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ABSTRACT 

 

This research describes an approach to test metastability of flip-flops with help of 

multiple at-speed capture cycles during delay test. K longest paths per flip-flop test 

patterns are generated, such that a long path on one clock cycle feeds a long path on the 

next clock cycle, and so on. Traditional structural delay tests do not test whether time 

borrowing or stealing is working correctly, since only a single at-speed cycle is tested.  

To detect path delay faults for the multi-cycle paths, it is necessary to start a path 

at a register and end at a register while passing through another register, testing the 

longest paths between each pair of registers. This requires three or more at-speed cycles, 

rather than the two of traditional Launch on Capture test. This produces power supply 

noise closer to functional mode, and permits the testing of flip-flop metastability and 

time-borrowing latches, that cannot be tested by any other structural test technique. The 

path generation algorithm uses the circuit structure, and then the paths are sequentially 

justified using Boolean Satisfiability algorithms. 

 The algorithm has been implemented in C++ on an Intel Core i7 machine. 

Experiments have been performed on various ISCAS benchmark circuits in both robust 

and non-robust path generation technique to evaluate our approach. 
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1. INTRODUCTION 

 

1.1 Path Delay Test  

      Delay testing is used to test delay faults that affect the maximum operating speed 

of an integrated circuit. The delay can be modeled by a delay fault model. One of them is 

path delay fault model. A path is sequence of gates in the circuit from a primary input to 

a primary output and there is a transition at each gate [1]. The gate input on the path is 

the on-input and the other inputs are side-inputs [1]. In path delay fault model, a path has 

delay fault if the delay of the path exceeds some specified duration [2] [3]. The delay of 

a path is the amount of time needed to propagate a signal from the start gate of the path 

to the end gate. Many studies have been done to test longest paths in a circuit 

[4][5][6][7][8][9].       

 As the number of paths in a circuit is exponential in terms of the circuit size, 

identification of the longest sensitizable paths through each gate or line is extremely 

difficult [10]. To make the test tractable k longest paths per gate are tested in [10]. This 

test accounts for both local delay defects (e.g. a logic gate is slow) and global process 

variation (several different paths through a gate might be the slowest).  

 

1.1.1 Delay Test Problem 

The delay test requires two test patterns or vectors for launching transitions. The 

first vector is the initialization vector and the second vector is the test vector. Transitions 

are launched into the circuit through the primary inputs (PIs) and pseudo primary inputs 
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(PPIs) and the responses are captured through primary outputs (POs) and pseudo 

primary outputs (PPOs) [1]. 

Figure 1 below illustrates the concept of delay fault through gates. When a rising 

transition is put at the input of an inverter, output of the inverter experiences a falling 

transition. The delay between the rise and fall transition is determined by the 

characteristic of the gate. The shaded region in the picture represents the time in which 

the output of the inverter is expected to complete the transition caused by the transition 

at the input. When the path from the input to output of the inverter experiences an 

additional amount of delay, the falling transition at the output gets shifted outside of the 

shaded region. This is characterized as the delay fault. 

    

Figure 1. Delay fault problem definition 

 

 A combinational logic has various paths. The delay of a given path varies with 

the number of gates in the path and also by the fan-outs of a given gate. The path with 

the longest delay in the circuit is called the critical path. The critical path of a circuit 

defines the maximum attainable speed of operation.  A delay fault is registered in the 

circuit when one or more path delay is more than the clock period of the circuit. 



 

3 

 

1.1.2 Path Sensitization 

“A path is said to be testable if a rising/falling transition can propagate from the 

primary input to the primary output associated with the path, under certain sensitization 

criteria”  [11] [12] [13] [14][1]. “If a path is not testable, it is called an untestable or 

false path” [15] [16][1]. In case of static sensitization of paths, all the side inputs of the 

gates for the path under test should have non-controlling values [2]. Figure 2 below 

shows a false path a-c-d which cannot be sensitized because b needs to have a non-

controlling value of 1 for the AND gate and a non-controlling value of 0 for the OR gate 

in order to propagate transition along path a-c-d [1].   

 

Figure 2. Untestable path [1] 

  

 

1.1.3 Robust and Non-Robust Path Delay Tests 

Depending on the sensitization criteria, a path can be robustly testable or non-

robustly testable [1]. A robust test will detect a path delay fault irrespective of other 

delays in the circuit. However a non-robust test will detect path delay fault if no other 

path delay fault is present. For the non-robust test, condition of static sensitization 
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should be satisfied along with the condition that the test vector pair will produce the 

required transition at the start of path under test [2]. 

 

1.2 Scan-based Delay Test 

To test a circuit, several scan flops are inserted into the design for observability 

and controllability of the circuit under test. This scan flops are then connected into a 

scan-chain. The circuit can be operated in normal functional mode or in scan mode. In 

the functional mode, the output will be the functional output. The scan flops will have no 

role to play in this case. For testing purposes, there are two distinct operations, first is to 

load the test vector and the second is to capture the response. First the scan-mode is 

enabled, and the test vector is shifted to the scan register. Then test mode is turned on, in 

which the combinational block gets the previously loaded values from the scan flops. In 

the next clock cycle, the output scan-flops capture responses from combinational block 

and the design is set to scan mode. The results are then shifted out of scan-chain to be 

compared against expected responses. Figure 3 explains the scan-chain operation. 
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Figure 3. Scan-based test [17] 

 

Since the flip-flop can hold a single value, to make them apply two patterns there 

are two common approaches, one is muxed-D scan and the other is enhanced scan [1]. 

 

1.2.1 Muxed-D Scan Approach 

Muxed-D scan approach utilizes a muxed-D scan cell. Muxed-D scan cell, shown 

in Figure 4, has a 2:1 multiplexer at the input of a D flip-flop. The select input of the 

multiplexer is a scan-enable (SE) signal which selects between the functional data (DI) 

and scan-input (SI).  

 

Figure 4. Muxed-D scan cell [1] 
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From Figure 5 we can see that since the outputs of a muxed-D scan-cell is 

connected to the input of next muxed-D scan-cell, when SE is 1, they function as a 

single scan-chain. SE value of 0 is used to capture responses from the combinational 

logic into the flops. 

 

Figure 5. Muxed-D scan design  [1] 

 

 

1.2.2 Enhanced Scan Approach 

In enhanced scan design, we can apply an arbitrary pair of vectors. In the design 

as shown in Figure 6, when the UPDATE signal is 1, the first vector applied to scan-

flops (SFF) is transferred from the scan-flops to the latches (LA). Next UPDATE signal 

is set to 0, and the second vector is loaded into the scan-flops. Once the vector is loaded, 

UPDATE is made 1 again, and the output response is captured at the scan-cells. 

Enhanced scan approach has high delay fault coverage. The hardware overhead is the 

downside of enhanced scan. 
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Figure 6. Enhanced-scan design [1] 

 

 

1.3 At Speed Testing 

 The scan-design provides at-speed testing for high speed and high frequency 

circuits [1]. Launch On Shift (LOS) and Launch On Capture (LOC) are two at-speed test 

schemes [1]. To detect transition fault or path delay fault in intra-clock domain or inter-

clock domain, either of the two could be used.  

 

1.3.1 Launch on Shift 

In Launch on Shift (LOS) approach as shown in Figure 7, the last shift clock 

pulse is used to launch transition and capture clock pulse is used to capture the response. 

In this approach, the scan enable signal switches its value between the launch and 

capture clock pulse [1]. 
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Figure 7. Launch on Shift [1] 

 

 

1.3.2 Launch on Capture 

The traditional structural test in high-speed circuits shifts the test pattern slowly 

into the flip-flops organized as scan chains, during which time the scan enable (SE) 

signal is held up. The SE signal is then switched low, so that the circuit is in functional 

mode, and applies two at-speed cycles to launch and capture the test results. This is 

referred to as launch-on-capture (LOC) test (Figure 8). 
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Figure 8. Launch on Capture [1] 

 

 

     In LOC approach the test vector is to be justified back by one time-frame as 

shown in Figure 9.  The initialization vector V1 is generated first, then the next vector 

V2 is generated such that a transition can be launched.V2 is a function of the vector V1′, 

where V1 and V1′ are same except that they are shifted by one time-frame. The 

assignments in V1 and V1′ should not be conflicting [18]. 

 

Figure 9. Justification in LOC [18] 
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1.4 KLPG Algorithm 

  The KLPG algorithm [10] aims at generating K longest paths through each gate 

in a combinational circuit. The paths start at primary inputs and ends at primary outputs. 

Paper [18] describes the KLPG algorithm for scan-based sequential circuits. For the 

sequential circuits the launch point is a scan-flop and the path is grown until it reaches a 

capture point which is another scan-flop. The paths that have been generated are 

subjected to a final justification phase. The KLPG algorithm has been implemented in 

CodGen. 

         The flowchart of the algorithm is given in Figure 10. 

 

 

Figure 10. KLPG algorithm [18] 
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The three main steps of the KLPG algorithm are path initialization, path growth 

and path justification. Given a circuit, we need to find out the sequential observability 

and controllability values of the gates in the design. The observability value determines 

how easily we can observe the outputs of the gates and controllability is a measure of 

how easily we can control the input values. The gates near to the primary outputs are 

more observable than those near the primary inputs, whereas gates near the primary 

inputs are more controllable than those near to primary outputs. So in order to compute 

observability and controllability values, we need to levelize the circuit, which will give 

the maximum distance of the gate from a primary input. We also need to compute 

esperance of the gates. Thus observability, controllability, esperance, fan-in and fan-out 

cones of each gate are calculated in initialization phase. 

 During the path growth stage, each gate is added to the pre-existing partial paths 

if it meets the sensitization criteria. These partial paths are all saved and stored in the 

partial path store sorted according to esperance value. The esperance value is the upper 

bound limit on the delay when the partial path grows to a complete path. During this 

stage, direct implications are also performed to get the outputs of other gates. 

  When a partial path reaches a scan-cell, it becomes a complete path and final 

justification is performed on it to check whether all the assigned values are compatible. 

Test patterns are obtained in this final step.    

After the paths are generated and test vectors found, the test vectors are 

compacted to reduce the number of test patterns. Compaction could be of two types: 

static compaction and dynamic compaction. Static compaction is performed after the test 
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generation. The paper [19] presents dynamic compaction implementation for KLPG 

algorithm. This dynamic implementation does not consider one pattern generated against 

the other. It saves the paths in a path pool and whenever a new path is generated, the 

assignments for the new path are compared against those in the path pool.  By doing 

dynamic compaction, the pattern count had been reduced. 

The coverage value gives us an idea of how many faults had been detected over 

total number of faults. Larger the coverage better is the test. To increase the fault 

coverage, top-off transition fault test patterns can be used [1].   

 

1.4.1   Pseudo-functional KLPG 

 During the time that the circuit is switching from scan to functional mode, the 

currents in the off-chip connections fall to their quiescent values. When the at-speed 

cycles are applied, the current demand of the chip rises quickly, but the off-chip 

inductance limits the speed that current can be supplied, leading to dI/dt power supply 

voltage droop on the chip [20]. This causes the chip to operate more slowly than in 

functional mode. In Figure 11 , we could see delay test induced drop in power supply 

voltage. So there is a chance that the circuit will operate slowly and good chips may fail 

the delay test. 
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Figure 11. Drop in power supply voltage during delay test [20] 

  

The solution is to apply a number of medium-speed preamble cycles after the test 

has been scanned in, before the launch and capture. Since these preambles are in 

sequential mode, and filter out most non-functional activity, this test in the KLPG 

algorithm is referred as pseudo functional KLPG test [21]. The timing diagram is shown 

in Figure 12. 

 

 

Figure 12.  Pseudo functional test [21] 

 

1.5 Boolean Satisfiability 

  The use of Boolean Satisfiability in generating the test patterns for the circuits 

under test has been shown in [22]. The Conjunctive Normal Form (CNF) generation of 

an AND gate is described in [22]. If Z=X.Y, then the formula can be written as 
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(Z→(X.Y))((X.Y)→Z). Next all implications are transformed to disjunctions. Hence the 

formula for an AND gate is obtained as (~Z+X)(~Z+Y)(~X+~Y+Z).  In the CNF, each 

sum is a clause. The task is to find an assignment of X, Y and Z such that the formula 

evaluates to true. Clauses with two variables are said to be in 2CNF, and clauses with 

three variables are in 3CNF. While 2CNF can be solved in polynomial time, 3CNF is a 

NP-Complete problem.    

 The work in [22] describes how to extract the Conjunctive Normal Form (CNF) 

formulas for the faulted and un-faulted circuits. The XOR of the two outputs is included 

in the formula to account for the fact that the XOR output will be one, if the two outputs 

differ. Although satisfying a CNF formula (SAT) is a NP-Complete problem, most of the 

clauses used in the described case are binary clauses.     

Applying SAT for test generation is a problem because of the difficulty to 

incorporate real delay values. This is avoided in [21] by using a mixed structural-

functional approach, where the paths are generated with structural approach, and during 

path justification SAT engine is used. In [23] several techniques are presented to speed 

up the path generation with the SAT solvers. The techniques presented are circuit 

simplification, Dynamic SAT Solving (DSS), Circuit Observability Don’t Cares (Cir-

ODC) and Approximate Observability Don’t Cares (AODC). In DSS, the structural 

information of the circuit is used to speed up SAT solution time. In the path delay test 

generation, to speed-up SAT, only the clauses affecting the concerned fan-in and fan-out 

cones are turned on, other clauses are turned off. 
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In the paper [24], authors discuss in detail about the implementation of SAT. The 

SAT components should determine how to represent the internal data structures, a policy 

on direct implication of assignments and the way search for the assignments is to be 

done to satisfy the solver. For assignments to the literals, first either a true or false value 

is assigned to that literal, and each of the clauses are evaluated for that assignment. 

Conflicts in literal assignments are resolved by backtracking some of the assignments 

and the search should be continued again to find satisfying assignments.  Whenever 

some conflict is detected, the clause is added to the learnt clause set, which will be used 

in future decision making process. But care should be taken to see that this learnt clause 

set does not become too big, as time can be wasted on searching a big learnt clause set. 

So the SAT solvers generally prune these clauses.  

Cir-ODC is described in detail in [25].  If there is a signal which does not have 

any effect in the output of the design with certain logic constraints, then those logic 

constraints are don’t-care condition related to the signal.  The use of Cir-ODC also helps 

to speed-up delay test generation. For optimization, it is necessary to find compatible 

ODCs. But generation of compatible ODCs is complex. An efficient algorithm to find 

approximate ODCs is presented in [26].  

 

1.5.1 MiniSat 

MiniSat is a minimalistic, open-source SAT solver [27]. It has been used in 

CodGen because of its modifiability, efficiency and ease of integration. 
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1.5.2 Use of SAT in CodGen 

The implementation of SAT in CodGen has been described in [21]. The delay 

test requires two vectors for the launch and capture. So for launch on capture, for a 

signal in the circuit, two Boolean variables are used to represent the signal in two time-

frames. Similarly for the pseudo-functional test, the signal has to be represented in more 

than two time-frames. If the primary inputs are fixed, only one Boolean variable can be 

used for all the time frames for the primary inputs. Several features, such as dynamic 

SAT solving are present in CodGen [23]. 

 

1.6 Structure of the Thesis 

In this thesis, we propose a multiple at-speed cycle KLPG algorithm which will 

be useful for testing metastability of flops and time-borrowing of latches. The thesis is 

organized as follows: In Chapter 2, we present the motivation of the work. In Chapter 3, 

we present the implementation strategy for the multiple at-speed capture cycle KLPG    

algorithm. Chapter 4 discusses the results, and Chapter 5 concludes the research. 
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2.  MOTIVATION  

 

2.1 Time Borrowing and Time Stealing 

  In high-speed CMOS circuits, some paths may take longer than one clock cycle 

to propagate. This is enabled by time borrowing and time stealing in latch-based designs   

[28]. Time borrowing happens in “the case where a logical partition utilizes time left 

over (slack time)” by a partition in the previous clock cycle [28]. Time stealing occurs 

where “a logical partition utilizes a portion of the time allotted to” the partition in the 

next cycle [28].  

 

 

 

Figure 13. Time borrowing  [29] 
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Figure 13 shows the concept of time borrowing. Figure 13 (a) shows borrowing 

time across the pipeline stage boundary and Figure 13 (b) shows borrowing time across 

half-cycle boundary. 

Time borrowing in a design can be either intentional or unintentional [30]. For 

those cases with intentional time borrowing, the design for test is already taken care of. 

But even in this case, the actual time-borrowing will vary depending on the test vectors 

and the chip under test. The unintentional cases of time-borrowing latches in a chip arise 

from variations in fabrication process.  Because of this, signals may not arrive at the 

inputs of gate at the required time. This causes problem for the test generation. To test 

time-borrowing latches, multiple paths that start and end at a latch have to be 

concatenated [30]. 

So time borrowing allows one partition to use more time than is available at the 

cost of another partition. Hence, time borrowing paths become multi-cycle paths. 

Traditional structural delay tests do not test whether time borrowing or stealing is 

working correctly, since only a single at-speed cycle is tested. To detect path delay faults 

for the multi-cycle paths, it is necessary to start a path at a register and end at a register 

while passing through another register, testing the longest paths between each pair of 

registers. This requires three or more at-speed cycles, rather than the two of traditional 

LOC test. 
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2.2 Metastability 

    The arrival time of a signal is the time at which the signal arrives at an endpoint. 

The required time is the time before which the signal can arrive without affecting the 

clock period. The difference between arrival and required time is known as the timing 

slack. If timing slack is positive, it means that the signal can still arrive later. If the slack 

is negative, the arrival time needs to be improved. 

 When a path is late arriving at a flip-flop, the input signal may change at the 

same time that the flip-flop is clocked, violating the flip-flop’s setup time. This may 

cause the flip-flop to enter a metastable state, before it eventually resolves to a 0 or 1. 

This causes the flip-flops output transition to be slow, which could cause a delay fault in 

the following at-speed cycle. Current delay tests do not detect this situation. Using three 

or more at-speed cycles will detect this case. 

 

Figure 14. Metastability [31] 
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In Figure 14, we see that set-up is violated. The metastable output A finally 

settles to logic 1 after the clock to output time (tco) and metastable output B settles to 

logic 0 after tco. 

 

2.3 At Speed Test Approach  

Since scan launch and capture clocks are much slower than the functional clocks, 

scanning patterns in and out of the circuit is very slow which make the tests take a long 

amount of time. To make the tests faster, several at speed capture cycles can be used. 

This is done in this research and we term the test at-speed test. The timing diagram is 

shown in Figure 15, with the functional test cycles being preceded by the preamble 

cycles.   

 

 

Figure 15. At speed functional test 

 

  

The challenge for the at-speed test is that we have to justify the paths and the 

assignments over multiple time-frames.  So we first find a longest path starting and 

ending at a flop in the first launch and capture cycle, in the next capture cycle we have to 

start finding a long path from the scan-out of the flop where the previous path ended, 
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while obeying the necessary assignments for the previous clock cycle. This constraints 

the path search, and as we have seen in our experimental results, the number of paths 

that we found in successive capture cycle decreases. 

 The three advantages of at-speed approach are: 

 It can be used to test time-borrowing in case of latches. 

 It can test metastability of flip-flops because a late arriving transition can result 

in a metastable flip-flop and the resulting output violation will be captured in 

next capture cycles. 

 It can further help to filter out power-supply noise because of the extra functional 

cycles. 

  One of the decisions that had to be taken regarding path finding is when to do the 

final justification. One of the approaches could be to do the final justification after we 

have found the paths over a certain number of capture cycles, or we could justify the 

path after each capture cycle. We have used the second approach in this research, as by 

justifying after each capture cycle we could save time by eliminating paths upfront and 

eliminate the effort of expanding them.     

 

2.4 Faster than At-Speed Delay Test 

There are some delay test methods which selects shortest paths through a fault 

site and the paths can have timing slack [1]. Faster than at-speed testing approach can be 

used when the test patterns are generated for a path with timing slack [1]. But the 

drawbacks of this approach are the additional power supply noise generated to operate at 
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frequency higher than at-speed, and some good chips could be rejected because they fail 

at faster than at-speed test [1].   

 

2.5 Other Related Work  

     The work in [32] proposes a metric which gives testability of the circuit for path 

delay faults. They have used this measure in scan-based Built-in Self-Test (BIST) path 

delay testing.   

    The work in [30] [33] considers the case of time-borrowing in latches in high 

speed circuits and proposes structural delay testing in those cases. It targets long paths in 

successive blocks for delay testing.  

 The work in [34] discusses about canary logic. The canary flop helps to prevent 

timing error in the design. Comparison of the values in main flip-flop and the canary 

flip-flop determines the correctness of operation. It is an alternative to Razor [35] logic.  

The use of canary logic in preventing age-related timing violation of the circuit has been 

shown in [36].  
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3. IMPLEMENTATION 

 

3.1 Test Generation Strategy for Enhanced CodGen with Multiple Capture Cycles 

  The KLPG algorithm which has been implemented in CodGen assumed only one 

at-speed capture cycle, so only generates timed paths for one launch and one capture 

cycle. We have extended the KLPG algorithm to generate longest paths across multiple 

at-speed capture cycles. First, a longest path between a launch and capture flip-flop (or 

latch) is found by KLPG. We then justify this path. Then we extend this path from the 

capture flip-flop to the next capture flip-flop. This process continues for as many at-

speed cycles as desired. In previous implementations of CodGen, time frame expansion 

only goes back in time, assuming that the at-speed path is captured at the last cycle. In 

this work we must go back in time for justification, but also forward in time as we add 

more at-speed clock cycles. These forward expansions are done using the necessary 

assignments of the prior frames, in order to trim off sequentially false paths. For each 

additional cycle, we justify the path, in order to avoid wasting time in generating 

sequentially false paths. The search space for the path finding across multiple at-speed 

cycles is shown in Figure 16, assuming that we start from a flip-flop (the “fault site”). 
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Figure 16. Multiple capture cycles in at-speed path delay test 

 

The steps in the enhanced KLPG algorithm are explained in detail below. 

 Path Generation in launch and capture cycle:  In our work, KLPG algorithm has 

been modified to generate K longest paths aiming to generate K longest paths per flop 

through each fan-out. During initialization step of KLPG algorithm [10], the metrics for 

observability, controllability, esperance as well as the fan-in and fan-out cone for the 

starting gate is calculated. The starting gate is a scan-cell which will be stored in a partial 

path structure. This partial path will grow to become a complete path. All such partial 

paths will be stored in a path store. We extend a partial path with the maximum 

esperance by adding one more gate to it. We perform direct implication on the outputs 

and side inputs of the newly added gate. If direct implication is passed, the gate is added 

to extend the partial path and we assign values to the time-frames. When a partial path 
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reaches another scan-cell, the path is a complete path. This complete path is then 

justified with SAT. 

 Path extension in next capture cycles:  Once this path passes justification, we 

have to again start extending the path from that capture flop.  The necessary assignments 

for this step will move forward by one time-frame. Once again we need to find the gates 

in the fan-out cone of this scan-cell. Then we extend the partial path by adding one more 

gate to it, in a similar manner as before until it reaches another scan-cell. This completes 

the path in the second capture cycle. The path is then justified. This process is repeated 

for additional capture cycles as needed. 

 Final Justification and Compaction: If a path passes final justification, then that 

path is reported and the necessary test pattern is generated, and compacted. Compaction 

could be either static or dynamic. 

     

    The flowchart for the enhanced CodGen with multiple capture cycles is shown in 

Figure 17. 
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Figure 17. Flow-chart for CodGen with multiple capture cycles 

 

3.2 Aim at Scan-flops 

In order to generate K longest paths per gate previous versions of CodGen were 

targeting each of the gates. But in our work, since we are concerned about generating 

paths across multiple flops in order to determine metastability, we aim to generate K 

longest paths through each flop for each fan-out. Hence in our work, we have a stricter 

bound on the number of paths generated as we target only the flops. Figure 18  shows a 

scan flip-flop with its fan-outs. 
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Figure 18. Scan-flop with fan-outs 

 

If a scan-flop has j fan-outs, the number of maximum possible paths for this 

scan-flop is twice of K*j, to account for rising and falling transition at each fan-out. It 

may be noted that while targeting scan-flop SFF1, when we find a path from scan-flop 

SFF1 to another scan-flop SFF2 and again to another scan-flop SFF3, we increase the 

counter for the rise or fall paths generated only for the target scan-flop SFF1.    

 

3.3 Finding Fan-in and Fan-out Cone  

In the previous implementations with a launch and capture cycle, path generation 

would start at a launch point which is a scan-flop and would stop on reaching another 

scan-flop. So fan-in and fan-out cones are computed for the target scan flop. The path 

which reaches a scan-flop is a complete path. 

In our implementation, since we are generating paths over multiple capture 

cycles, we pass across flops. When the first complete path gets generated for the launch 

and first capture cycle, we have reached a scan-flop. Since we will be extending the path 

from this capture flop, we would need to compute the fan-in and fan-out cones of this 
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scan-flop.  The gates in the fan-in and fan-out cone of this scan-flop will be marked 

appropriately and other gates would be marked blocked to facilitate path extension for 

the next capture cycle. 

 

3.4 Complete Path over Multiple Capture Cycles  

A path starting from a scan-flop becomes a complete path on reaching another 

scan-flop. This requires a launch and a capture cycle.  In our work, since we are 

concerned with finding path over multiple capture cycles, we will continue our path 

finding over multiple capture cycles and hence the paths that we find have more than 

two scan-flops for more than one capture cycle (Figure 19).  

 

 

Figure 19. Complete path over multiple capture cycles 
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3.5 Tracking the Number of Paths Generated  

There is a maximum limit for which a path can be extended through a particular 

fan-out of the target gate. After that limit is crossed, the partial path pool is emptied. 

Similarly, the partial path pool is emptied when K longest paths for both rising and 

falling transition had been found for a particular fan-out of the target gate. In order to 

improve runtime for path generation across multiple capture cycles, whenever we 

expand a partial path with a rising transition for a particular fan-out of the target flop, we 

check whether K longest paths with rising transition from that fan-out of the target flop 

has been generated or not. If it had already been generated, we discard the growth of the 

partial path into a complete path and remove that path from the path pool. However if 

the limit on K longest paths with falling transition had not been reached with that fan-

out, we keep on expanding the partial paths with falling transition at that fan-out of the 

target flop. The process is similar when we reach the K longest path check limit for the 

falling transition at a fan-out of the target flop but the limit for the rising transition has 

not been reached.  

3.6 Time-frame Expansion 

The sequential circuit is unrolled in time to apply the ATPG procedures available 

for the combinational circuits to them. This is known as time-frame expansion [2]. In the 

unrolled model, the combinational circuit is used twice, one for a current clock cycle, 

and the other for a previous clock cycle. 

In the implementation of CodGen, first a rising or falling transition is launched 

from a flop. So if we number the time-frames as 0 and 1, for a rising transition frame 0 
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would have a value of 0 and frame 1 would have a value of 1. For a falling transition, 

frame 0 is assigned 1 and frame 1 is assigned 0. Direct implications are then performed 

in the fan-out cones of this gate. If direct implication fails, then we would not be able to 

assign those values in the flop from where our path begins. Direct implication could fail 

whenever we cannot assign value in any of the time-frames. We could also have some 

don’t cares in time-frames of certain gates. As we expand the path, by adding more gates 

to the path, we continue to assign values to the time-frames. When a complete path is 

achieved, final justification is performed. 

  For the at-speed cycles, apart from first launch and capture cycle, other capture 

cycles are present as well. So for the launch and capture cycle we have to assign values 

to the frames as discussed, then from the next capture cycle onwards, we have to note 

that we can assign values to the next frame by having constraints in place for the 

previous frames. For simplicity in justification, whenever we move forward by one 

capture cycle, justification is performed with the previous capture cycle. The 

assignments in each successive frame become more constrained. We justify the 

assignments already in the frames before we assign values for next capture cycles. This 

is done to avoid extra time in expanding paths which would ultimately fail later on.  
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4. RESULTS 

 

The modified KLPG algorithm for different at-speed cycles has been 

implemented in Visual C++ on an Intel Core i7 machine. Experiments have been 

performed on the ISCAS 89 Sequential Benchmark Circuits. Both robust and non-robust 

cases have been considered to generate the test patterns. The primary inputs to the 

circuits have a fixed value which will be useful for a low-cost tester.  In our experiments 

there are no preamble cycles and K is 1.  

 

4.1 Paths Generated across Different Capture Cycles  

for Robust and Non-Robust Case 

We have run the at-speed KLPG algorithm for different number of at-speed 

capture cycles, and tabulated the number of multi-cycle paths generated and time (h:m:s) 

to generate the paths. The longest path length generated at the capture cycles have been 

tabulated as well as the breakup in the lengths of the path in each of the cycles. The 

experimental results obtained for the test generation for the robust case is given in Table 

1. 
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Table 1. # Paths Generated, Longest Path Length, Time for Robust Case, K=1 

 

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle 

 

# 

Paths 

Longest  

Path 

Length 

 

 

Time 
# 

Paths 

Longest  

Path 

Length 

 

 

Time 
# 

Paths 

Longest 

 Path 

 Length 

 

 

Time 

s1488 91 16 0:03 74 28=14+14 0:15 46 37=11+13+13 0:31 

s1494 105 16 0:03 78 28=14+14 0:14 41 33=11+8+14 0:35 

s5378 535 19 0:36 274 32=18+14 1:09 258 34=15+14+5 1:31 

s9234 504 51 2:16 249 58=40+18 7:31 163 97=43+11+43 9:00 

s13207 1028 50 3:22 321 81=48+33 7:21 122 110=50+31+29 9:51 

s15850 1224 58 7:02 543 67=29+38 1:23:58 201 77=17+35+25 1:40:36 

s38417 3624 41 26:58 1294 59=30+29 6:38:44 662 76=30+25+21 5:06:56 

 

 

Table 1 captures the number of paths, longest path length and time to generate 

the paths for three capture cycles for robust test generation for the circuits. As we can 

see, the number of paths generated decreases as we increase the number of capture 

cycles for all of the circuits. This observation is illustrated with the help of a bar-chart 

(Figure 20). 
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Figure 20. # Paths in circuits for different capture cycles for robust case 

 

The time to generate the paths increases with each additional cycle as we have 

more constraints in expanding the path. For the smaller circuits the time to generate tests 

for third capture cycle is double that of second capture cycle. But as the circuit size 

grows, the time to generate these paths does not increase much from the second capture 

cycle to the third capture cycle. This is because the number of paths that we will 

consider expanding from the second capture cycle onwards has already been reduced 

from the first capture cycle. Another reason is, the try limit to generate paths through 

fan-out of the target gate reaches quickly for the third capture cycle, and some paths are 

aborted before extending. 

As we can observe from Table 1, with increasing capture cycles, the longest path 

length increases as expected. In the columns for the longest path length, we have shown 

the breakup of the lengths of the path at each capture cycle. The longest path length 

found has been reported as x = x1+x2+x3, where xi gives the path length found at i
th

 

capture cycle. The path length x1 gives the longest path that has been generated from the 
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target scan-flop. The subsequent path lengths are obtained by growing this path by trying 

to add more gates to this longest path until it reaches another scan-flop. The longest path 

length obtained in different capture cycles for the different circuits is shown in Figure 

21. 

 

 

Figure 21. Longest path length in different capture cycles for different circuits for 

robust case 

 

In Table 1, we could further observe that for circuit s9234, longest path length in 

second capture cycle is 58=40+18, and in third capture cycle it is 97=43+11+43. This 

implies that the longest length path found in third capture cycle has path length 54 till 

the second capture cycle. So this means that either we have not been able to extend the 

longest path of length 58 for the next capture cycle or even if we could have extended 

the path of length 58 from the second capture cycle, it is still not the longest path in the 

third capture cycle.   
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Table 2 presents the experimental results for the non-robust test generation 

procedure. 

 

Table 2. # Paths Generated, Longest Path Length, Time for Non-Robust Case, K=1 

 

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle 

  

# 

Paths Longest 

Path 

Length 

Time 
# 

Paths Longest  

Path 

Length 

Time 
# 

Paths Longest 

Path 

Length 

Time 

s1488 226 16 0:06 116 27=16+11 0:21 72 38=14+11+13 0:53 

s1494 227 16 0:07 115 27=16+11 0:18 82 34=8+13+13 1:08 

s5378 546 23 0:32 281 26=14+12 1:23 264 34=23+2+9 1:32 

s9234 865 52 2:29 456 65=52+13 12:12 200 78=44+11+23 20:31 

s13207 1751 59 5:21 507 87=47+40 12:47 130 117=47+37+33 26:49 

s15850 2304 61 9:55 794 84=47+37 2:21:07 150 74=27+10+37 2:21:08 

s38417 4982 41 35:09 2227 62=31+31 6:01:17  1051  86=33+27+26  10:33:53  

  

We observe from Table 2 that the number of paths generated decreases as we 

have more capture cycles. In the third capture cycle, the number of paths that are found   

is less than that in the second capture cycle. This is because path extensions are aborted 

more in the third capture cycles due to try limits being reached. The bar-chart (Figure 

22) below shows the number of paths found in different capture cycles across the 

circuits. 
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Figure 22. # Paths in circuits for different capture cycles for non-robust case 

 

From Figure 22 we observe that we find less than half of the paths in second 

capture cycle compared to the first capture cycle. This is especially true for the bigger 

circuits. The decrease in the count of the paths is even more from the second capture 

cycle to the third capture cycle in the bigger circuits compared to the smaller ones.  

If we analyze the time needed to generate paths for the different capture cycles in 

non-robust cases, we observe as before that time to generate the paths increases as we 

have more capture cycles. However, as observed before, the increase in time for path 

generation from second capture cycle to third capture cycle is not much for the bigger 

circuits, due to the limits being reached in our trial for path extension and paths getting 

aborted. This is a reason why we get fewer paths for some circuits in the second capture 

cycle for the non-robust cases.  

Figure 23 shows the longest path length obtained for each capture cycle for 

different circuits in non-robust test generation strategy. 

0

1000

2000

3000

4000

5000

6000

s1488 s1494 s5378 s9234 s13207 s15850 s38417

1st Capture Cycle

2nd Capture Cycle

3rd Capture Cycle

     Circuits 

#
P

at
h

s 



 

37 

 

 

 
Figure 23. Longest path length in different capture cycles for different circuits in 

non-robust case 

  

As seen from the Figure 23, the longest path length increases with more capture 

cycles, except in case of circuit s15850. The longest path length found in the third 

capture cycle in this case is slightly less than that found in the second capture cycle. 

 So in general we could conclude that as we have more capture cycles, the number 

of paths decreases with each capture cycle and the time to generate the path increases in 

both robust and non-robust case.  

 

4.2 Fault Coverage across Different Capture Cycles  

for Robust and Non-Robust Case  

The fault coverage result that we present here is the transition fault coverage that 

we have obtained by running the at-speed KLPG algorithm across different capture 

cycles. In the transition fault coverage study, the maximum number of possible transition 
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faults is twice the number of lines in the circuits. Among them, some faults are non- 

detectable. The fault coverage is given by the ratio of detected faults by our test 

generation approach and the total detectable faults in the circuit. The results for fault 

coverage in the different capture cycles for the robust case test generation is shown in 

the following table.  

 

Table 3 contains the total number of paths generated for each capture cycle, 

average length of the paths found and the fault coverage for the robust case. 

 

Table 3. Fault coverage in robust case 

 

Circuit First Capture Cycle Second Capture Cycle Third Capture Cycle 

  

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

s1488 91 10.45 33.12 74 19.1 35.95 46 26.97 30.83 

s1494 105 10.19 35.57 78 19.28 36.02 41 27.46 26.13 

s5378 535 11.2 51.87 274 17.99 34.98 258 22.41 33.61 

s9234 504 18.57 28.4 249 28.46 21.71 163 48.61 16.95 

s13207 1028 13.98 34.06 321 30.55 18.49 122 59.73 9.09 

s15850 1224 19.78 37.19 543 34.42 27.27 201 43.23 13.26 

s38417 3624 17.74 32.16 1294 31.54 19.49 662 45.98 10.15 

 

As seen from Table 3, for each circuit, fault coverage generally decreases as we 

increase the number of capture cycles. The relation between the fault coverage 

percentages obtained across different capture cycles for each of the circuits for the robust 

case is presented in Figure 24. 
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Figure 24. Fault coverage across different capture cycles in robust case 

 

 We see from Figure 24 that fault coverage is more in first capture cycle and then 

decreases with each capture cycle for all circuits except s1488 and s1494. The fact that 

fault coverage decreases with each capture cycle for the circuits is explained by the fact 

that we find less paths in each subsequent capture cycle. For circuits such as s1494, the 

fault coverage in first capture cycle is less than the coverage found in second capture 

cycle, although from the Table 3 we could see that the number of paths found in first 

capture cycle is more than the number of paths found in the second capture cycle. This is 

explained if we take into consideration the average length of the paths found in the 

different capture cycles. Figure 25 depicts the number of paths found, average length of 

the paths found and the fault coverage in each of the capture cycles for the circuit s1494. 
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Figure 25. Fault coverage trend in circuit s1494 across different capture cycles for 

robust case 

 

   From Figure 25 we could see that, the reason why the fault coverage in s1494 for 

the second capture cycle is slightly more than in the first capture cycle despite the fact 

that more paths are found in first capture cycles is because, the average path length in 

second capture cycle is more. So basically in our at-speed test with multiple capture 

cycles, fault coverage at each capture cycle depends on both the number of paths found 

and the average length of each path. 

 This dependency on the average path length is the reason, why for most of the 

circuits although the number of paths in second capture cycle decreases to about half, the 

fault coverage does not decrease to such extent. However we find that for the third 

capture cycle, the fault coverage is always below that of second capture cycle. This is 

because although the average path length found in third capture cycle is always greater 
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than that of second capture cycle, the number of paths found in the third capture cycle is 

too less. 

 Table 4 below presents the fault coverage results for the non-robust case for the 

different circuits.  

Table 4. Fault coverage in non-robust case 

 

Circuits First Capture Cycle Second Capture Cycle Third Capture Cycle 

  

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

# 

Paths 
Average 

Path 

Length 

Fault 

Coverage 

% 

s1488 226 10.19 36.33 116 19.36 46.64 72 28.3 39.08 

s1494 227 10.2 35.12 115 19.2 44.78 82 28.95 40.71 

s5378 546 11.69 40.73 281 17.04 34.54 264 22.23 32.99 

s9234 865 15.91 22.25 456 28.61 30.48 200 47.72 16.46 

s13207 1751 12.55 31.06 507 29.75 26.22 130 56.56 11.69 

s15850 2304 16.42 35.94 794 33.88 30.54 150 43.75 11.04 

s38417 4982 16.05 25.33 2227  31.5  29.49 1051 48.53  15.66  

 

 The trend in fault coverage in different circuits for different capture cycles for 

non-robust case is presented in Figure 26. 

 

 
 

Figure 26. Fault coverage across different capture cycles in non-robust case 
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As before, we observe from Figure 26 that the fault coverage decreases with 

increase in the number of capture cycles in most of the cases in non-robust cases. In few 

cases the fault coverage in second capture cycle is more than the fault coverage in first 

capture cycle, because the average path length in second cycle is more than that in first 

cycle. So again in non-robust case, we observe that the fault coverage in a capture cycle 

depends on both the number of paths found and the average lengths of the paths. The 

fault coverage for the third capture cycle is too less because of the less number of paths 

found.  

The below figure depicts the number of paths found, average length of the paths 

and the fault coverage for each capture cycle for the circuit s1494 in the non-robust case. 

 

 
Figure 27. Fault coverage trend in circuit s1494 across different capture cycles for 

non-robust case 
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 From Figure 27 we observe that for the circuit s1494, the fault coverage for 

second capture cycle is more than that of the first capture cycle, because the average 

path length in second capture cycle is more although the number of paths found is less in 

second capture cycle even in the non-robust case. The fault coverage in third capture 

cycle is also higher than the fault coverage in first capture cycle because the average 

path length in third capture cycle is more than that we have obtained for the first capture 

cycle, despite the fact that the number of paths found in third capture cycle is about one-

third the number of paths found in the first capture cycle. Similarly, we observe that the 

fault coverage in third capture cycle is close to the value of fault coverage in second 

capture cycle, as the number of path being less is balanced by the average lengths of the 

path being greater. 

 So overall for the fault coverage in both robust and non-robust cases we conclude 

that the fault coverage generally decreases with more capture cycles as we have less 

number of paths with more capture cycles. Sometimes the fault coverage in second 

capture cycle is greater than or comparable to the fault coverage value in the first capture 

cycle because of the increase in average path length in second capture cycles. However 

the fault coverage value is poor for the third capture cycle in both robust and non-robust 

cases as there are very few paths generated compared to previous cycles. So ideally if 

the number of paths generated is comparable to that in the previous capture cycles, we 

could have better fault coverage in later capture cycles as the average length of the paths 

in later capture cycles is higher.  
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5. CONCLUSIONS AND FUTURE WORK 

 

In conclusion, we can say that we have demonstrated an automatic test pattern 

generation approach for testing scan-flop metastability and scan-latch time-borrowing. 

Although the test patterns generated by the multi-cycle path approach may not have high 

transition fault coverage with increase in the number of capture cycles, but they will be 

useful in testing today’s high frequency circuits. Further study can be made to analyze 

paths that are covered in each capture cycle. Since we have tested longest testable paths 

in and out of every flip-flop, and with multiple paths being tested per flip-flop due to 

multiple capture cycles, we have good metastability coverage.   

Another interesting area of study would be to increase fault coverage obtained by 

allowing multiple capture cycles. The transition fault coverage results that we have 

obtained in our experiments shows that although the decrease in fault coverage is not in 

the same rate as the number of paths found at each capture cycle, there is still scope to 

improve the fault coverage. But as our primary goal was not improvement of the 

coverage, we have left it aside for future work.   To get a better transition fault coverage, 

we could generate patterns to test metastability or time-borrowing first, then we could 

top-off with transition fault patterns. In future, we could work on getting the most small 

delay defect coverage with relatively fewer test patterns. 

In the future, we plan to run experiments on bigger circuits and with varying 

values of K. We also plan to run these experiments by varying the primary inputs. 

Although varying the primary inputs may result in increase of the test cost, we plan to 
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see the effectiveness of our approach in this case. Finally we need to implement dynamic 

compaction in our at-speed KLPG and evaluate pattern count. 

In our experiments, we have not considered the pseudo-functional cycles. Further 

study could be done to see the effect of preamble cycles in multi-cycle path generation. 

Our work on multiple at-speed cycles could be integrated with the work on path delay 

testing for non-scan cells.  

In future, we would like to decrease the runtime needed for path generation 

across multiple capture cycles. We could speed up the path generation time by speeding 

up the time needed for justification. So in future, experiments on multi-cycle path 

generation could be performed by using various speed-up techniques.  
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