35 research outputs found

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Efficient Schemes for Computing α-tree Representations

    Get PDF
    International audienceHierarchical image representations have been addressed by various models by the past, the max-tree being probably its best representative within the scope of Mathematical Morphology. However, the max-tree model requires to impose an ordering relation between pixels, from the lowest values (root) to the highest (leaves). Recently, the α-tree model has been introduced to avoid such an ordering. Indeed, it relies on image quasi-flat zones, and as such focuses on local dissimilarities. It has led to successful attempts in remote sensing and video segmentation. In this paper, we deal with the problem of α-tree computation, and propose several efficient schemes which help to ensure real-time (or near-real time) morphological image processing

    A New Approach for Fingerprint Authentication in Biometric Systems Using BRISK Algorithm

    Get PDF
    Now a day, Authentication process in biometric system become most critical task with the expansive of individual information in the world. Where in many current applications, devices and commercial treatments required fingerprint identification process in order to verify the requested services. Most technologies also motivate to this direction. With the increasing of fingerprints uses, there is a need to provide a technique that able to handle the issues that exist in fingerprint acquisition and verification processes. Typically, fingerprint authenticated based on pick small amount of information from some points called Minutiae points. This approach suffers from many issues and provide poor results when the samples of fingerprints are degraded (scale, illumination, direction) changes. However, BRISK algorithm used to handle the previous issues and to extract the significant information from corner points in fingerprint. BRISK is invariant to scale, illumination, and direction changes and its able to pick large number of information when compared with minutiae points. In this paper, BRISK algorithm used based on image based approach, where current recognition matrices are developed and proposed new metrics without need for human interaction. UPEK dataset used to test the performance of proposed system, where the results show high accuracy rate in this dataset. Proposed system evaluated using FAR, FRR, EER and Accuracy and based on selected metrics the proposed system and methodology achieve high accuracy rate than others, and gives a novel modification in authentication task in biometric system

    Contrast Invariant SNR

    Get PDF
    We design an image quality measure independent of local contrast changes, which constitute simple models of illumination changes. Given two images, the algorithm provides the image closest to the first one with the component tree of the second. This problem can be cast as a specific convex program called isotonic regression. We provide a few analytic properties of the solutions to this problem. We also design a tailored first order optimization procedure together with a full complexity analysis. The proposed method turns out to be practically more efficient and reliable than the best existing algorithms based on interior point methods. The algorithm has potential applications in change detection, color image processing or image fusion. A Matlab implementation is available at http://www.math.univ-toulouse.fr/ ∌ weiss/PageCodes.html

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    On the equivalence between hierarchical segmentations and ultrametric watersheds

    Get PDF
    We study hierarchical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations. We end this paper by showing how to use the proposed framework in practice in the example of constrained connectivity; in particular it allows to compute such a hierarchy following a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum

    Distributed Component Forests in 2-D:Hierarchical Image Representations Suitable for Tera-Scale Images

    Get PDF
    The standard representations known as component trees, used in morphological connected attribute filtering and multi-scale analysis, are unsuitable for cases in which either the image itself or the tree do not fit in the memory of a single compute node. Recently, a new structure has been developed which consists of a collection of modified component trees, one for each image tile. It has to-date only been applied to fairly simple image filtering based on area. In this paper, we explore other applications of these distributed component forests, in particular to multi-scale analysis such as pattern spectra, and morphological attribute profiles and multi-scale leveling segmentations

    Vector attribute profiles for hyperspectral image classification

    Get PDF
    International audienceMorphological attribute profiles are among the most prominent spectral-spatial pixel description methods. They are efficient, effective and highly customizable multi-scale tools based on hierarchical representations of a scalar input image. Their application to multivariate images in general, and hyperspectral images in particular, has been so far conducted using the marginal strategy, i.e. by processing each image band (eventually obtained through a dimension reduction technique) independently. In this paper, we investigate the alternative vector strategy, which consists in processing the available image bands simultaneously. The vector strategy is based on a vector ordering relation that leads to the computation of a single max-and min-tree per hyperspectral dataset, from which attribute profiles can then be computed as usual. We explore known vector ordering relations for constructing such max-trees and subsequently vector attribute profiles, and introduce a combination of marginal and vector strategies. We provide an experimental comparison of these approaches in the context of hyperspectral classification with common datasets, where the proposed approach outperforms the widely used marginal strategy
    corecore