269 research outputs found

    Reputational Privacy and the Internet: A Matter for Law?

    Get PDF
    Reputation - we all have one. We do not completely comprehend its workings and are mostly unaware of its import until it is gone. When we lose it, our traditional laws of defamation, privacy, and breach of confidence rarely deliver the vindication and respite we seek due, primarily, to legal systems that cobble new media methods of personal injury onto pre-Internet laws. This dissertation conducts an exploratory study of the relevance of law to loss of individual reputation perpetuated on the Internet. It deals with three interrelated concepts: reputation, privacy, and memory. They are related in that the increasing lack of privacy involved in our online activities has had particularly powerful reputational effects, heightened by the Internet’s duplicative memory. The study is framed within three research questions: 1) how well do existing legal mechanisms address loss of reputation and informational privacy in the new media environment; 2) can new legal or extra-legal solutions fill any gaps; and 3) how is the role of law pertaining to reputation affected by the human-computer interoperability emerging as the Internet of Things? Through a review of international and domestic legislation, case law, and policy initiatives, this dissertation explores the extent of control held by the individual over her reputational privacy. Two emerging regulatory models are studied for improvements they offer over current legal responses: the European Union’s General Data Protection Regulation, and American Do Not Track policies. Underscoring this inquiry are the challenges posed by the Internet’s unique architecture and the fact that the trove of references to reputation in international treaties is not making its way into domestic jurisprudence or daily life. This dissertation examines whether online communications might be developing a new form of digital speech requiring new legal responses and new gradients of personal harm; it also proposes extra-legal solutions to the paradox that our reputational needs demand an overt sociality while our desire for privacy has us shunning the limelight. As we embark on the Web 3.0 era of human-machine interoperability and the Internet of Things, our expectations of the role of law become increasingly important

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Designing the replication layer of a general-purpose datacenter key-value store

    Get PDF
    Online services and cloud applications such as graph applications, messaging systems, coordination services, HPC applications, social networks and deep learning rely on key-value stores (KVSes), in order to reliably store and quickly retrieve data. KVSes are NoSQL Databases with a read/write/read-modify-write API. KVSes replicate their dataset in a few servers, such that the KVS can continue operating in the presence of faults (availability). To allow programmers to reason about replication, KVSes specify a set of rules (consistency), which are enforced through the use of replication protocols. These rules must be intuitive to facilitate programmer productivity (programmability). A general-purpose KVS must maximize the number of operations executed per unit of time within a predetermined latency (performance) without compromising on consistency, availability or programmability. However, all three of these guarantees are at odds with performance. In this thesis, we explore the design of the replication layer of a general-purpose KVS, which is responsible for navigating this trade-off, by specifying and enforcing the consistency and availability guarantees of the KVS. We start the exploration by observing that modern, server-grade hardware with manycore servers and RDMA-capable networks, challenges conventional wisdom in protocol design. In order to investigate the impact of these advances on protocols and their design, we first create an informal taxonomy of strongly-consistent replication protocols. We focus on strong consistency semantics because they are necessary for a general-purpose KVS and they are at odds with performance. Based on this taxonomy we carefully select 10 protocols for analysis. Secondly, we present Odyssey, a frame-work tailored towards protocol implementation for multi-threaded, RDMA-enabled, in-memory, replicated KVSes. Using Odyssey, we characterize the design space of strongly-consistent replication protocols, by building, evaluating and comparing the 10 protocols. Our evaluation demonstrates that some of the protocols that were efficient in yesterday’s hardware are not so today because they cannot take advantage of the abundant parallelism and fast networking present in modern hardware. Conversely, some protocols that were inefficient in yesterday’s hardware are very attractive today. We distil our findings in a concise set of general guidelines and recommendations for protocol selection and design in the era of modern hardware. The second step of our exploration focuses on the tension between consistency and performance. The problem is that expensive strongly-consistent primitives are necessary to achieve synchronization, but in typical applications only a small fraction of accesses is actually used for synchronization. To navigate this trade-off, we advocate the adoption of Release Consistency (RC) for KVSes. We argue that RC’s one-sided barriers are ideal for capturing the ordering relationship between synchronization and non-synchronization accesses while enabling high performance. We present Kite, a general-purpose, replicated KVS that enforces RC through a novel fast/slow path mechanism that leverages the absence of failures in the typical case to maximize performance, while relying on the slow path for progress. In ad dition, Kite leverages our study of replication protocols to select the most suitable protocols for its primitives and is implemented over Odyssey to make the most out of modern hardware. Finally, Kite does not compromise on consistency, availability or programmability, as it provides sufficient primitives to implement any algorithm (consistency), does not interrupt its operation on a failure (availability), and offers the RC API that programmers are already familiar with (programmability)

    Internet Myth #3 Code Is Law

    Get PDF

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    Actas de las XIV Jornadas de Ingeniería Telemática (JITEL 2019) Zaragoza (España) 22-24 de octubre de 2019

    Get PDF
    En esta ocasión, es la ciudad de Zaragoza la encargada de servir de anfitriona a las XIV Jornadas de Ingeniería Telemática (JITEL 2019), que se celebrarán del 22 al 24 de octubre de 2019. Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equipos
    corecore