418,206 research outputs found

    A case-based reasoning approach to the designing of building envelopes

    Get PDF
    Building-envelope design is an information-intensive process that requires experiential knowledge. Confronted with such a process, a human expert adds to well-known domain knowledge his own experience, or the experience of others, to support his reasoning process and guide him in typical situations. The problem-solving paradigm where reasoning is supported by reusing past experiences is called Case-Based Reasoning ( CBR ), and it was added to the Artificial Intelligence ( AI ) methodology following research in cognitive psychology. Instead of relying solely on general knowledge of a problem domain, or making associations along generalized relationships between problem descriptors and conclusions, CBR is able to utilize the specific knowledge of previous experienced problem situations called cases. CBR is a technology that solves problem by storing, retrieving, and adapting past cases. CBR systems have been proposed as an alternative to rule-based systems whenever the knowledge engineering process of eliciting rules is difficult or unmanageable. Instead, many experiences (or cases) with solutions, warnings, plans, and so forth are collected and new situations are related to a stored recollection of these past cases. New solutions are adapted from the old ones. Research in Knowledge-Based Expert Systems ( KBES ) for building-envelope design has shown a similar trend. While computerized assistance was imposed by the large amount of data to be processed, domain knowledge. Such fields where most of the knowledge is based on experience are often labeled as "weak theory domains," and they are prime candidates for adopting a CBR approach. This thesis proposes a CBR framework for selecting the construction alternatives during the preliminary stage of the building-envelope design process. The methodology presented aims to find the most suitable design for a new building envelope from a library of prototypical building cases and adapts it to meet the requirements of ASHRAE Standard 90.1/1989 for energy efficient building design. The study outlines the potential benefits of using CBR technology and the key issues encountered while attempting to define the CBR model for building-envelope design. Developing a hierarchy of building-envelope components identifies cases and features for design. The envelope design problem is solved through decomposition, and by combining case-based and rule-based reasoning methods. In searching for a best match to achieve a higher degree of case filtering, a connection between case-based reasoning and Artificial Neural Networks ( ANN ) is proposed. An ANN-based filtering mechanism is designed to improve the quality of case-matching outcome while enforcing the economy of case representation. The framework proposed by this research has been implemented into the CRED software system demonstrating the feasibility and advantages of using CBR methodology for building envelope design. CRED blends several Al techniques (such as ANN, CBR and KBES) while aiming to offer expert assistance to building design professionals for browsing and selecting building-envelope alternatives

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    BIM semantic-enrichment for built heritage representation

    Get PDF
    In the built heritage context, BIM has shown difficulties in representing and managing the large and complex knowledge related to non-geometrical aspects of the heritage. Within this scope, this paper focuses on a domain-specific semantic-enrichment of BIM methodology, aimed at fulfilling semantic representation requirements of built heritage through Semantic Web technologies. To develop this semantic-enriched BIM approach, this research relies on the integration of a BIM environment with a knowledge base created through information ontologies. The result is knowledge base system - and a prototypal platform - that enhances semantic representation capabilities of BIM application to architectural heritage processes. It solves the issue of knowledge formalization in cultural heritage informative models, favouring a deeper comprehension and interpretation of all the building aspects. Its open structure allows future research to customize, scale and adapt the knowledge base different typologies of artefacts and heritage activities

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Design thinking support: information systems versus reasoning

    Get PDF
    Numerous attempts have been made to conceive and implement appropriate information systems to support architectural designers in their creative design thinking processes. These information systems aim at providing support in very diverse ways: enabling designers to make diverse kinds of visual representations of a design, enabling them to make complex calculations and simulations which take into account numerous relevant parameters in the design context, providing them with loads of information and knowledge from all over the world, and so forth. Notwithstanding the continued efforts to develop these information systems, they still fail to provide essential support in the core creative activities of architectural designers. In order to understand why an appropriately effective support from information systems is so hard to realize, we started to look into the nature of design thinking and on how reasoning processes are at play in this design thinking. This investigation suggests that creative designing rests on a cyclic combination of abductive, deductive and inductive reasoning processes. Because traditional information systems typically target only one of these reasoning processes at a time, this could explain the limited applicability and usefulness of these systems. As research in information technology is increasingly targeting the combination of these reasoning modes, improvements may be within reach for design thinking support by information systems

    Aided diagnosis of structural pathologies with an expert system

    Get PDF
    Sustainability and safety are social demands for long-life buildings. Suitable inspection and maintenance tasks on structural elements are needed for keeping buildings safely in service. Any malfunction that causes structural damage could be called pathology by analogy between structural engineering and medicine. Even the easiest evaluation tasks require expensive training periods that may be shortened with a suitable tool. This work presents an expert system (called Doctor House or DH) for diagnosing pathologies of structural elements in buildings. DH differs from other expert systems when it deals with uncertainty in a far easier but still useful way and it is capable of aiding during the initial survey 'in situ', when damage should be detected at a glance. DH is a powerful tool that represents complex knowledge gathered from bibliography and experts. Knowledge codification and uncertainty treatment are the main achievements presented. Finally, DH was tested and validated during real surveys.Peer ReviewedPostprint (author's final draft

    Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at Odense steel shipyard

    No full text
    Reliable and effective maintenance support is a vital consideration for the management within today's manufacturing environment. This paper discusses the development of a maintenance system for the world's largest robot welding facility. The development system combines a case-based reasoning approach for diagnosis with context information, as electronic on-line manuals, linked using open hypermedia technology. The work discussed in this paper delivers not only a maintenance system for the robot stations under consideration, but also a design framework for developing maintenance systems for other similar applications

    Towards robust and reliable multimedia analysis through semantic integration of services

    Get PDF
    Thanks to ubiquitous Web connectivity and portable multimedia devices, it has never been so easy to produce and distribute new multimedia resources such as videos, photos, and audio. This ever-increasing production leads to an information overload for consumers, which calls for efficient multimedia retrieval techniques. Multimedia resources can be efficiently retrieved using their metadata, but the multimedia analysis methods that can automatically generate this metadata are currently not reliable enough for highly diverse multimedia content. A reliable and automatic method for analyzing general multimedia content is needed. We introduce a domain-agnostic framework that annotates multimedia resources using currently available multimedia analysis methods. By using a three-step reasoning cycle, this framework can assess and improve the quality of multimedia analysis results, by consecutively (1) combining analysis results effectively, (2) predicting which results might need improvement, and (3) invoking compatible analysis methods to retrieve new results. By using semantic descriptions for the Web services that wrap the multimedia analysis methods, compatible services can be automatically selected. By using additional semantic reasoning on these semantic descriptions, the different services can be repurposed across different use cases. We evaluated this problem-agnostic framework in the context of video face detection, and showed that it is capable of providing the best analysis results regardless of the input video. The proposed methodology can serve as a basis to build a generic multimedia annotation platform, which returns reliable results for diverse multimedia analysis problems. This allows for better metadata generation, and improves the efficient retrieval of multimedia resources
    corecore