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Contrast Invariant SNR
Pierre Weiss, Paul Escande and Yiqiu Dong

Abstract—We design an image quality measure independent
of local contrast changes, which constitute simple models of
illumination changes. Given two images, the algorithm provides
the image closest to the first one with the component tree
of the second. This problem can be cast as a specific convex
program called isotonic regression. We provide a few analytic
properties of the solutions to this problem. We also design
a tailored first order optimization procedure together with a
full complexity analysis. The proposed method turns out to be
practically more efficient and reliable than the best existing
algorithms based on interior point methods. The algorithm has
potential applications in change detection, color image process-
ing or image fusion. A Matlab implementation is available at
http://www.math.univ-toulouse.fr/∼weiss/PageCodes.html.

Index Terms—Local contrast change, topographic map, iso-
tonic regression, convex optimization, illumination invariance,
signal-to-noise-ratio, image quality measure.

I. INTRODUCTION

INVARIANCE to illumination conditions is often a key
element for the success of image processing algorithms.

The whole field of mathematical morphology is based on
contrast invariance [1]. The structural similarity index [2] -
one of the most popular image quality measures - also strongly
relies on a partial invariance to illumination changes.

In this paper, we introduce a novel algorithm that allows
comparing two images in a way independent of local con-
trast changes. Most of the works dedicated to illumination
invariance consist of decomposing the image into patches and
to normalize means and variances on the patches. Here, we
follow a different trail and consider that two images differ by
a local contrast change if they share the same component tree
[3], [4]. Given a reference image u0 : Ω → R and another
image u1 : Ω→ R, we propose to measure their similarity by
computing the following value:

∆loc(u1, u0) = min
T∈ T

‖u0 − T (u1)‖22, (1)

where T is the set of local contrast changes. This amounts
to finding the best match with u0 among all images that have
the same component tree as u1. The locally contrast invariant
signal-to-noise-ratio is defined by:

SNRloc(u1, u0) = −10 log10(∆loc(u1, u0)/‖u0‖22). (2)

Let T ∗ denote the optimal contrast change in problem (1). The
image u∗ = T ∗(u1) has a geometry identical to u1, with the
contrast of u0.

We introduce an efficient algorithm based on convex pro-
gramming to solve (1) and provide a full analysis of its
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Fig. 1: Two images with different geometrical features can
have an identical histogram.

complexity. The proposed method has potential applications
in different fields such as image quality measure, change
detection [5], image fusion or color image processing [6]–[8].

II. EXISTING APPROACHES

Various approaches are commonly used to compare two
images u0 and u1 independently of illumination variations.
We briefly describe a few of them below. A Matlab imple-
mentation of each method is provided here http://www.math.
univ-toulouse.fr/∼weiss/PageCodes.html.

A. Contrast equalization

Probably the most common approach consists of equalizing
histograms, i.e. to change the gray-values of u1 in such a
way that the resulting histogram matches approximately that
of u (see e.g. [9], [10]). This approach suffers from the fact
that the image geometry is completely forgotten: histograms
only account for gray-level distributions and not geometrical
features such as edges, textures,... An example of two images
with identical histogram and different geometrical contents is
provided in Fig. 1.

B. Optimal linear and affine maps

The set T in problem (1) can be replaced by any class
of transformations that describe changes of illuminations.
Probably the simplest classes T are the set of linear maps
T (u) = au or the set of affine maps T (u) = au + b, where
a and b are scalars. The solution of both problems can be
computed explicitly in terms of u0 and u1. The same approach
can be used locally and the L2-norm can be replaced by a
weighted L2-norm. This idea is the basis of the Structural
Similarity Index Measure (SSIM).
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C. Optimal global contrast change

A richer set of transformations T is that of global contrast
changes. Two images u0 and u1 are said to differ by a global
contrast change if there exists a non increasing function T :
R→ R such that T (u1) = u0. Finding the best global contrast
change amounts to solving:

∆glo(u1, u0) = min
T :R→R, non increasing

1

2
‖T (u1)− u0‖22. (3)

We let

SNRglo(u1, u0) = −10 log10(∆glo(u1, u0)/‖u0‖22)

denote the globally contrast invariant SNR. Problem (3) is a
simple case of isotonic regression [11], [12]. Due to the simple
structure of the constraint set, this problem can be solved in
O(n) operations using active sets type methods.

Unfortunately, global contrast changes do not capture all the
complexity of illumination changes: in most applications, the
variations are local.

III. OPTIMAL LOCAL CONTRAST CHANGES

A. Topographic maps and local contrast changes

Mathematical morphology emerged with the works of Math-
eron [13]. Therein, he proposed to analyze an image u by
using geometric operations on its (upper)-level sets χλ = {x ∈
Ω, u(x) ≥ λ} or its level lines LLλ = {x ∈ Ω, u(x) = λ}1.
The level-sets and level lines are geometrical features invariant
to global contrast changes. In order to obtain a representation
invariant to local contrast changes, it is possible to consider
the connected components of these objects. This idea was
proposed and detailed thoroughly in [3], [14]. The connected
components, thanks to the inclusion relationships, can be en-
coded in a tree structure called component tree, useful in many
applications [4], [15]. This tree structure allows formalizing
the notion of local contrast change: two images differ by a
local contrast change if they share the same component tree.

This definition has many assets. In particular, it allows
working both in the discrete and continuous settings. For
our purposes however, we will use a simpler definition valid
for discrete images only. Let Ω denote a discrete set of n
vertices (pixels) endowed with a neighborhood relationship
N : Ω → P(Ω), the power set of Ω. For each pixel x ∈ Ω,
the set N (x) is the set of all neighbors of x. We assume that
the number of elements of N (x) denoted |N (x)| is bounded
independently of x by a constant cmax. In our implementation,
we simply use 4-connectivity and therefore cmax = 4. We can
now define local contrast changes.

Definition 1. Let u and u1 denote two images. They are said
to differ by a local contrast change if the order relationship
between adjacent pixels is the same for each image. More
precisely, ∀x ∈ Ω and ∀y ∈ N (x):

sign(u(x)− u(y)) = sign(u1(x)− u1(y)), (4)

with the convention sign(0) = 0.

1We deliberately simplify the definition of level lines here.

2 2 0

0 1 1

0 0 1

(a) Image u1

ω2

ω1

ω4

ω3

(b) Connected components
1

2

3

4

(c) Associated graph
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(d) Transpose of the incidence
matrix

Fig. 2: Illustration of the graph construction

B. A compact representation of local contrast changes

Problem (1) can be rephrased as follows:

min
u∈U1

1

2
‖u0 − u‖22, (5)

where U1 is the set of images satisfying condition (4). Let
(ωi)1≤i≤p denote the connected components of the level lines
of u1. These p ≤ n components form a partition of Ω. The
first step of our algorithm is to construct the sets (ωi)1≤i≤p
and a directed acyclic graph G = (V,E) from the image
u1. The set V = (v1, . . . , vp) are the vertices of this graph
and represent the sets (ωi)1≤i≤p. The set E = (e1, . . . , em)
are the edges of the graph. Edge ek ∈ E is an ordered
pair of vertices written ek = (I(k), J(k)) going from vertex
I(k) to vertex J(k). Such an edge exists if the sets ωI(k)

and ωJ(k) are connected via the neighborhood relationship N
and if u1(ωJ(k)) > u1(ωI(k)). The graph G can be encoded
through an incidence matrix (or more precisely its transpose)
A ∈ Rm×p. Each row of this matrix describes an edge with the
convention A(k, I(k)) = −1 and A(k, J(k)) = 1 and all the
other coefficients of row k are null. A simple 3× 3 image u1,
the associated regions (ωi)1≤i≤4, graph and incidence matrix
are represented in Figure 2.

The list of regions (ωi)1≤i≤p can be constructed in O(n)
operations using flood fill algorithms. The graph or matrix A
can be constructed in O(n log(n)) operations. The idea is to
first scan all edges in N to construct a preliminary matrix Ã
with repetitions. For instance, region ω1 is connected three
times to ω3 (see arrows in Figure 2a). The complexity of this
part is O(cmaxn). Then, the repetitions can be suppressed in
O(n log(n)) operations using a quicksort algorithm.

The set U1 can now be described compactly as follows:

U1 = {u : Ω→ R, u|ωi
= αi, 1 ≤ i ≤ p,Aα > 0} .
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This set is convex but not closed. The solution of (5) might
therefore not exist. To ensure existence, we replace (5) by

min
u∈Ū1

1

2
‖u0 − u‖22, where (6)

Ū1 = {u : Ω→ R, u|ωi
= αi, 1 ≤ i ≤ p,Aα ≥ 0} .

C. A new convex minimization algorithm

In this section, we concentrate on the numerical resolution
of problem (6). We first simplify it as follows

min
u∈Ū1

1

2

∑
x∈Ω

(u0(x)− u(x))2

= min
u∈Ū1

1

2

p∑
i=1

∑
x∈ωi

(u0(x)− αi)2.

Next, let βi = 1
|ωi|
∑
x∈ωi

u0(x) denote the mean of u0 over
region ωi. We get:∑
x∈ωi

(u0(x)− αi)2 =
∑
x∈ωi

(u0(x)− βi + βi − αi)2

=
∑
x∈ωi

(u0(x)− βi)2 + (βi − αi)2 + 2(u0(x)− βi)(βi − αi)

= |ωi|Varωi
(u0) + |ωi|(βi − αi)2,

where Varωi
(u0) is the variance u0 over region ωi. Therefore,

the problem reads

min
Aα≥0

1

2

p∑
i=1

|ωi|(βi − αi)2 + |Ω|VarΩ(u0).

By letting w ∈ Rp denote the vector with components
wi = |ωi|, W = diag(w) and by skipping the constant term
|Ω|VarΩ(u0), problem (1) finally simplifies to:

min
Aα≥0

1

2
〈W (α− β), α− β〉. (7)

Problem (7) is - once again - an isotonic regression problem.
It is however much more complicated than problem (3), due to
the near arbitrary structure of matrix A. In the rest of the paper,
we let α∗ denote the unique minimizer of (7). Uniqueness is
due to the fact that (7) amounts to projecting a vector onto a
closed convex set.

Isotonic regression problems received a considerable atten-
tion in the optimization literature (see e.g. [11], [12], [16],
[17] for a few algorithms). To the best of our knowledge,
the best existing complexity estimates to solve them - in the
case of an arbitrary directed acyclic graph - were provided
recently in [18]. Therein, the authors propose an interior point
algorithm [19] exploiting the special graph structure of matrix
A [20]. Let α∗ denote the unique solution of problem (7).
Their tailored algorithm provides a feasible estimate α(ε) of
α∗ satisfying Aα(ε) ≥ 0 with ‖α(ε) − α∗‖22 ≤ ε in no more
than

O(m1.5 log2 p log(p/ε)) (8)

operations. In practice, this algorithm works nicely for small
m, but in our experience, the method fails to converge when
dealing with large graphs. In what follows, we therefore design
a simpler first order algorithm.

The main idea is to exploit strong convexity of the squared
l2-norm to design a first order algorithm on the dual. Nesterov
type accelerations [21] make this method particularly relevant
for large scale problems [22]. Proposition 1 summarizes the
nice properties of the dual problem.

Proposition 1. The dual problem of (7) reads:

sup
λ≤0

D(λ) = −1

2
‖W−1/2ATλ‖22 + 〈λ,Aβ〉. (9)

Let α(λ) = β − W−1ATλ, then any primal-dual solu-
tion (α∗, λ∗) satisfies α∗ = α(λ∗). Function D is dif-
ferentiable with L-Lipschitz continuous gradient and L =
λmax(AW−1AT ). Finally, the following inequality holds for
any λ ∈ Rm:

‖α(λ)− α∗‖22 ≤ 2(D(λ∗)−D(λ)). (10)

Proof. We only sketch the proof. The idea is to use Fenchel-
Rockafellar duality for convex optimization:

min
Aα≥0

1

2
〈W (α− β), α− β〉

= min
α∈Rm

sup
λ≤0

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉

= sup
λ≤0

min
α∈Rm

1

2
〈W (α− β), α− β〉+ 〈Aα, λ〉.

The primal-dual relationship α(λ) is obtained by finding the
minimizer of the inner-problem in the last equation. The dual
problem is found by replacing α by α(λ) in the inner-problem.

Function D is obviously differentiable with ∇D(λ) =
−AW−1ATλ+Aβ. Therefore, ∀(λ1, λ2), we get:

‖∇D(λ1)−∇D(λ2)‖2 = ‖AW−1AT (λ1 − λ2)‖2
≤ λmax(AW−1AT )‖λ1 − λ2‖2.

Inequality (10) is a direct consequence of a little known re-
sult about the Fenchel-Rockafellar dual of problems involving
a strongly convex function. We refer the reader to lemma D.1
in [23] for more details.

Proposition 2. The Lipschitz constant L satisfies L ≤ 4cmax.

Proof. Notice that λmax(AW−1AT ) = σ2
max(AW−1/2),

where σmax stands for the largest singular value. Moreover

‖AW−1/2α‖22 =

m∑
k=1

(
αI(k)
√
wI(k)

−
αJ(k)
√
wJ(k)

)2

≤
m∑
k=1

2

(
α2

I(k)

wI(k)
+
α2

J(k)

wJ(k)

)

= 4

m∑
k=1

α2
I(k)

wI(k)

= 4

p∑
i=1

ni
α2
i

wi
,

where ni denotes the number of edges starting from vertex i
(the outdegree). To conclude, notice that each pixel in region
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ωj has at most cmax neighbors. Therefore ni ≤ wicmax and
we finally get:

‖AW−1/2α‖22 ≤ 4cmax

p∑
i=1

α2
i = 4cmax‖α‖22. (11)

Problem (9) has a simple structure, compatible with the
use of accelerated projected gradient ascents methods [24]
described in Algorithm 1.

Algorithm 1 Accelerated proximal gradient ascent method.

1: input: initial guess µ(1) ∈ Rm, τ = 1/L and Nit.
2: for k = 1 to Nit do
3: λ(k) = min

(
µ(k) + τ∇D(µ(k)), 0

)
.

4: µ(k+1) = λ(k) + k−1
k+2 (λ(k) − λ(k−1)).

5: α(k) = α(λ(k)).
6: end for

Proposition 3. Algorithm 1 provides the following guarantees:

‖α(k) − α∗‖22 ≤
2L‖λ(0) − λ∗‖22

k2
, (12)

where λ∗ is any solution of the dual problem (9). The com-
plexity to obtain an estimate α(k) satisfying ‖α(k)−α∗‖2 ≤ ε
is bounded above by

O
(m
ε
‖λ(0) − λ∗‖2

)
operations. (13)

Proof. Standard convergence results [24] state that:

D(λ(k))−D(λ∗) ≤ L‖λ(0) − λ∗‖22
k2

.

Combining this result with inequality (10) directly yields (12).
To obtain bound (13), first remark that each iteration of

Algorithm 1 requires two matrix-vector products with A
and AT of complexity O(m). The bound is then a direct
consequence of bound (12) and Proposition 2.

At this point, the convergence analysis is not complete since
‖λ(0)− λ∗‖2 can be arbitrarily large. In order to compare the
proposed first order method with the interior point method
from [18], we need to upper-bound this quantity.

D. Complexity analysis

In this paragraph, we analyze the theoretical efficiency of
Algorithm 1. We consider the special case W = Id for the
ease of exposition. In practice, controlling the absolute error
‖α(k) − α∗‖2 is probably less relevant than the relative error
‖α(k)−α∗‖2
‖α(0)−α∗‖2

. This motivates setting ε = η‖α(0) − α∗‖2 in
equation (13), where η ∈ [0, 1) is a parameter describing the
relative precision of the solution.

Setting λ(0) = 0 and noticing that:

‖α(0) − α∗‖2 = ‖β − α∗‖2
= ‖ATλ∗‖2,

the complexity in terms of η becomes:

O

(
m

η

‖λ∗‖2
‖ATλ∗‖2

)
. (14)

In what follows, we show that - unfortunately - the ratio
‖λ∗‖2
‖ATλ∗‖2 can behave like m and the complexity therefore

becomes O
(
m2

η

)
, which is significantly worst than interior

point methods [18], both in terms of dimension and precision.
In all practical examples that we treated, the ratio ‖λ∗‖2

‖ATλ∗‖2
however remained bounded by values never exceeding 10,
explaining the practical success of the proposed method.

a) Example of a hard problem: An example of hard
graph (a simple line graph) is provided in Figure 3. For this
graph, Algorithm 1 can be interpreted as a diffusion process,
which is known to be extremely slow. In particular, Nesterov
shows that diffusions are the worst case problems for first
order methods in [24, p.59].

Proposition 4. Consider a simple line graph as depicted in
Figure 3, with p even and W = Id. Set

βi =

{
1 if i ≤ p/2,
−1 otherwise. (15)

Then the primal-dual solution (α∗, λ∗) of the isotonic regres-
sion problem (7) is given by α∗ = 0 and

λ∗k =

{
−k if 1 ≤ k ≤ p/2,
−n+ k if p/2 + 1 ≤ k ≤ p. (16)

This implies that
‖λ∗‖2
‖ATλ∗‖2

∼ m. (17)

Proof. For this simple graph, m = p−1. To check that (16) is
a solution, it suffices to verify that the three conditions (25),
(26) and (27) are satisfied. This is done by direct inspection,
using the fact that for this graph:

(ATλ)i =

 −λ1 if i = 1
−λi + λi−1 if 2 ≤ i ≤ p− 1
λp−1 if i = p.

(18)

Relationship (17) is due to the fact that the sum of squares∑m
k=1 k

2 = m(m+ 1)(2m+ 1)/6 ∼ m3 so that ‖λ∗‖22 ∼ m3

and ‖ATλ∗‖22 = ‖β‖22 = m.

1 2 3 n-2 n-1 n

Fig. 3: Worst case graph

b) Example of a nice problem: In order to rehabilitate our
approach, let us show that the ratio ‖λ∗‖2

‖ATλ∗‖2 can be bounded
independently of m for “nice” graphs.

Proposition 5. For any λ ≤ 0 and the graph depicted in
Figure 5 satisfies:

1

2
≤ ‖λ∗‖2
‖ATλ∗‖2

≤ 1√
2
. (19)
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Fig. 4: First 20000 iterations of the primal-dual pair
(α(k), λ(k)). Top: β is displayed in red while α(k) varies from
green to blue with iterations. Bottom: λ(k) varies from green
to blue with iterations. A new curve is displayed every 1000
iterations. As can be seen, the convergence is very slow.

Proof. For this graph, we get:

(ATλ)i =



−λ1

λ1 + λ2

−λ2 − λ3

...
λn−2 + λn−1

−λn−1


. (20)

Therefore:

‖ATλ‖22 = λ2
1 + λ2

n−1 +

n−2∑
k=1

(λk + λk+1)2

= 2

n−1∑
k=1

λ2
k + 2

n−2∑
k=1

λkλk+1,

and
2‖λ‖22 ≤ ‖ATλ‖22 ≤ 4‖λ‖22. (21)

In the general case, we conjecture that the method’s com-
plexity depends on the length of the longest path in the graph.

1 2 3 n-2 n-1 n

Fig. 5: A nice graph

E. Analytical properties of the minimizer

Let us now provide two analytical properties of the mini-
mizer. The following proposition states that the mean of u∗ is
equal to that of u0.

Proposition 6. The solution α∗ of problem (7) satisfies the
following property.

p∑
i=1

wiα
∗
i =

p∑
i=1

wiβ
∗
i . (22)

Proof. Let 1 denote the vector with all components equal
to 1. Notice that ker(A) = span(1). Therefore, Im(AT ) =
span(1)⊥ and we get: 〈1, ATλ∗〉 = 〈1,W (α∗−β)〉 = 0.

The second proposition states that u∗ satisfies the maximum
principle in the sense that:

min
x∈Ω

u0(x) ≤ u∗(y) ≤ max
x∈Ω

u0(x) (23)

for all y ∈ Ω.

Proposition 7. Let β+ = max1≤i≤p βi and β− =
min1≤i≤p βi, then:

β− ≤ α∗i ≤ β+, ∀i ∈ {1, . . . , p}. (24)

Proof. The Karush-Kuhn-Tucker optimality conditions for λ∗

read:

ATλ∗ = W (β − α∗), (25)
λ∗ ≤ 0, (26)
λ∗i = 0 if (Aα∗)i > 0. (27)

Now, let Eout(i) = I−1(i) and Ein(j) = J−1(i) denote the
sets of edges that get in and out of vertex i respectively. With
this notation, we get:

(ATλ)i =
∑

k∈Eout(i)

λk −
∑

k∈Ein(i)

λk. (28)

Let i denote the index of a region corresponding to a local
maximum of u1. This implies that Eout(i) = ∅. Therefore

(ATλ∗)i = −
∑

k∈Ein(i)

λ∗k ≥ 0, (29)

by equation (26). By equation (25), this implies that α∗i ≤ βi.
Therefore, for all positions i corresponding to local maxima

of α, we get α∗i ≤ βi ≤ β+. The fact that all local
maxima of α∗ are below β+ implies, in particular, that the
global maximum of α∗ is below β+, so α∗i ≤ β+ for all
i ∈ {1, . . . , p}.

A similar reasoning shows that α∗i ≥ β− for all i.

F. Analytic properties of SNRloc

To finish this theoretical study, let us mention a few prop-
erties of the value ∆loc(u1, u0):

• It is invariant to linear and affine transforms with a
coefficient a ≥ 0, i.e.

SNRloc(au1 + b, u0) = SNRloc(u1, u0), ∀a ≥ 0.
(30)

• It is also invariant to global contrast changes, since global
contrast changes are specific instances of local contrast
changes. For all non decreasing functions φ : R→ R, we
get:

SNRloc(φ(u1), u0) = SNRloc(u1, u0). (31)

• In general, it is not symmetric: ∆loc(u1, u0) 6=
∆loc(u0, u1). However, it is possible to make it sym-
metric by computing max(∆loc(u1, u0),∆loc(u0, u1)) or
min(∆loc(u0, u1),∆loc(u1, u0)).
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IV. ROBUST CONTRAST CHANGES

The proposed methodology has a few properties that may
be considered as drawbacks in applications. First, a constant
image differs by a local contrast change from any other image:

SNRloc(constant, u) = +∞, ∀u. (32)

This is somehow natural: a photograph taken in a lightless
environment could possibly represent any scene. However, it
can be a hindrance in some applications.

Another drawback of the proposed approach is illustrated in
Fig. 7. In this experiment, we compare two images given in
Fig. 7a and 7b of different scenes taken under similar lighting
conditions. The minimizer of problem (1) is displayed in Fig.
7c. This image differs from Fig. 7b only by a local contrast
change, but is definitely very different. In addition, a very faint
gray level variation in Fig. 7b can result in a huge distortion,
see red arrows.

All these observations come from the same underlying
cause: local contrast changes are a class of transformations
that is too wide to correctly model usual lighting variations.
In this section, we propose simple restrictions to avoid the
mentioned flaws.

A. The principle

The idea is to accept only local contrast variations that
belong to a range defined from the contrasts of the input image
u1. This leads to the following definition:

Definition 2. Let θ ≤ Θ denote two constants and u and u1

denote two images. They are said to differ by a robust (θ,Θ)
contrast change if the following inequalities are satisfied for
all x ∈ Ω and for all y ∈ N (x) such that u1(x) ≥ u1(y):

θ(u1(x)− u1(y)) ≤ u(x)− u(y) ≤ Θ(u1(x)− u1(y)). (33)

Notice that θ and Θ are not assumed to be nonnegative, so
that this definition also allows for local contrast inversions.

Similarly to the previous sections, let us now consider the
following value:

∆rob(u1, u0) = min
T∈ T

‖u0 − T (u1)‖22, (34)

where T is the set of robust (θ,Θ) contrast changes and define:

SNRrob(u1, u0) = −10 log10(∆rob(u1, u0)/‖u0‖22). (35)

B. A minimization algorithm

Let us express this problem into a form more suitable for
numerical computations. Let

γi =
1

|ωi|
∑
x∈ωi

u1(x) (36)

denote the mean of u1 over region ωi. Define c = θAγ and
C = ΘAγ. By construction, Aγ > 0 so that 0 ≤ c ≤ C, where
the inequality is meant component-wise. Instead of looking for
the minimizer of (7), we propose to evaluate:

min
c≤Aα≤C

1

2
〈W (α− β), α− β〉. (37)

In general, the solution of (37) does not satisfy the analytical
properties given in Section III-E, but the dual algorithm de-
scribed in the previous section can be generalized quite easily.
The main algorithmic fact are summarized in Proposition 8 and
Algorithm 2.

Proposition 8. The dual problem of (37) reads:

sup
λ∈Rm

D(λ) +

m∑
k=1

(ck ·min(λk, 0) + Ck ·max(λk, 0)) . (38)

Let α(λ) = β −W−1ATλ, then the sequence α(k) generated
by Algorithm 2 satisfies:

‖α(k) − α∗‖22 ≤
2L‖λ(0) − λ∗‖22

k2
. (39)

Algorithm 2 Accelerated proximal gradient ascent method.

1: input: initial guess µ(1) ∈ Rm, τ = 1/L and Nit.
2: for k = 1 to Nit do
3: λ̃(k) = µ(k) + τ∇D(µ(k)).
4: λ(k) = λ̃(k) − τ min

(
max

(
λ̃(k)/τ, c

)
, C
)

.

5: µ(k+1) = λ(k) + k−1
k+2 (λ(k) − λ(k−1)).

6: α(k) = α(λ(k)).
7: end for

V. NUMERICAL RESULTS

A. Image comparison and change detection

In order to assess the relevance of the proposed approach
for image comparison and change detection, we took pictures
of two scenes - denoted F and G - under different lighting
conditions (window shutter closed or open), see Figures 6 and
7.

As can be seen in Figures 6 and 7, the proposed local
contrast change algorithm is able to correctly distinguish
changes of illuminations (Fig. 6e is nearly gray) from changes
of scene configuration (Fig. 7e contains only the differences
from u to u1).

B. A large panel of illumination changes

We also evaluated the global and local SNR between all
pairs of images in Figure 8. The results are displayed in Tables
I and II respectively.

As can be seen in these tables, the SNR between images
corresponding to identical scenes is higher than that of images
corresponding to different scenes, both for the local and global
contrast changes. However this experiment shows that the
local SNR is much more discriminative. The mean difference
between scenes corresponding to different scenes is about 5dB
for the global SNR, while it is about 10dBs for the local SNR.

This experiment suggests that local contrast changes provide
a much more accurate model of illumination changes than
global contrast changes.
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(a) Reference u0 (b) Illumination change u1

SNR(u0, u1)=11.3dB

(c) Best local contrast vloc
SNRloc(u0, u1)=32.12dB

(d) Best global contrast vglo
SNRglo(u0, u1)=18.9dB

(e) Difference u0 − vloc (f) Difference u0 − vglo

Fig. 6: Comparing local and global contrast changes

(a) Reference u0 (b) Scene change u1

SNR(u0, u1)=9.3dB

(c) Local contrast change vloc
SNRloc(u0, u1)=16.34dB

(d) Global contrast change vglo
SNRglo(u0, u1)=10.6dB

(e) Difference u0 − vloc (f) Difference u0 − vglo

Fig. 7: Comparing local and global contrast changes

(a) F1 (b) G1

(c) F2 (d) G2

(e) F3 (f) G3

(g) F4 (h) G4

(i) F5 (j) G5

Fig. 8: Different images used for comparison

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5
F1 Inf 18.11 14.60 16.05 17.24 11.65 11.21 11.14 10.26 12.47
F2 18.88 Inf 23.91 18.47 15.52 11.51 11.32 11.26 11.00 12.79
F3 17.05 25.54 Inf 18.45 14.74 11.56 11.40 11.33 11.12 12.87
F4 14.94 17.38 16.83 Inf 18.04 11.98 11.81 11.75 11.60 13.17
F5 17.14 15.01 13.03 18.82 Inf 12.24 11.75 11.69 10.64 12.79
G1 10.54 9.49 8.57 11.44 11.21 Inf 29.56 29.20 18.08 20.20
G2 10.58 9.68 8.83 11.59 11.24 29.34 Inf 36.34 19.61 21.07
G3 10.58 9.68 8.82 11.60 11.24 28.81 36.28 Inf 19.76 21.12
G4 10.41 10.34 9.71 12.46 10.97 19.51 21.59 21.63 Inf 21.49
G5 10.06 9.48 8.69 11.42 10.58 18.28 19.30 19.30 19.03 Inf

TABLE I: Results global contrasts

F1 F2 F3 F4 F5 G1 G2 G3 G4 G5
F1 Inf 32.12 26.13 25.61 24.64 18.36 18.16 18.10 18.07 19.14
F2 33.03 Inf 39.26 26.26 23.84 18.36 18.28 18.22 18.34 19.38
F3 31.28 43.49 Inf 25.86 23.22 17.98 17.80 17.75 17.68 18.93
F4 23.89 26.00 26.31 Inf 31.17 18.97 18.68 18.65 18.23 19.57
F5 25.06 25.37 23.42 31.22 Inf 18.89 18.63 18.61 18.52 19.45
G1 16.91 16.05 14.95 17.98 17.50 Inf 42.15 39.66 31.35 30.53
G2 16.99 16.36 15.32 18.26 17.65 41.19 Inf 45.04 31.77 31.93
G3 16.69 16.19 15.20 18.09 17.27 39.07 47.71 Inf 32.56 32.41
G4 16.10 15.86 15.13 18.01 16.68 31.85 34.76 34.83 Inf 35.04
G5 15.85 15.45 14.48 17.49 16.33 28.32 31.57 31.67 30.10 Inf

TABLE II: Results local contrasts
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C. Robust contrast change

Finally, we show how the robust contrast change described
in Section IV behaves in Fig. 9. We set θ = 0.5 and Θ = 2. As
can be seen on Fig. 9d, the robust contrast change provides an
image that could really be due to lighting variations: it much
better resembles the original picture 9b than the local contrast
change in Fig. 9c.

(a) Reference u0 (b) Illumination change u1

SNR(u0, u1)=11.3dB

(c) Best local contrast vloc
SNRloc(u0, u1)=16.34dB

(d) Best global contrast vrob
SNRrob(u0, u1)=13dB

(e) Difference u0 − vloc (f) Difference u0 − vrob

Fig. 9: Comparing local and robust contrast changes
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