partition. Hence, time borrowing paths become multi-cycle paths.

Traditional structural delay tests do not test whether time borrowing or stealing is

working correctly, since only a single at-speed cycle is tested. To detect path delay faults

for the multi-cycle paths, it is necessary to start a path at a register and end at a register

while passing through another register, testing the longest paths between each pair of

registers. This requires three or more at-speed cycles, rather than the two of traditional

LOC test.

19

2.2 Metastability

 The arrival time of a signal is the time at which the signal arrives at an endpoint.

The required time is the time before which the signal can arrive without affecting the

clock period. The difference between arrival and required time is known as the timing

slack. If timing slack is positive, it means that the signal can still arrive later. If the slack

is negative, the arrival time needs to be improved.

 When a path is late arriving at a flip-flop, the input signal may change at the

same time that the flip-flop is clocked, violating the flip-flop’s setup time. This may

cause the flip-flop to enter a metastable state, before it eventually resolves to a 0 or 1.

This causes the flip-flops output transition to be slow, which could cause a delay fault in

the following at-speed cycle. Current delay tests do not detect this situation. Using three

or more at-speed cycles will detect this case.

Figure 14. Metastability [31]

20

In Figure 14, we see that set-up is violated. The metastable output A finally

settles to logic 1 after the clock to output time (tco) and metastable output B settles to

logic 0 after tco.

2.3 At Speed Test Approach

Since scan launch and capture clocks are much slower than the functional clocks,

scanning patterns in and out of the circuit is very slow which make the tests take a long

amount of time. To make the tests faster, several at speed capture cycles can be used.

This is done in this research and we term the test at-speed test. The timing diagram is

shown in Figure 15, with the functional test cycles being preceded by the preamble

cycles.

Figure 15. At speed functional test

The challenge for the at-speed test is that we have to justify the paths and the

assignments over multiple time-frames. So we first find a longest path starting and

ending at a flop in the first launch and capture cycle, in the next capture cycle we have to

start finding a long path from the scan-out of the flop where the previous path ended,

21

while obeying the necessary assignments for the previous clock cycle. This constraints

the path search, and as we have seen in our experimental results, the number of paths

that we found in successive capture cycle decreases.

 The three advantages of at-speed approach are:

 It can be used to test time-borrowing in case of latches.

 It can test metastability of flip-flops because a late arriving transition can result

in a metastable flip-flop and the resulting output violation will be captured in

next capture cycles.

 It can further help to filter out power-supply noise because of the extra functional

cycles.

 One of the decisions that had to be taken regarding path finding is when to do the

final justification. One of the approaches could be to do the final justification after we

have found the paths over a certain number of capture cycles, or we could justify the

path after each capture cycle. We have used the second approach in this research, as by

justifying after each capture cycle we could save time by eliminating paths upfront and

eliminate the effort of expanding them.

2.4 Faster than At-Speed Delay Test

There are some delay test methods which selects shortest paths through a fault

site and the paths can have timing slack [1]. Faster than at-speed testing approach can be

used when the test patterns are generated for a path with timing slack [1]. But the

drawbacks of this approach are the additional power supply noise generated to operate at

22

frequency higher than at-speed, and some good chips could be rejected because they fail

at faster than at-speed test [1].

2.5 Other Related Work

 The work in [32] proposes a metric which gives testability of the circuit for path

delay faults. They have used this measure in scan-based Built-in Self-Test (BIST) path

delay testing.

 The work in [30] [33] considers the case of time-borrowing in latches in high

speed circuits and proposes structural delay testing in those cases. It targets long paths in

successive blocks for delay testing.

 The work in [34] discusses about canary logic. The canary flop helps to prevent

timing error in the design. Comparison of the values in main flip-flop and the canary

flip-flop determines the correctness of operation. It is an alternative to Razor [35] logic.

The use of canary logic in preventing age-related timing violation of the circuit has been

shown in [36].

23

3. IMPLEMENTATION

3.1 Test Generation Strategy for Enhanced CodGen with Multiple Capture Cycles

 The KLPG algorithm which has been implemented in CodGen assumed only one

at-speed capture cycle, so only generates timed paths for one launch and one capture

cycle. We have extended the KLPG algorithm to generate longest paths across multiple

at-speed capture cycles. First, a longest path between a launch and capture flip-flop (or

latch) is found by KLPG. We then justify this path. Then we extend this path from the

capture flip-flop to the next capture flip-flop. This process continues for as many at-

speed cycles as desired. In previous implementations of CodGen, time frame expansion

only goes back in time, assuming that the at-speed path is captured at the last cycle. In

this work we must go back in time for justification, but also forward in time as we add

more at-speed clock cycles. These forward expansions are done using the necessary

assignments of the prior frames, in order to trim off sequentially false paths. For each

additional cycle, we justify the path, in order to avoid wasting time in generating

sequentially false paths. The search space for the path finding across multiple at-speed

cycles is shown in Figure 16, assuming that we start from a flip-flop (the “fault site”).

24

Figure 16. Multiple capture cycles in at-speed path delay test

The steps in the enhanced KLPG algorithm are explained in detail below.

 Path Generation in launch and capture cycle: In our work, KLPG algorithm has

been modified to generate K longest paths aiming to generate K longest paths per flop

through each fan-out. During initialization step of KLPG algorithm [10], the metrics for

observability, controllability, esperance as well as the fan-in and fan-out cone for the

starting gate is calculated. The starting gate is a scan-cell which will be stored in a partial

path structure. This partial path will grow to become a complete path. All such partial

paths will be stored in a path store. We extend a partial path with the maximum

esperance by adding one more gate to it. We perform direct implication on the outputs

and side inputs of the newly added gate. If direct implication is passed, the gate is added

to extend the partial path and we assign values to the time-frames. When a partial path

25

reaches another scan-cell, the path is a complete path. This complete path is then

justified with SAT.

 Path extension in next capture cycles: Once this path passes justification, we

have to again start extending the path from that capture flop. The necessary assignments

for this step will move forward by one time-frame. Once again we need to find the gates

in the fan-out cone of this scan-cell. Then we extend the partial path by adding one more

gate to it, in a similar manner as before until it reaches another scan-cell. This completes

the path in the second capture cycle. The path is then justified. This process is repeated

for additional capture cycles as needed.

 Final Justification and Compaction: If a path passes final justification, then that

path is reported and the necessary test pattern is generated, and compacted. Compaction

could be either static or dynamic.

 The flowchart for the enhanced CodGen with multiple capture cycles is shown in

Figure 17.

26

Figure 17. Flow-chart for CodGen with multiple capture cycles

3.2 Aim at Scan-flops

In order to generate K longest paths per gate previous versions of CodGen were

targeting each of the gates. But in our work, since we are concerned about generating

paths across multiple flops in order to determine metastability, we aim to generate K

longest paths through each flop for each fan-out. Hence in our work, we have a stricter

bound on the number of paths generated as we target only the flops. Figure 18 shows a

scan flip-flop with its fan-outs.

27

Figure 18. Scan-flop with fan-outs

If a scan-flop has j fan-outs, the number of maximum possible paths for this

scan-flop is twice of K*j, to account for rising and falling transition at each fan-out. It

may be noted that while targeting scan-flop SFF1, when we find a path from scan-flop

SFF1 to another scan-flop SFF2 and again to another scan-flop SFF3, we increase the

counter for the rise or fall paths generated only for the target scan-flop SFF1.

3.3 Finding Fan-in and Fan-out Cone

In the previous implementations with a launch and capture cycle, path generation

would start at a launch point which is a scan-flop and would stop on reaching another

scan-flop. So fan-in and fan-out cones are computed for the target scan flop. The path

which reaches a scan-flop is a complete path.

In our implementation, since we are generating paths over multiple capture

cycles, we pass across flops. When the first complete path gets generated for the launch

and first capture cycle, we have reached a scan-flop. Since we will be extending the path

from this capture flop, we would need to compute the fan-in and fan-out cones of this

28

scan-flop. The gates in the fan-in and fan-out cone of this scan-flop will be marked

appropriately and other gates would be marked blocked to facilitate path extension for

the next capture cycle.

3.4 Complete Path over Multiple Capture Cycles

A path starting from a scan-flop becomes a complete path on reaching another

scan-flop. This requires a launch and a capture cycle. In our work, since we are

concerned with finding path over multiple capture cycles, we will continue our path

finding over multiple capture cycles and hence the paths that we find have more than

two scan-flops for more than one capture cycle (Figure 19).

Figure 19. Complete path over multiple capture cycles

29

3.5 Tracking the Number of Paths Generated

There is a maximum limit for which a path can be extended through a particular

fan-out of the target gate. After that limit is crossed, the partial path pool is emptied.

Similarly, the partial path pool is emptied when K longest paths for both rising and

falling transition had been found for a particular fan-out of the target gate. In order to

improve runtime for path generation across multiple capture cycles, whenever we

expand a partial path with a rising transition for a particular fan-out of the target flop, we

check whether K longest paths with rising transition from that fan-out of the target flop

has been generated or not. If it had already been generated, we discard the growth of the

partial path into a complete path and remove that path from the path pool. However if

the limit on K longest paths with falling transition had not been reached with that fan-

out, we keep on expanding the partial paths with falling transition at that fan-out of the

target flop. The process is similar when we reach the K longest path check limit for the

falling transition at a fan-out of the target flop but the limit for the rising transition has

not been reached.

3.6 Time-frame Expansion

The sequential circuit is unrolled in time to apply the ATPG procedures available

for the combinational circuits to them. This is known as time-frame expansion [2]. In the

unrolled model, the combinational circuit is used twice, one for a current clock cycle,

and the other for a previous clock cycle.

In the implementation of CodGen, first a rising or falling transition is launched

from a flop. So if we number the time-frames as 0 and 1, for a rising transition frame 0

30

would have a value of 0 and frame 1 would have a value of 1. For a falling transition,

frame 0 is assigned 1 and frame 1 is assigned 0. Direct implications are then performed

in the fan-out cones of this gate. If direct implication fails, then we would not be able to

assign those values in the flop from where our path begins. Direct implication could fail

whenever we cannot assign value in any of the time-frames. We could also have some

don’t cares in time-frames of certain gates. As we expand the path, by adding more gates

to the path, we continue to assign values to the time-frames. When a complete path is

achieved, final justification is performed.

 For the at-speed cycles, apart from first launch and capture cycle, other capture

cycles are present as well. So for the launch and capture cycle we have to assign values

to the frames as discussed, then from the next capture cycle onwards, we have to note

that we can assign values to the next frame by having constraints in place for the

previous frames. For simplicity in justification, whenever we move forward by one

capture cycle, justification is performed with the previous capture cycle. The

assignments in each successive frame become more constrained. We justify the

assignments already in the frames before we assign values for next capture cycles. This

is done to avoid extra time in expanding paths which would ultimately fail later on.

31

4. RESULTS

The modified KLPG algorithm for different at-speed cycles has been

implemented in Visual C++ on an Intel Core i7 machine. Experiments have been

performed on the ISCAS 89 Sequential Benchmark Circuits. Both robust and non-robust

cases have been considered to generate the test patterns. The primary inputs to the

circuits have a fixed value which will be useful for a low-cost tester. In our experiments

there are no preamble cycles and K is 1.

4.1 Paths Generated across Different Capture Cycles

for Robust and Non-Robust Case

We have run the at-speed KLPG algorithm for different number of at-speed

capture cycles, and tabulated the number of multi-cycle paths generated and time (h:m:s)

to generate the paths. The longest path length generated at the capture cycles have been

tabulated as well as the breakup in the lengths of the path in each of the cycles. The

experimental results obtained for the test generation for the robust case is given in Table

1.

32

Table 1. # Paths Generated, Longest Path Length, Time for Robust Case, K=1

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle

Paths

Longest

Path

Length

Time

Paths

Longest

Path

Length

Time

Paths

Longest

 Path

 Length

Time

s1488 91 16 0:03 74 28=14+14 0:15 46 37=11+13+13 0:31

s1494 105 16 0:03 78 28=14+14 0:14 41 33=11+8+14 0:35

s5378 535 19 0:36 274 32=18+14 1:09 258 34=15+14+5 1:31

s9234 504 51 2:16 249 58=40+18 7:31 163 97=43+11+43 9:00

s13207 1028 50 3:22 321 81=48+33 7:21 122 110=50+31+29 9:51

s15850 1224 58 7:02 543 67=29+38 1:23:58 201 77=17+35+25 1:40:36

s38417 3624 41 26:58 1294 59=30+29 6:38:44 662 76=30+25+21 5:06:56

Table 1 captures the number of paths, longest path length and time to generate

the paths for three capture cycles for robust test generation for the circuits. As we can

see, the number of paths generated decreases as we increase the number of capture

cycles for all of the circuits. This observation is illustrated with the help of a bar-chart

(Figure 20).

33

Figure 20. # Paths in circuits for different capture cycles for robust case

The time to generate the paths increases with each additional cycle as we have

more constraints in expanding the path. For the smaller circuits the time to generate tests

for third capture cycle is double that of second capture cycle. But as the circuit size

grows, the time to generate these paths does not increase much from the second capture

cycle to the third capture cycle. This is because the number of paths that we will

consider expanding from the second capture cycle onwards has already been reduced

from the first capture cycle. Another reason is, the try limit to generate paths through

fan-out of the target gate reaches quickly for the third capture cycle, and some paths are

aborted before extending.

As we can observe from Table 1, with increasing capture cycles, the longest path

length increases as expected. In the columns for the longest path length, we have shown

the breakup of the lengths of the path at each capture cycle. The longest path length

found has been reported as x = x1+x2+x3, where xi gives the path length found at i
th

capture cycle. The path length x1 gives the longest path that has been generated from the

0

500

1000

1500

2000

2500

3000

3500

4000

s1488 s1494 s5378 s9234 s13207 s15850 s38417

1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

P
at

h
s

Circuits

34

target scan-flop. The subsequent path lengths are obtained by growing this path by trying

to add more gates to this longest path until it reaches another scan-flop. The longest path

length obtained in different capture cycles for the different circuits is shown in Figure

21.

Figure 21. Longest path length in different capture cycles for different circuits for

robust case

In Table 1, we could further observe that for circuit s9234, longest path length in

second capture cycle is 58=40+18, and in third capture cycle it is 97=43+11+43. This

implies that the longest length path found in third capture cycle has path length 54 till

the second capture cycle. So this means that either we have not been able to extend the

longest path of length 58 for the next capture cycle or even if we could have extended

the path of length 58 from the second capture cycle, it is still not the longest path in the

third capture cycle.

0

20

40

60

80

100

120

s1488 s1494 s5378 s9234 s13207 s15850 s38417

1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

Circuits

L
o
n
g
es

t
P

at
h
 L

en
g
th

35

Table 2 presents the experimental results for the non-robust test generation

procedure.

Table 2. # Paths Generated, Longest Path Length, Time for Non-Robust Case, K=1

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle

Paths Longest

Path

Length

Time

Paths Longest

Path

Length

Time

Paths Longest

Path

Length

Time

s1488 226 16 0:06 116 27=16+11 0:21 72 38=14+11+13 0:53

s1494 227 16 0:07 115 27=16+11 0:18 82 34=8+13+13 1:08

s5378 546 23 0:32 281 26=14+12 1:23 264 34=23+2+9 1:32

s9234 865 52 2:29 456 65=52+13 12:12 200 78=44+11+23 20:31

s13207 1751 59 5:21 507 87=47+40 12:47 130 117=47+37+33 26:49

s15850 2304 61 9:55 794 84=47+37 2:21:07 150 74=27+10+37 2:21:08

s38417 4982 41 35:09 2227 62=31+31 6:01:17 1051 86=33+27+26 10:33:53

We observe from Table 2 that the number of paths generated decreases as we

have more capture cycles. In the third capture cycle, the number of paths that are found

is less than that in the second capture cycle. This is because path extensions are aborted

more in the third capture cycles due to try limits being reached. The bar-chart (Figure

22) below shows the number of paths found in different capture cycles across the

circuits.

36

Figure 22. # Paths in circuits for different capture cycles for non-robust case

From Figure 22 we observe that we find less than half of the paths in second

capture cycle compared to the first capture cycle. This is especially true for the bigger

circuits. The decrease in the count of the paths is even more from the second capture

cycle to the third capture cycle in the bigger circuits compared to the smaller ones.

If we analyze the time needed to generate paths for the different capture cycles in

non-robust cases, we observe as before that time to generate the paths increases as we

have more capture cycles. However, as observed before, the increase in time for path

generation from second capture cycle to third capture cycle is not much for the bigger

circuits, due to the limits being reached in our trial for path extension and paths getting

aborted. This is a reason why we get fewer paths for some circuits in the second capture

cycle for the non-robust cases.

Figure 23 shows the longest path length obtained for each capture cycle for

different circuits in non-robust test generation strategy.

0

1000

2000

3000

4000

5000

6000

s1488 s1494 s5378 s9234 s13207 s15850 s38417

1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

 Circuits

#
P

at
h

s

37

Figure 23. Longest path length in different capture cycles for different circuits in

non-robust case

As seen from the Figure 23, the longest path length increases with more capture

cycles, except in case of circuit s15850. The longest path length found in the third

capture cycle in this case is slightly less than that found in the second capture cycle.

 So in general we could conclude that as we have more capture cycles, the number

of paths decreases with each capture cycle and the time to generate the path increases in

both robust and non-robust case.

4.2 Fault Coverage across Different Capture Cycles

for Robust and Non-Robust Case

The fault coverage result that we present here is the transition fault coverage that

we have obtained by running the at-speed KLPG algorithm across different capture

cycles. In the transition fault coverage study, the maximum number of possible transition

0

20

40

60

80

100

120

140

s1488 s1494 s5378 s9234 s13207s15850s38417

1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

Circuits

L

o
n

g
es

t
P

at
h

 L
en

g
th

38

faults is twice the number of lines in the circuits. Among them, some faults are non-

detectable. The fault coverage is given by the ratio of detected faults by our test

generation approach and the total detectable faults in the circuit. The results for fault

coverage in the different capture cycles for the robust case test generation is shown in

the following table.

Table 3 contains the total number of paths generated for each capture cycle,

average length of the paths found and the fault coverage for the robust case.

Table 3. Fault coverage in robust case

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle

Paths
Average

Path

Length

Fault

Coverage

%

Paths
Average

Path

Length

Fault

Coverage

%

Paths
Average

Path

Length

Fault

Coverage

%

s1488 91 10.45 33.12 74 19.1 35.95 46 26.97 30.83

s1494 105 10.19 35.57 78 19.28 36.02 41 27.46 26.13

s5378 535 11.2 51.87 274 17.99 34.98 258 22.41 33.61

s9234 504 18.57 28.4 249 28.46 21.71 163 48.61 16.95

s13207 1028 13.98 34.06 321 30.55 18.49 122 59.73 9.09

s15850 1224 19.78 37.19 543 34.42 27.27 201 43.23 13.26

s38417 3624 17.74 32.16 1294 31.54 19.49 662 45.98 10.15

As seen from Table 3, for each circuit, fault coverage generally decreases as we

increase the number of capture cycles. The relation between the fault coverage

percentages obtained across different capture cycles for each of the circuits for the robust

case is presented in Figure 24.

39

Figure 24. Fault coverage across different capture cycles in robust case

 We see from Figure 24 that fault coverage is more in first capture cycle and then

decreases with each capture cycle for all circuits except s1488 and s1494. The fact that

fault coverage decreases with each capture cycle for the circuits is explained by the fact

that we find less paths in each subsequent capture cycle. For circuits such as s1494, the

fault coverage in first capture cycle is less than the coverage found in second capture

cycle, although from the Table 3 we could see that the number of paths found in first

capture cycle is more than the number of paths found in the second capture cycle. This is

explained if we take into consideration the average length of the paths found in the

different capture cycles. Figure 25 depicts the number of paths found, average length of

the paths found and the fault coverage in each of the capture cycles for the circuit s1494.

0

10

20

30

40

50

60
1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle
%

 F
au

lt
 C

o
v
er

ag
e

Robust

s1488 s1494 s5378 s9234 s13207 s15850 s38417

40

Figure 25. Fault coverage trend in circuit s1494 across different capture cycles for

robust case

 From Figure 25 we could see that, the reason why the fault coverage in s1494 for

the second capture cycle is slightly more than in the first capture cycle despite the fact

that more paths are found in first capture cycles is because, the average path length in

second capture cycle is more. So basically in our at-speed test with multiple capture

cycles, fault coverage at each capture cycle depends on both the number of paths found

and the average length of each path.

 This dependency on the average path length is the reason, why for most of the

circuits although the number of paths in second capture cycle decreases to about half, the

fault coverage does not decrease to such extent. However we find that for the third

capture cycle, the fault coverage is always below that of second capture cycle. This is

because although the average path length found in third capture cycle is always greater

0

20

40

60

80

100

120

1st Capture Cycle 2nd Capture Cycle 3rd Capture Cycle

Paths

Average Path Length

Fault Coverage

41

than that of second capture cycle, the number of paths found in the third capture cycle is

too less.

 Table 4 below presents the fault coverage results for the non-robust case for the

different circuits.

Table 4. Fault coverage in non-robust case

Circuits First Capture Cycle Second Capture Cycle Third Capture Cycle

Paths
Average

Path

Length

Fault

Coverage

%

Paths
Average

Path

Length

Fault

Coverage

%

Paths
Average

Path

Length

Fault

Coverage

%

s1488 226 10.19 36.33 116 19.36 46.64 72 28.3 39.08

s1494 227 10.2 35.12 115 19.2 44.78 82 28.95 40.71

s5378 546 11.69 40.73 281 17.04 34.54 264 22.23 32.99

s9234 865 15.91 22.25 456 28.61 30.48 200 47.72 16.46

s13207 1751 12.55 31.06 507 29.75 26.22 130 56.56 11.69

s15850 2304 16.42 35.94 794 33.88 30.54 150 43.75 11.04

s38417 4982 16.05 25.33 2227 31.5 29.49 1051 48.53 15.66

 The trend in fault coverage in different circuits for different capture cycles for

non-robust case is presented in Figure 26.

Figure 26. Fault coverage across different capture cycles in non-robust case

0

10

20

30

40

50
1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

Non Robust

%
 F

au
lt

 C
o
v
er

g
ae

 s1488 s1494 s5378 s9234 s13207 s15850 s38417

42

As before, we observe from Figure 26 that the fault coverage decreases with

increase in the number of capture cycles in most of the cases in non-robust cases. In few

cases the fault coverage in second capture cycle is more than the fault coverage in first

capture cycle, because the average path length in second cycle is more than that in first

cycle. So again in non-robust case, we observe that the fault coverage in a capture cycle

depends on both the number of paths found and the average lengths of the paths. The

fault coverage for the third capture cycle is too less because of the less number of paths

found.

The below figure depicts the number of paths found, average length of the paths

and the fault coverage for each capture cycle for the circuit s1494 in the non-robust case.

Figure 27. Fault coverage trend in circuit s1494 across different capture cycles for

non-robust case

0

50

100

150

200

250

1st Capture Cycle 2nd Capture Cycle 3rd Capture Cycle

Paths

Average Path Length

Fault Coverage

43

 From Figure 27 we observe that for the circuit s1494, the fault coverage for

second capture cycle is more than that of the first capture cycle, because the average

path length in second capture cycle is more although the number of paths found is less in

second capture cycle even in the non-robust case. The fault coverage in third capture

cycle is also higher than the fault coverage in first capture cycle because the average

path length in third capture cycle is more than that we have obtained for the first capture

cycle, despite the fact that the number of paths found in third capture cycle is about one-

third the number of paths found in the first capture cycle. Similarly, we observe that the

fault coverage in third capture cycle is close to the value of fault coverage in second

capture cycle, as the number of path being less is balanced by the average lengths of the

path being greater.

 So overall for the fault coverage in both robust and non-robust cases we conclude

that the fault coverage generally decreases with more capture cycles as we have less

number of paths with more capture cycles. Sometimes the fault coverage in second

capture cycle is greater than or comparable to the fault coverage value in the first capture

cycle because of the increase in average path length in second capture cycles. However

the fault coverage value is poor for the third capture cycle in both robust and non-robust

cases as there are very few paths generated compared to previous cycles. So ideally if

the number of paths generated is comparable to that in the previous capture cycles, we

could have better fault coverage in later capture cycles as the average length of the paths

in later capture cycles is higher.

44

5. CONCLUSIONS AND FUTURE WORK

In conclusion, we can say that we have demonstrated an automatic test pattern

generation approach for testing scan-flop metastability and scan-latch time-borrowing.

Although the test patterns generated by the multi-cycle path approach may not have high

transition fault coverage with increase in the number of capture cycles, but they will be

useful in testing today’s high frequency circuits. Further study can be made to analyze

paths that are covered in each capture cycle. Since we have tested longest testable paths

in and out of every flip-flop, and with multiple paths being tested per flip-flop due to

multiple capture cycles, we have good metastability coverage.

Another interesting area of study would be to increase fault coverage obtained by

allowing multiple capture cycles. The transition fault coverage results that we have

obtained in our experiments shows that although the decrease in fault coverage is not in

the same rate as the number of paths found at each capture cycle, there is still scope to

improve the fault coverage. But as our primary goal was not improvement of the

coverage, we have left it aside for future work. To get a better transition fault coverage,

we could generate patterns to test metastability or time-borrowing first, then we could

top-off with transition fault patterns. In future, we could work on getting the most small

delay defect coverage with relatively fewer test patterns.

In the future, we plan to run experiments on bigger circuits and with varying

values of K. We also plan to run these experiments by varying the primary inputs.

Although varying the primary inputs may result in increase of the test cost, we plan to

45

see the effectiveness of our approach in this case. Finally we need to implement dynamic

compaction in our at-speed KLPG and evaluate pattern count.

In our experiments, we have not considered the pseudo-functional cycles. Further

study could be done to see the effect of preamble cycles in multi-cycle path generation.

Our work on multiple at-speed cycles could be integrated with the work on path delay

testing for non-scan cells.

In future, we would like to decrease the runtime needed for path generation

across multiple capture cycles. We could speed up the path generation time by speeding

up the time needed for justification. So in future, experiments on multi-cycle path

generation could be performed by using various speed-up techniques.

46

REFERENCES

[1] L.-T. Wang, C. E. Stroud, N. A. Touba, “System-on-Chip Test Architectures

Nanometer Design for Testability,” Ch.2, Ch. 6, Morgan Kaufmann 2010.

[2] M. L. Bushnell, V. D. Agrawal, “Essentials of Electronic Testing for Digital,

Memory and Mixed-Signal VLSI Circuits,” Springer 2000.

[3] G. L. Smith, “Model for Delay Faults Based Upon Paths,” IEEE International

Test Conference, Oct. 1985, pp. 342-349.

[4] W. N. Li, S. M. Reddy, S. K. Sahni, “On Path Selection in Combinational Logic

Circuits,” IEEE Trans. On Computer-Aided Design, vol. 8, no. 1, Jan. 1989,

pp.56-63.

[5] A. K. Majhi, V. D. Agrawal, J. Jacob, L. M. Patnaik, “Line Coverage of Path

Delay Faults,” IEEE Trans. on VLSI Systems, vol. 8, no. 5, Oct. 2000, pp. 610-

613.

[6] A. Murakami , S. Kajihara, T. Sasao, I. Pomeranz, S.M. Reddy, "Selection of

Potentially Testable Path Delay Faults for Test Generation," IEEE International

Test Conference, 2000, pp. 376-384.

[7] Y. Shao, S.M. Reddy, I. Pomeranz, S. Kajihara, "On Selecting Testable Paths in

Scan Designs," IEEE European Test Workshop, 2002, pp. 53-58.

[8] K. Fuchs, F. Fink, M. H. Schulz, "DYNAMITE: An Efficient Automatic Test

Pattern Generation System for Path Delay Faults," IEEE Trans. on Computer-

47

Aided Design of Integrated Circuits and Systems, 1991, vol.10, no.10, pp.1323-

1335.

[9] M. Sharma, J. H. Patel, "Finding a Small Set of Longest Testable Paths that

Cover every Gate," IEEE International Test Conference, 2002, pp. 974-982.

[10] W. Qiu, D. M. H. Walker, “An Efficient Algorithm for Finding the K Longest

Testable Paths Through Each Gate in a Combinational Circuit”, IEEE

International Test Conference, Sept. 2003, pp. 592-601.

[11] C. Lin, S. Reddy, "On Delay Fault Testing in Logic Circuits," IEEE Trans. on

Computer-Aided Design of Integrated Circuits and Systems, vol.6, no.5, Sept.

1987, pp. 694-703.

[12] P. McGeer, R. Brayton, "Efficient Algorithms for Computing the Longest Viable

Path in a Combinational Network," Proc. ACM/IEEE Design Automation

Conference, June 1989, pp. 561-567.

[13] J. Benkoski, E. Meersch, L. Claesen, H. Man, "Timing Verification using

Statically Sensitizable Paths," IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, , vol.9, no.10, Oct. 1990, pp.1073-1084.

[14] H. Chang, J. Abraham, "VIPER: An Efficient Vigorously Sensitizable Path

Extractor," Proc. ACM/IEEE Design Automation Conference, June 1993,

pp.112-117.

[15] J. Liou, A. Krstic, L.-C. Wang, K.-T. Cheng, "False-path-aware Statistical

Timing Analysis and Efficient Path Selection for Delay Testing and Timing

48

Validation," Proc. ACM/IEEE Design Automation Conference, 2002, pp. 566-

569.

[16] J. Liou, L.-C. Wang, K.-T. Cheng, "On Theoretical and Practical Considerations

of Path Selection for Delay Fault Testing," Proc. IEEE/ACM International

Conference on Computer Aided Design, 2002, pp. 94-100.

[17] J. Rabaey et al., Digital Integrated Circuits: A Design Perspective, Prentice-Hall,

1996.

[18] W. Qiu, J. Wang, D. M. H. Walker, D. Reddy, X. Lu, Z. Li, W. Shi and H.

Balachandran, “K Longest Paths Per Gate (KLPG) Test Generation for Scan-

Based Sequential Circuits,” IEEE International Test Conference, Oct. 2004, pp.

223-231.

[19] Z. Wang, D. M. H. Walker, "Dynamic Compaction for High Quality Delay Test,"

IEEE VLSI Test Symposium, 2008, pp. 243-248.

[20] P. Pant, J. Zelman, “Understanding Power Supply Droop During At-Speed Scan

Testing,” IEEE VLSI Test Symposium, May 2009, pp.227-232.

[21] K. Bian, D. M. H. Walker, S. Khatri, S. Lahiri, “Mixed Structural-Functional

Path Delay Test Generation and Compaction,” IEEE International Symposium

Defect and Fault Tolerance in VLSI and Nanotechnology Systems, Oct. 2013,

pp. 7-12.

[22] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” IEEE Trans.

Computer-Aided Design, vol. 11, no. 1, Jan. 1992, pp. 4-15.

49

[23] K. Bian, D. M. H. Walker, S. Khatri, “Techniques to Improve the Efficiency of

SAT based Path Delay Test Generation,” IEEE International Conference on

VLSI Design, Mumbai, India, Jan. 2014, paper A1-2.

[24] N. Eén, N. Sörensson, “An Extensible SAT-solver,” SAT 2003: 502-518.

[25] Z. Fu, Y. Yu, S. Malik, “Considering Circuit Observability Don’t Cares in CNF

Satisfiability,” Proc. Design Automation and Test in Europe, 2005, pp. 1108-

1113.

[26] N. Saluja, S. P. Khatri, “A Robust Algorithm for Approximate Compatible

Observability Don’t Care (CODC) Computation,” Proc. ACM/IEEE Design

Automation Conference, 2004, pp. 422-427.

[27] N. Eén, N. Sörensson, “The MiniSat Page, Introduction”. Retrieved from

minisat.se on March 2015.

[28] K. Bernstein et al., “High Speed CMOS Design Styles”, Ch. 8, Kluwer Academic

Publishers 1999.

[29] N. Weste, D. Harris, “CMOS VLSI Design”, Ch. 7, Pearson Addison-Weasley,

2004. Retrieved from http://www.aw- bc.com/info/weste/assets/downloads/

ch7.pdf.

[30] K. Y. Chung, S. K. Gupta, “Structural Delay Testing of Latch-Based High-Speed

Pipelines with Time Borrowing,” IEEE International Test Conference, Oct. 2003,

pp. 1089-1097.

[31] Altera Corporation, “Understanding Metastability in FPGAs”. Retrieved from

http://www.altera.com/literature/wp/wp-01082-quartus-ii-metastability.pdf

50

on March 2015.

[32] H.-C. Tsai, K.-T. Cheng, V.D. Agrawal, "A Testability Metric for Path Delay

Faults and its Application," Proc. Asia and South Pacific Design Automation

Conference, 2000, pp. 593-598.

[33] K. Y. Chung, S. K. Gupta, “Low-cost Scan-based Delay Testing of Latch-based

Circuits with Time Borrowing,” VLSI Test Symposium, 2006, pp. 8-15.

[34] T. Sato, Y. Kunitake, "A Simple Flip-Flop Circuit for Typical-Case Designs for

DFM," 8th International Symposium on Quality Electronic Design, 2007, pp.

539-544.

[35] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, T. Mudge,

“A Self-Tuning DVS Processor Using Delay-Error Detection and Correction”,

IEEE Journal of Solid-State Circuits, April 2006, vol. 41, no.4, pp. 792-804.

[36] N. Shah, R. Samanta, M. Zhang, J. Hu, D. M. H. Walker, “Built-In Proactive

Tuning System for Circuit Aging Resilience,” IEEE International Symposium on

Defect and Fault-Tolerance of VLSI Systems, Oct. 2008, pp. 96–104.

