1,103 research outputs found

    Self-Healing Protocols for Connectivity Maintenance in Unstructured Overlays

    Full text link
    In this paper, we discuss on the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. Two similar approaches are studied, which are based on local knowledge of the nodes' 2nd neighborhood. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme adds a check on the Edge Clustering Coefficient (ECC), a local measure that allows determining edges connecting different clusters in the network. The performed simulation assessment evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the effectiveness of the proposal.Comment: The paper has been accepted to the journal Peer-to-Peer Networking and Applications. The final publication is available at Springer via http://dx.doi.org/10.1007/s12083-015-0384-

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    SPAD: a distributed middleware architecture for QoS enhanced alternate path discovery

    Get PDF
    In the next generation Internet, the network will evolve from a plain communication medium into one that provides endless services to the users. These services will be composed of multiple cooperative distributed application elements. We name these services overlay applications. The cooperative application elements within an overlay application will build a dynamic communication mesh, namely an overlay association. The Quality of Service (QoS) perceived by the users of an overlay application greatly depends on the QoS experienced on the communication paths of the corresponding overlay association. In this paper, we present SPAD (Super-Peer Alternate path Discovery), a distributed middleware architecture that aims at providing enhanced QoS between end-points within an overlay association. To achieve this goal, SPAD provides a complete scheme to discover and utilize composite alternate end-to end paths with better QoS than the path given by the default IP routing mechanisms

    On the Topology Maintenance of Dynamic P2P Overlays through Self-Healing Local Interactions

    Full text link
    This paper deals with the use of self-organizing protocols to improve the reliability of dynamic Peer-to-Peer (P2P) overlay networks. We present two approaches, that employ local knowledge of the 2nd neighborhood of nodes. The first scheme is a simple protocol requiring interactions among nodes and their direct neighbors. The second scheme extends this approach by resorting to the Edge Clustering Coefficient (ECC), a local measure that allows to identify those edges that connect different clusters in an overlay. A simulation assessment is presented, which evaluates these protocols over uniform networks, clustered networks and scale-free networks. Different failure modes are considered. Results demonstrate the viability of the proposal.Comment: A revised version of the paper appears in Proc. of the IFIP Networking 2014 Conference, IEEE, Trondheim, (Norway), June 201

    Stochastic Analysis of a Churn-Tolerant Structured Peer-to-Peer Scheme

    Full text link
    We present and analyze a simple and general scheme to build a churn (fault)-tolerant structured Peer-to-Peer (P2P) network. Our scheme shows how to "convert" a static network into a dynamic distributed hash table(DHT)-based P2P network such that all the good properties of the static network are guaranteed with high probability (w.h.p). Applying our scheme to a cube-connected cycles network, for example, yields a O(logN)O(\log N) degree connected network, in which every search succeeds in O(logN)O(\log N) hops w.h.p., using O(logN)O(\log N) messages, where NN is the expected stable network size. Our scheme has an constant storage overhead (the number of nodes responsible for servicing a data item) and an O(logN)O(\log N) overhead (messages and time) per insertion and essentially no overhead for deletions. All these bounds are essentially optimal. While DHT schemes with similar guarantees are already known in the literature, this work is new in the following aspects: (1) It presents a rigorous mathematical analysis of the scheme under a general stochastic model of churn and shows the above guarantees; (2) The theoretical analysis is complemented by a simulation-based analysis that validates the asymptotic bounds even in moderately sized networks and also studies performance under changing stable network size; (3) The presented scheme seems especially suitable for maintaining dynamic structures under churn efficiently. In particular, we show that a spanning tree of low diameter can be efficiently maintained in constant time and logarithmic number of messages per insertion or deletion w.h.p. Keywords: P2P Network, DHT Scheme, Churn, Dynamic Spanning Tree, Stochastic Analysis

    Storage and Search in Dynamic Peer-to-Peer Networks

    Full text link
    We study robust and efficient distributed algorithms for searching, storing, and maintaining data in dynamic Peer-to-Peer (P2P) networks. P2P networks are highly dynamic networks that experience heavy node churn (i.e., nodes join and leave the network continuously over time). Our goal is to guarantee, despite high node churn rate, that a large number of nodes in the network can store, retrieve, and maintain a large number of data items. Our main contributions are fast randomized distributed algorithms that guarantee the above with high probability (whp) even under high adversarial churn: 1. A randomized distributed search algorithm that (whp) guarantees that searches from as many as no(n)n - o(n) nodes (nn is the stable network size) succeed in O(logn){O}(\log n)-rounds despite O(n/log1+δn){O}(n/\log^{1+\delta} n) churn, for any small constant δ>0\delta > 0, per round. We assume that the churn is controlled by an oblivious adversary (that has complete knowledge and control of what nodes join and leave and at what time, but is oblivious to the random choices made by the algorithm). 2. A storage and maintenance algorithm that guarantees (whp) data items can be efficiently stored (with only Θ(logn)\Theta(\log{n}) copies of each data item) and maintained in a dynamic P2P network with churn rate up to O(n/log1+δn){O}(n/\log^{1+\delta} n) per round. Our search algorithm together with our storage and maintenance algorithm guarantees that as many as no(n)n - o(n) nodes can efficiently store, maintain, and search even under O(n/log1+δn){O}(n/\log^{1+\delta} n) churn per round. Our algorithms require only polylogarithmic in nn bits to be processed and sent (per round) by each node. To the best of our knowledge, our algorithms are the first-known, fully-distributed storage and search algorithms that provably work under highly dynamic settings (i.e., high churn rates per step).Comment: to appear at SPAA 201

    Spiral Walk on Triangular Meshes : Adaptive Replication in Data P2P Networks

    Full text link
    We introduce a decentralized replication strategy for peer-to-peer file exchange based on exhaustive exploration of the neighborhood of any node in the network. The replication scheme lets the replicas evenly populate the network mesh, while regulating the total number of replicas at the same time. This is achieved by self adaptation to entering or leaving of nodes. Exhaustive exploration is achieved by a spiral walk algorithm that generates a number of messages linearly proportional to the number of visited nodes. It requires a dedicated topology (a triangular mesh on a closed surface). We introduce protocols for node connection and departure that maintain the triangular mesh at low computational and bandwidth cost. Search efficiency is increased using a mechanism based on dynamically allocated super peers. We conclude with a discussion on experimental validation results
    corecore