12 research outputs found

    A new method of automatic landmark tagging for shape model construction via local curvature scale

    Full text link

    A Radiation-Free Classification Pipeline for Craniosynostosis Using Statistical Shape Modeling

    Get PDF
    Background: Craniosynostosis is a condition caused by the premature fusion of skull sutures, leading to irregular growth patterns of the head. Three-dimensional photogrammetry is a radiation-free alternative to the diagnosis using computed tomography. While statistical shape models have been proposed to quantify head shape, no shape-model-based classification approach has been presented yet. Methods: We present a classification pipeline that enables an automated diagnosis of three types of craniosynostosis. The pipeline is based on a statistical shape model built from photogrammetric surface scans. We made the model and pathology-specific submodels publicly available, making it the first publicly available craniosynostosis-related head model, as well as the first focusing on infants younger than 1.5 years. To the best of our knowledge, we performed the largest classification study for craniosynostosis to date. Results: Our classification approach yields an accuracy of 97.8 %, comparable to other state-of-the-art methods using both computed tomography scans and stereophotogrammetry. Regarding the statistical shape model, we demonstrate that our model performs similar to other statistical shape models of the human head. Conclusion: We present a state-of-the-art shape-model-based classification approach for a radiation-free diagnosis of craniosynostosis. Our publicly available shape model enables the assessment of craniosynostosis on realistic and synthetic data

    Implementation of target tracking in Smart Wheelchair Component System

    Get PDF
    Independent mobility is critical to individuals of any age. While the needs of many individuals with disabilities can be satisfied with power wheelchairs, some members of the disabled community find it difficult or impossible to operate a standard power wheelchair. This population includes, but is not limited to, individuals with low vision, visual field neglect, spasticity, tremors, or cognitive deficits. To meet the needs of this population, our group is involved in developing cost effective modularly designed Smart Wheelchairs. Our objective is to develop an assistive navigation system which will seamlessly integrate into the lifestyle of individual with disabilities and provide safe and independent mobility and navigation without imposing an excessive physical or cognitive load. The Smart Wheelchair Component System (SWCS) can be added to a variety of commercial power wheelchairs with minimal modification to provide navigation assistance. Previous versions of the SWCS used acoustic and infrared rangefinders to identify and avoid obstacles, but these sensors do not lend themselves to many desirable higher-level behaviors. To achieve these higher level behaviors we integrated a Continuously Adapted Mean Shift (CAMSHIFT) target tracking algorithm into the SWCS, along with the Minimal Vector Field Histogram (MVFH) obstacle avoidance algorithm. The target tracking algorithm provides the basis for two distinct operating modes: (1) a "follow-the-leader" mode, and (2) a "move to stationary target" mode.The ability to track a stationary or moving target will make smart wheelchairs more useful as a mobility aid, and is also expected to be useful for wheeled mobility training and evaluation. In addition to wheelchair users, the caregivers, clinicians, and transporters who provide assistance to wheelchair users will also realize beneficial effects of providing safe and independent mobility to wheelchair users which will reduce the level of assistance needed by wheelchair users

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Semi-Automatic Segmentation of Normal Female Pelvic Floor Structures from Magnetic Resonance Images

    Get PDF
    Stress urinary incontinence (SUI) and pelvic organ prolapse (POP) are important health issues affecting millions of American women. Investigation of the cause of SUI and POP requires a better understand of the anatomy of female pelvic floor. In addition, pre-surgical planning and individualized treatment plans require development of patient-specific three-dimensional or virtual reality models. The biggest challenge in building those models is to segment pelvic floor structures from magnetic resonance images because of their complex shapes, which make manual segmentation labor-intensive and inaccurate. In this dissertation, a quick and reliable semi-automatic segmentation method based on a shape model is proposed. The model is built on statistical analysis of the shapes of structures in a training set. A local feature map of the target image is obtained by applying a filtering pipeline, including contrast enhancement, noise reduction, smoothing, and edge extraction. With the shape model and feature map, automatic segmentation is performed by matching the model to the border of the structure using an optimization technique called evolution strategy. Segmentation performance is evaluated by calculating a similarity coefficient between semi-automatic and manual segmentation results. Taguchi analysis is performed to investigate the significance of segmentation parameters and provide tuning trends for better performance. The proposed method was successfully tested on both two-dimensional and three-dimensional image segmentation using the levator ani and obturator muscles as examples. Although the method is designed for segmentation of female pelvic floor structures, it can also be applied to other structures or organs without large shape variatio

    Facial Analysis: Looking at Biometric Recognition and Genome-Wide Association

    Get PDF

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    2D and 3D digital shape modelling strategies

    Get PDF
    Image segmentation of organs in medical images using model-based approaches requires a priori information which is often given by manually tagging landmarks on a training set of shapes. This is a tedious, time-consuming, and error prone task. To overcome some of these drawbacks, several automatic methods were devised. Identification of the same homologous set of points in a training set of object shapes is the most crucial step in Active Shape Modelling, which has encountered several challenges. The most crucial among these are: (C1) defining and characterizing landmarks; (C2) obtaining landmarks at the desired level of detail; (C3) ensuring homology; (C4) generalizing to n>2 dimensions; (C5) achieving practical computations. This thesis proposes several novel modelling techniques attempting to meet C1-C5. In this process, this thesis makes the following key contributions: the concept of local scale for shapes; the idea of allowing level of detail for selecting landmarks; the concept of equalization of shape variance for selecting landmarks; the idea of recursively subdividing shapes and letting the sub-shapes guide landmark selection, which is a very general n-dimensional strategy; the idea of virtual landmarks, which may be situated anywhere relative to, not necessarily on, the shape boundary; a new compactness measure that considers both the number of landmarks and the number of modes selected as independent variables. The first of three methods uses the c-scale shape descriptor, based on the new concept of curvature-scale, to automatically locate mathematical landmarks on the mean of the training shapes. The landmarks are propagated to the training shapes to establish correspondence among shapes. Since all shapes of the same family do not necessarily present exactly the same shape features, another novel method was devised that takes into account the real shape variability existing in the training set and that is guided by the strategy of equalization of the variance observed in the training set for selecting landmarks. By incorporating the above basic concepts into modelling, a third family of methods with numerous possibilities was developed, taking into account shape features, and the variability among shapes, while being easily generalized to the 3D space. Its output is multi-resolutional allowing landmark selection at any lower resolution trivially as a subset of those found at a higher resolution. The best strategy to use within the family will have to be determined according to the clinical application at hand. All methods were evaluated in terms of compactness on two data sets - 40 CT images of the liver and 40 MR images of the talus bone of the foot. Further, numerous artificial shapes with known salient points were also used for testing the accuracy of the proposed methods. The results show that, for the same number of landmarks, the proposed methods are more compact than manual and equally spaced annotations. Besides, the accuracy (in terms of false positives and negatives and the location of landmarks) of the proposed shape descriptor on artificial shapes is considerably superior to a state-of-the-art scale space approach to finding salient points on shapes
    corecore