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Abstract 

Sustainability and safety are social demands for long-life buildings. Suitable 

inspection and maintenance tasks on structural elements are needed for keeping 

buildings safely in service. Any malfunction that causes structural damage could 

be called pathology by analogy between structural engineering and medicine. 

Even the easiest evaluation tasks require expensive training periods that may be 

shortened with a suitable tool. This work presents an expert system (called 

Doctor House or DH) for diagnosing pathologies of structural elements in 

buildings. DH differs from other expert systems when it deals with uncertainty in 

a far easier but still useful way and it is capable of aiding during the initial survey 

‘in situ’, when damage should be detected at a glance. DH is a powerful tool that 

represents complex knowledge gathered from bibliography and experts. 

Knowledge codification and uncertainty treatment are the main achievements 

presented. Finally, DH was tested and validated during real surveys. 

 

Keywords: Expert System; Buildings; Maintenance; Inspection; Diagnosis; 

Assessment. 

 

1. Introduction 

During the past decade construction has been a driving force of the economies of many 

countries. This surge has created an increasing volume of buildings that will have to be 
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maintained in the near future. Moreover, nowadays the industry is slowly changing from 

classical construction towards sustainable building. Therefore, maintenance and renovation are 

processes that enlarge the life-cycle of buildings. In short, most of the recently constructed 

building will have to be surveyed and/or repaired during the following years. Taken together, 

these factors point to an explosion in the demand for qualified personnel for diagnosing 

pathologies of buildings, infrastructure and other forms of construction—of which there will be 

a greater number in use and to be conserved. 

This backdrop is the motivation for the development of a program to provide support to 

the new inspectors who will have to diagnose the pathologies of this immense volume of 

buildings. 

This type of program is not intended to substitute technicians; rather, its main objective 

is to assist in the training of new experts and provide them with greater confidence in the most 

complex diagnoses. Furthermore, it helps free these highly qualified workers from mundane 

tasks, enabling them to focus on the most complex cases. 

Described here are the steps followed in the development of a first operating prototype 

of the software. It was focused on buildings for several reasons, including their great economic 

weight, user demands and the large volume of buildings already constructed. Another reason 

was to obtain a more useful tool: buildings generally have a lower inspection level than large 

public works, therefore they were considered to suffer more damage. 

Knowledge codification, which includes obtaining the information, ordering it and 

codifying it in form of objects and logical rules, was the most challenging part of the 

investigation together with the necessary uncertainty treatment. How these tasks have been 

carried out is fully detailed in their corresponding sections, but in general lines the first one was 

overcome with the support of a team of experts form private companies and university whose 

experience, which covered all structural elements of a building, was classified. The second one 

was faced by simplifying the uncertainty levels for not losing the qualitative approach and still 



offering a reliable and transparent tool. Classifying symptoms (observable information) into 

required ones and recommended ones was an original improvement. 

This paper is divided as follows. First, past and present artificial intelligence (AI) 

programs developed for the construction field are described. The objectives of developing DH 

are then outlined. Next, expert systems are briefly described and are evaluated in the context of 

other methods. The process employed for developing DH, and the results of initial trials, are 

then explained in detail. A brief qualitative comparison with similar tools is also included and, 

lastly, conclusions are presented. 

2. Review on Artificial Intelligence in construction and Aim of the work 

The term artificial intelligence (AI) was first coined by John McCarthy at a conference in 

Dartmouth in 1956. Since then, AI has been used for a myriad of applications, including 

modelling and decision making in the construction field. 

One of the most important milestones in the practical use of intelligent reasoning was 

the development of expert systems, which are explained in more detail below. Briefly, an expert 

system can be defined as a computer program that is designed to emulate a human expert for 

solving problems in a specific area of knowledge as it is explained in Harmon and King (1985) 

or Giarratano and Riley (1994). 

The recent advent of artificial neural networks, particle swarm optimization method or 

genetic algorithms have provided a new practical stimulus for AI in the field of decision-making 

around engineering activities. Nowadays, AI includes a lot of different fields, like robotics, 

representation of natural language, human reasoning and others, but the most commonly used in 

construction are artificial neural networks, Case-Based Reasoning (CBR) and expert systems. 

However, recent investigations on genetic algorithms like Cheng et al. (2002) and particle 

swarm method presented in Zhang and Xing (2010) or Jiang et al. (2011) among many others, 

suggest them to be widely used in the development of the future most complex decision-making 

tools. 



Although construction was one of the last fields to use this technology, see Kaetzel and 

Clifton (1995), over time several tools and lines of research have since been developed. These 

include: 

• Support for decision making in project design and planning: e.g. CONBPS 

(Construction Best Practice System) for modelling of the construction process by Poon 

(2004); neural networks to calculate the shear bearing capacity of FRP – fibre 

reinforced polymer – strengthened reinforced concrete beams  by Tanarslan et al. 

(2012); or for the assessment of construction environmental impact in Zhao et al. 

(2006). 

• Support for decision making in the building process: e.g. OLSC (On-Line System for 

Construction) for multi-criteria analysis presented by Kaklauskas (2007); CoSPES 

(Construction Site Preparation Expert System) for construction tasks written by Albert 

and Wu (1997); CONBPS by Poon (2004); for construction project supplies there are 

many example like Kumaraswamy and Dissanayaka (2001); for determining the 

rippability of rocks in Tiryaki (2007); for adapting tunnel construction in base of its 

displacements using Support Vector Machine (SVM) together with a particle swarm as 

shown in Jiang et al. (2011); or a fuzzy multi-objective particle swarm to optimise time-

cost-quality in construction presented in Zhang and Xing (2010). 

• Support for the diagnosis and repair of construction pathologies: e.g. MDDS (Masonry 

Damage Diagnostic System) for diagnosing pollution caused pathologies in masonry 

projects proposed by Van Balen (1996 and 2001); RCDES (Reinforced Concrete 

Diagnosis Expert System) for diagnosing reinforced concrete structures  in Peter 

(1996); REPCON (Repair of Concrete) for repairing concrete structures written by 

Moodi and Knapton (2003); concrete bridge management  by Brito et al. (1997); 

DIASYN (Diagnosis Synthesis) for concrete bridges used in Zhao and Chen (2002); 

maintenance of cement bridge decks as in Yehia et al. (2008); for evaluating bridge 

damage in Lee et al. (1999); for diagnosing cracks in reinforced concrete in Chao and 



Cheng (1998) and Yeong et al. (2007); and for diagnosing corrosion of pipes included 

in Najjaran et al. (2006); 

 
These have been applied to buildings: e.g. for evaluating damage to buildings from 

cyclones in Murlidharan et al. (1997); for diagnosing framed reinforced concrete structures in 

Lu and Simmonds (1997); for diagnosing building defects in Koppány (2005); SCAMS 

(Subsidence Case Management System) for evaluation of pathologies due to soil settlement 

presented in Anumba and Scout (2001); and for diagnosing seismic damage in metallic 

structures like in González and Zapico (2007). 

Many of the expert systems for construction that were developed up to the early 1990’s 

can be found in Kaetzel and Clifton (1995). A list of expert systems for construction project 

planning can be found in Yamazaki et al. (1990). 

Obviously, when the problem to be solved is very specific it can be handled in greater 

depth and the results will be more accurate. However, it was observed that there was no 

software developed for the global inspection of buildings, as all available programs focus on a 

specific material or structural type. So, having observed that there was no generic building-

inspection software on the market, we sought to develop an operative prototype in order to 

prove the technical feasibility of such program. Our initial objectives comprised: a) 

Researching, summarising and normalising the symptoms associated with each building 

pathology; b) Developing a prototype of a knowledge-based expert system for diagnosing 

building pathologies, including ordering, encoding and programming of symptoms data 

according to the programming tool chosen; and c) Evaluating the resulting software, and then 

generating conclusions. 

3. Used tool: Expert Systems 

Expert Systems (ES), which fall under AI, are computer programs that are designed to imitate 

human experts in solving problems from a very specific area. Modern expert systems bear little 

resemblance to their earliest predecessors, which arose in the 1960’s and which were originally 



designed to solve general problems (Harmon and King 1985). They have three fundamental 

components: an inference motor, a knowledge base and an interface. 

The inference motor is in charge of obtaining new data based on the existing data in the 

knowledge base and that provided by the user. It can control this data collection process 

according to various criteria, including forward reasoning and backward reasoning. The forward 

reasoning is based on performing a basic search to determine which data is needed for 

continuing with the reasoning. Albeit this leads to a disordered and chaotic appearance from the 

user’s perspective, it allows execution of planning tasks for which solutions are not known a 

priori. In contrast, the backward reasoning performs a deep search which is focused on an 

objective (a hypothesis which is to be verified) and determines the information that must be 

confirmed in order to validate the chosen line of reasoning. This method of inference is much 

more natural, logical and ordered from the user’s perspective, and is especially suited for cases 

in which there are a limited number of known solutions, as it is diagnosis of building 

pathologies. 

The knowledge base stores the information from the human expert that the program 

may use in searching for a solution. The knowledge base is encoded differently in each expert 

system, but the most common and powerful way is through objects, which are related to each 

other by production rules (i.e. through if/then logic rules, which are associated with the 

inference via modus ponens, see below). 

Finally, the interface is a crucial part of an expert system, as it must be adapted to allow 

easy entry and modification of information from the knowledge base and enable justification of 

the diagnosis. Moreover, it has to be user-friendly, since it is used for data entry by the user and 

for the delivery of results. 

For greater detail on the structure and function of expert systems, the reader is referred 

to Harmon and King (1985), Giarratano and Riley (1994) and Kaetzel and Clifton (1995). 

 



3.1. Why an expert system? 

The decision to employ software in the form of an Expert System was based on the ease of 

programming of this method as compared to conventional programming. This selection was also 

done because ES show a more natural and predefined solving behaviour than artificial neural 

networks (ANN) whose drawbacks are shown below. Moreover, ES are far simpler and more 

organised than genetic algorithms (GA) or particle swarm optimisation methods (PSO) which 

could work together with support vector machines (SVM) as it was done in Jiang at al. (2011). 

The main advantages of an expert system over conventional programming comprise: 

• The possibility of completely  separating the solution method for the problem from the 

data, which allows ready modification, correction or expansion of the knowledge base, 

as well as creation of shell-type tools, which already contain the inference motor and 

only require the knowledge base;  

• The use of symbolic programming, which allows incorporation of symbolic variables 

(i.e. words from natural language, such as “crack”, “oxidation”, etc.), between which 

logic-type relationships can be established (e.g. if/then production rules, or qualifiers 

such as and, or, equal to, different than, etc.). 

Just as other programs based on knowledge and experience, the work described here 

adjusts better to the programming patterns of expert systems than to those associated with 

classic programming, which is focused on the use of numbers and the procedural solution of 

problems. 

The main advantages of an expert system over ANN in diagnosis of building pathology 

comprise: 

• Expert systems receive information from a human expert (once that information has 

been properly ordered and encoded), whereas neural networks learn by examples. 

Therefore, for a field such as building pathology, in which there are so many possible 

combinations and symptoms, an extremely large number of cases would be required in 

order to train a neural network. 



• Neural networks automatically establish the relationships between variables from the 

examples provided. This means that solutions that are initially unknown to the expert 

can be found. In the field of diagnosis, this possibility is counter-productive, as the aim 

is to provide confidence in the identification of the cause of damage, rather than to 

“discover” pathologies based on atypical symptoms. Furthermore, the automatic 

encoding of knowledge complicates its subsequent modification since the information 

introduced does not remain structured, but rather is stored diffusely throughout the 

network. In fact, several authors have referred to neural networks as a “black box” 

whereby the relation between each input and its corresponding output remains obscure 

to the user as González and Zapico (2007) pointed out. 

For these reasons, neural networks can be considered more amenable to problems that 

are poorly structured or that feature non-explicit knowledge—the very opposite case to building 

damage diagnosis, in which the causes and effects are well known and can be easily correlated. 

Other actual tools, like SVM could overcome the extra-learning problem of ANN. They 

base their learning on statistics in order to solve multidimensional functions whose domain is 

previously delimited as explained in Jiang et al. (2011). However, its working procedure is 

“hidden” from user in the same way it was in ANN, so it is not suitable in developing a tool 

aimed to aid new professionals and to help them in their formation. 

Like ANN, GA and PSO are mainly oriented to solve problems from incomplete and 

bad-structured information. Cheng et al. (2002) used GA to deal with the problem of flood 

prevision which is a clear example of incomplete and bad-structured data. Modelling algal 

blooms in Muttil et al. (2006) or trying to foresee sunspots as shown in Xie et al. (2006) could 

be another two examples. As structural damage diagnosis at first visual inspection has a 

relatively little field of possible solutions and related data can be organised, GA and PSO are 

not as suitable as ES are to deal with this problem. 

 



3.2. Expert Systems drawbacks 

Today, Expert Systems are not widely used.  Lately, this programming tool has been 

progressively substituted by CBR (Case-Based Reasoning) firstly and ANN (Artificial Neural 

Network) recently, due to its difficulty to structure and validate the general expertise of most of 

the nowadays common problems. Nevertheless, ES are still useful in some fields, like diagnosis 

of building pathologies (or detection of the damage’s cause), in which knowledge is very well 

organised, and the development of an expert system is easier than in other fields. 

The use of an expert system can be seen as step back, but in our opinion, it can break 

the current trend, which is turning to numerical treatment of any problem. It loses touch with the 

real problem, and all is reduced to adjusting many factors in order to reach the expected solution 

whereas the logical reasoning process and the justification of the obtained solution are 

absolutely forgotten. As there is the aim to develop a tool that could be also useful at training 

new human inspectors for diagnosing structural damage, it seems suitable for this tool to be 

transparent, to use qualitative information rather than quantitative coefficients decided by a 

group of experts and the most important, to have the possibility of giving an explanation about 

how the conclusion was reached in basis of the information and the logical inferences. 

4. Developing the prototype. Methodology 

Outlined below is the process followed to develop the prototype of the new tool for construction 

damage diagnosis, from the scope delimitation to the translation possibilities, including the 

knowledge codification and the uncertainty handling. 

 

4.1. Focusing on a specific area 

Once the problem was centred on building pathology, it was decided that the level of casuistry 

should be minimised, since the objective was merely to create a prototype to prove the technical 

feasibility of this type of program. It was ultimately decided that the problem would focus on 

pathologies that affect structural elements or that directly derive from these elements. This 



choice was due to the fact that the principal repair costs in building pathology are those related 

to structural damage as pointed out in Calavera (2005) or by The Masonry Society Construction 

Practices Committee (2004). 

Different pathologies were not treated with the same level of depth; the south-European 

most common type of structure was emphasised: a framed concrete building with dividing 

masonry walls. Special attention was paid to the principal structural elements: pillars, beams 

and floor slabs. 

Altercations to masonry elements were also given special attention, as the number of 

these pathologies is much higher than other types, and they are generally caused by the 

malfunction of the structure of a building. In terms of pathology types, cracks are the most 

common form of damage among structures, as presented in Rodriguez (2000). As such, they 

were studied in more detail than other symptoms.  

Because of the aim of DH, the range of pathologies to be diagnosed by the expert 

system was limited by including only data that could be obtained through visual inspection of a 

building with the naked eye; complex assays were therefore omitted. Thus, the resulting 

software was honed for providing a preliminary qualitative inspection in a transparent way. 

 

4.2. Choosing the programming tool 

A shell-type program—which already contains the inference motor and the interface—was 

chosen as the development platform for the prototype. This choice was based on various factors, 

including the knowledge (data) itself to be introduced as well as the scope of the work at hand 

(for a first prototype). 

The information collected on symptoms was generally well ordered. For this reason, it 

was preferable to use encoding based on objects and values. This way, the tool had to use 

inference through modus ponens and relate objects with production rules. Modus ponens is the 

most widely used inference method. It establishes if/then type of relationships. Hence, once a 



rule has been introduced (A ⇾ B), and the left-hand side factor (A) has been confirmed, the 

result provided by the inference is affirmation of the right-hand side factor (B). 

An object is the symbolic representation of a characteristic, fact or real element (e.g. 

“direction of the crack”). Each object can adopt different values (e.g. [vertical, horizontal or 

diagonal] for “direction of the crack”). 

Considering that the developed expert system is a diagnostics program aimed to train 

novel inspectors in on-field preliminary inspection, the inference process had to be ordered 

according to user needs, and consequently, the shell had to allow backward reasoning. The shell 

also had to be monotonic: the inference process could not be allowed to change the information 

introduced by the user, since the program would then be diagnosing a different damage from 

that observed. Furthermore, given that the developed software was designed to simplify the 

diagnostic process as well as the data required, the use of either numerical uncertainty or diffuse 

logic was ruled out as it is outlined at subsection 4.4.  

Commercial software Acquire 2.1 was selected from among the various software 

packages that were available at the time of development, as it responded to all of the 

programming needs for the work at hand and has features which are highly amenable to the 

creation of a prototype of a small expert system.  

 

4.3. Encoding and introducing the information using Acquire 2.1 

The first step in encoding the information comprised classifying the pathologies according to 

the structural element affected and the constituent material of that element. Many small and 

focused expert systems (modules) were created in this way, each one for dealing with the 

diagnosis of pathologies of one structural element or one material. Most of the information 

related to the symptoms of the building pathologies was extracted from documentation like 

Calavera (2005) and  The Masonry Society Construction Practices Committee (2004), and from 

some experts interviews.  



In total, seven specialists were interview. Two engineers form Construction Engineering 

Department, two more from Structures and Material Resistance Department, all them from 

Polytechnic University of Catalonia – BarcelonaTech, plus two architects and another engineer 

from the company Asistencia Técnica Industrial S.A.E, ATISAE, who are expert inspectors. 

The aim of the interviews and meetings was to get a deeper description of selected pathologies. 

They were also oriented to improve the knowledge acquired from bibliography and to obtain a 

more confident response. As all pathologies included in DH are common and can be diagnosed 

at glance by a professional, the team of experts did not show any discrepancy about the 

diagnosis nor the causes of damages. This is one of the reasons, as it is widely shown later, why 

fuzzy logic and numeric evaluation of uncertainty were not considered in the development of 

this software whose purpose is to help inexperienced inspectors at diagnosing common 

structural pathologies of buildings. 

The way the knowledge was acquired is following described. First of all, the major part of it 

was extracted from bibliography. After this, an expert from Structures and Material Resistance 

Department was selected as the conductor of the interviews and the meetings. The first meeting 

was set to discuss the scope of the selected damages and the main variables that had to be 

included, distinguishing between the defining symptoms and the ones that do not need to be 

observed to come up with the diagnosis. Then, a preliminary version of the prototype was 

implemented and individual interviews were carried out with each expert in order to improve 

the result. As no contradictions between experts were observed, every opinion was taken into 

account. The information given by the experts in the individual interviews was complementary 

and never confronts other’s advice. After improving DH, a full meeting was arranged to present 

the result to the experts and discuss about the last possible improvements that mostly affect 

superficial things like the interface language or the distribution packaging. The knowledge base 

was consolidated after this meeting. 

Because of the scope and the aim of DH it was not considered to deal with uncertainty in an 

analytical way. Moreover, no discrepancies between experts’ recommendations were observed, 



so quantifying uncertainty in common pathologies would not worth the effort as the diagnosis 

were clear. For these two reasons it was decided that the selected team of experts was enough to 

provide the information needed. For further research including more complex pathologies, 

uncertainty would have to be taken into account in a numeric way because different opinions are 

expected in less common problems, so a bigger group of experts (statistically significant) would 

be required in order to value this uncertainty in the conventional quantitative approach. 

Once the pathologies had been classified, the next step was to encode the symptoms of each one 

by transforming the collected information into objects and rules, which are schematically 

represented in Figure 1. 

The objects created for encoding information in DH can be classified according to its 

function. First of all, there are starting objects (continuous striped rectangles in Figure 1) which 

are symbolic representations of the symptoms. When the expert system asks the user about a 

particular symptom, its answer will be reflected in the value taken by the corresponding starting 

object. Secondly, there are auxiliary objects (discontinuous horizontal striped rectangles in 

Figure 1) whose main function is to give internal structure to the program, thus providing a 

more logical and ordered presentation of the inference for the user. The use of these objects 

makes heredity possible, so at the moment at which the inference process assigns a value to an 

auxiliary object, this value implicitly represents all of the information provided up to that 

moment by the user over the course of a DH query. Finally, there are conclusion objects 

(spotted rectangle in Figure 1) which symbolically represent pathologies that can be diagnosed 

by the expert system. At the moment these objects adopt a favourable value (either “Yes” or 

“Yes, but”, as explained below) a diagnostic is reached. 

In terms of the relationships among objects, Acquire 2.1 can use production rules 

(Figure 2) and action tables. These two methods only allow a single value to be assigned to a 

unique object as a conclusion of the relationship. Production rules are best suited for cases in 

which many objects are considered. These objects should adopt very specific values in order to 

reach a conclusion. This is the case of the last step indicated by the dashed lines in Figure 1, 



where it can be observed that, for a given combination of values for some different objects, one 

value is obtained for the conclusion object. In contrast, action tables are indicated for cases in 

which very few objects are considered and in which nearly all of the combinations of values of 

these objects are valid for generating a conclusion in the inference. Roughly speaking, an action 

table can be considered as a set of production rules grouped together as a matrix. Action tables 

are used in practically all of the relationships that assign a value to an auxiliary object. Each 

step in Figure 1 that is marked with a solid line corresponds to an action table. A complete 

diagnostic tree, following the encoding process described, is shown in Figure 3. 

 

4.4. How to handle uncertainty  

DH considers uncertainty, which is intrinsic to any type of heuristics-based reasoning. In 

general, uncertainty might be encountered in the inspection as well as in the logic rules 

employed for diagnosing the pathology. However, it has been shown previously that there was 

no uncertainty in the logic rules for DH as experts and bibliography did not show discrepancies 

in their diagnosis. It is because DH is aimed to help at diagnosing well-known cases to train 

new inspectors or free highly qualified workers from ordinary activities. Despite the fact that 

most of the current expert systems handle uncertainty through inexact reasoning and fuzzy logic 

–examples of this are Zhao and Chen (2002), Murlidharan (1997), Lu and Simmonds (1997), 

Chao and Cheng (1998), Yeong et al. (2007), Najjaran et al. (2006) or Anumba and Scout 

(2001) – the prototype presented here was designed to treat uncertainty qualitatively, which is 

simpler and more transparently for the user than the conventional quantitative approach. It 

allows DH to be used as a learning tool. Actually, this approach goes back to the empirical 

treatment used in the original expert systems. The expert system was thus conferred with a tool 

that enabled it to deal with uncertain information, although with no complex mathematics 

required, as these tend to overcomplicate the justification of the obtained solutions to the user 

and make them less transparent—when these explanations are in fact one of the main 

advantages of expert systems. This is because current numerical treatment is based on the use of 



coefficients that are chosen by experts according to their personal experience (in order to 

represent the scenario that certain symptoms correspond to a specific pathology) and these 

coefficients are usually hidden to users, who do not receive all the inference information. 

Instead, showing all the mathematically represented uncertainty information to the user is not 

the best solution either as the amount of data would make it difficult to understand the reasoning 

procedure anyway. This, together with the nature of the problem faced in this research lead us to 

develop a prototype with a different system that would be more general, simpler and more 

intuitive. As a drawback, it would not give any numerical value to describe the confidence on 

the solution. Therefore, the empirical treatment of uncertainty used here is not based on a 

scientific approach like probability. We assume the limitation of this approach and admit this 

technique could not be suitably extended to the development on an expert system that had to 

deal with more complex cases in which conflicting views between experts were likely to rise. In 

this other situation, fuzzy-logic would be likely to face the problems with more success than the 

original method proposed here. In conclusion, it could be said that the way the uncertainty is 

treated in DH is the best option for the specific faced problem and the particular aim of the 

program but it could not be the best for developing tools oriented at helping the highly-qualified 

professionals at taking the most difficult decisions.  

The goal for representing uncertainty in DH was to establish two levels of confidence in 

the solution. This was based on the fundamental hypothesis that there are two levels of 

symptoms in any pathology: Required ones and Recommended ones. Required symptoms are 

those which are most characteristic of a particular type of damage and which must be observed 

in order to diagnose it, whereas Recommended symptoms are those whose observation—though 

not required for diagnosis—allow to reach a greater confidence in the diagnosis. This treatment 

of uncertainty was encoded by assigning one of either two values (“Yes”, or “Yes, but”) to the 

conclusion object which confirms diagnosis of a pathology with different levels of confidence. 

If all of the observed symptoms correspond with the expected symptoms, then the conclusion 

object takes the value “Yes”, and consequently, the diagnosis is confirmed with maximum 



confidence. If any of the Recommended symptoms are missing, then the conclusion object takes 

the value “Yes, but”, and therefore, the diagnosis is made with less certainty. In this last case, 

the results show which of the Recommended symptoms are missing. In contrast, if one of the 

Required symptoms is not observed, then the pathology is not diagnosed. These three scenarios 

are summarised in Table 1. 

Scenario Result 
Required symptoms = expected values 

Recommended symptoms = expected values 
Diagnosis with maximum confidence (Value 

“Yes” in pathology object) 

Required symptoms = expected values 
Recommended symptoms ≠ expected values 

Diagnosis with less confidence (Value “Yes, 
but” in pathology object) 

Required symptoms ≠ expected values Undiagnosed pathology (Value “No” in 
pathology object) 

Table 1. Combinations of symptoms shown with their corresponding levels of diagnosis 
confidence 
 

It should be mentioned that all of the auxiliary objects are associated with Required 

symptoms, and that the Recommended symptoms are the last ones that the user is asked about; 

hence, they are incorporated in the last step of the inference, the production rule. Along the 

development process, it was stipulated that any symptom which exhibits a high degree of 

variability in the real world, or which is difficult to identify, can never constitute a Required 

symptom for the diagnosis. A clear example of this would be the width of cracks, which, 

although indicative of the magnitude of the damage, is rarely meaningful for determining the 

cause of the pathology. 

 

4.5. User interface and translation possibilities 

In the developed prototype, the user interface was limited to two environments: data entry by 

the user (as requested by the program through a series of window pop-ups) and the presentation 

of results in the form of a report which includes either the diagnosed pathology or a course of 

action in the event that no diagnosis was obtained. 

Furthermore, the entire expert system’s interface can be easily translated into any 

language by incorporating additional objects and relationships that establish one-to-one 



relationships between the new inputs and the original ones, which consequently become 

auxiliary objects. 

 

5. Running DH: How does it diagnose? 

Since the development of DH has been detailed, now here it is presented how it works and 

which its main features are through the analysis of a real case. However, the basic steps the 

program always takes should be explained first. 

Observing the flowchart in Figure 4, it is noticed that at the beginning of the diagnosis 

the user have to provide, at least, the information related with the structure typology and 

material and the kind of affectation. After this, the program chooses a possible diagnostic and 

tries to confirm its main symptoms (those called “Required” in the section 4). If some of these 

symptoms are not confirmed by the user, DH changes its assumption and tries to confirm 

another pathology that actually matches with the information already provided. If there are no 

pathologies in the knowledge base that agree with the observed main symptoms, DH cannot 

diagnose the affectation. Else if one possible diagnostic is confirmed by the observation of its 

main symptoms, the program follows to the next level and tries to be fully certain of the 

diagnostic that has been reached. At this point, more specific symptoms (previously called 

“Recommended”) are asked to be observed, and if the inspector-user confirms all them, DH 

achieves a fully certain diagnostic. If not, the diagnostic is anyway presented but with no fully 

certainty. In this case, an explanation with which the secondary expected symptoms were is also 

showed. 

For better understanding, a real diagnostic case is outlined below. Each step in decision-

making progress is explained, and both the questions of the expert system and the answers from 

the user are indicated. There are also pictures and sketches of the analysed pathology obtained 

in the field inspection in cooperation with the company ATISAE.  

Step Question Answer 
1st Structure typology and material Concrete Beam (*) 
2nd Kind of pathology Crack (*) 
3rd When does the problem become visible? In use (**) 



4th Where are the cracks located in the beam? End (*) 
5th How is the crack orientated? Inclined (*) 

6th Is the beam supporting a stairs or a cantilever? Or is the beam 
placed in the edge of a floor? No 

7th How many cracks do you see? A few (2 to 4) (*) 

8th 

Has the beam been constructed in two times? 
If you select Yes, means that it's a beam constructed in two times 
or that it's a continuous beam constituted by two simple beams 
that have been united in situ. 

No (*) 

9th 
Is the end of the beam connected with a rigid node? 
If you choose Yes, it is assumed that the analysed element is a 
span of a longer continuous beam. 

No 

10th Where in the section are the cracks located? Around the upper 
head (*) 

11th How wide is the crack? Variable (*) 
12th How deep is the crack? Cross the beam (º) 

(*) See Figures 5 and 6 
(**) It was reported by the building users 
(º) Assumption from the fact that the same cracks are observed in both sides of the beam 
(see Figures 5 and 6) 

Table 2. Summary of the running for a case diagnosed by DH 
 

The analysed building is a framed, reinforced concrete structure that comprises four 

floors plus a basement level. The damage was observed in a secondary girder on the 2nd floor. 

Figure 5 and Figure 6 are pictures of the crack to diagnose from either side. 

Once defined the problem, now the different steps DH took are summarized in Table 2. 

First of all, the user selected the structure typology and material (concrete beam) and the kind of 

pathology (a crack). From this point, DH automatically selected a suitable pathology (any 

among all possibilities that could explain a concrete beam cracking) and tried to confirm it. At 

each of the eight following questions, DH could have been changing its initial assumption to a 

pathology that definitely agreed with the defining symptoms introduced by the user. For 

example, the question in 6th step (Table 2) is oriented to confirm or discard on of the possible 

causes for inclined cracks at the end of a concrete beam: torsion. In the same way, questions in 

8th and 9th steps tried to find out if the pathology was associated with the construction procedure 

or with an excessive negative momentum at a rigid node respectively. The next steps (11th to 

12th) and questions DH made were only to add certainty to its decision of a shear failure. So, 

finally, DH reached a diagnostic and presented a report with the pathology and also added a 



warning due to the high danger level of this kind of pathology. A screenshot of the program 

running is presented in Figure 7.  

In conclusion, Doctor House diagnoses the case as shearing cracks due to excessive 

stress in the concrete. This result is totally consistent with analysis of samples extracted from 

the building, which revealed that the resistance of the concrete used was much lower than that 

recommended for this type of structure. The program also warns of sudden collapse, which is 

associated with said pathology. Lastly, the program's results were further supported by the 

conclusions of a team of experts in the field of building pathology, who concluded that the 

cracks were indeed due to excessive shearing force. 

 

6. Results, Discussion and Comparison with similar Expert Systems 

Once the prototype of DH was finalised, its functions were evaluated in a series of tests. The 

initial round of test cases was taken from the literature. Especially, from Muñoz (1988) which 

summarises many cases on real pathologies diagnosed by human experts. In order to ensure 

objectivity, a different source of information was used for this evaluation than that used for the 

programming of the expert system. The results obtained (Table 3) are satisfactory and the 

correct pathology was diagnosed in most of the test cases. Only a few discrepancies were 

observed and they were the result of missing information in the test case example, which was 

limited to a photograph and an expert diagnosis description in the corresponding book. In three 

of the cases summarised in Table 3 the result was no fully satisfactory because it exceeded the 

knowledge limit of DH. It is that the pathologies to be diagnosed were out of the scope of the 

expert system. It is not such a big problem as DH is a prototype which was developed just to 

prove the technical feasibility of this kind of software. On the other hand, the cases for which 

the statement “Insufficient information of the test example” is displayed in Table 3 need further 

justification. For all these cases the problem was that there were validation cases from 

bibliography so access to the real structure was impossible and the available information was 

limited to a few pictures and a brief description of the problem that was not enough to provide 



the expert system required information to achieve a correct and reliable diagnostic. For 

example, the torsion of concrete beams was not diagnosed with full confidence because the 

beam position related to the stairs or cantilever elements was unknown. In the same way there 

was no information about the cracks in the walls of the lower floors to give plenty confidence 

on the diagnostic of differential settlement of a pillar. The lack of an accurate description of the 

cracks at the down side of the slab made it impossible to diagnose the punching cause without 

any doubt, and finally, there was no information about the construction procedure that might be 

the basis for the identification of an initial thermal reaction as the problem that caused the 10th 

pathology summarized in Table 3. All these problems arisen from the impossibility to have 

direct contact with the structure would not be found in real inspection like the one fully 

explained at the previous section because the access to the building visible part of the structure 

should be granted. 

DH Module Pathology Result Problem 

Reinforced concrete pillars 
Hydraulic retraction - Knowledge limit exceeded 

Excessive tensile 
stress +  

Concrete beams Torsion ~+ Insufficient information of the test 
example 

Bending +  

Masonry elements 
Differential 

settlement of a pillar ~+ Insufficient information of the test 
example 

Absence of joints +  

Slabs 
Punching ~+ Insufficient information of the test 

example 
Excessive bending of  

a beam ~-  

Short reinforced concrete 
cantilevers and nodes Horizontal tensile +  

Reinforced concrete 
windscreens and walls 

Initial thermal 
retraction ~ Insufficient information of the test 

example and Knowledge limit exceeded 
Facades Map cracking +  

Metallic elements Generalised 
corrosion ~+ Knowledge limit exceeded 

Wooden elements Wood worm +  
Table 3. Results of the first round of evaluation tests 
 

A second round was employed to validate DH with real cases (together with ATISAE 

Company). Results from all 5 tests on damages affecting concrete beams and masonry walls 



were successful and the diagnosis coincided with the one made by another unassisted inspector.  

One of these tests has been explained in section 5 as an example. 

The final result is a decision-making program that comprises ten modules that can 

diagnose pathologies associated with reinforced concrete pillars; concrete beams; frameworks; 

nodes in framed concrete structures; short reinforced concrete cantilevers; masonry elements; 

reinforced concrete windscreens and walls; facades; foundations; metallic elements; and 

wooden elements. However, it should be noted that in the initial prototype, the last three 

modules have a rather limited scope. In total, more than 900 objects and over 1,200 rules were 

required to develop the software, which can diagnose over 200 pathologies of building 

structures. The results obtained in the various phases of evaluation are totally satisfactory, 

indicating that the prototype of DH can diagnose dozens of pathologies with a level of certainty 

greater than 80% (in agreement with the tests performed). A great part of the errors detected 

were due to the knowledge limit of this prototype or the lack of in situ information. 

Furthermore, the level of certainty grows up to 90% if all of the information required for 

answering the questions is available.  

Finally, if the main features of DH are compared with the capacities of other Expert 

Systems in the field of maintenance of buildings some conclusions arise. First of all, DH is an 

expert system that deals with the diagnosis of structural pathologies in different structural 

elements and materials, whereas most of the similar expert systems focus in one specific 

structural element, eg. concrete bridge decks in Yehia et al. (2008), or one specific pathology, 

eg. cracks in reinforced concrete in Chao and Cheng (1998). However, DH is not yet capable of 

analysing together all the pathologies of a building for a full and auto-complementary diagnosis. 

Secondly, the aim of DH is quite different from the aim of most of the other similar expert 

systems because it is not oriented to achieve a full evaluation of the structural security of a 

building or to obtain a damage level, but to help a little-experienced human inspector in the first 

on field inspections at the detection of the most important and common pathologies in order to 

reach a most efficient resources distribution, assigning the high-experienced inspectors to the 



unusual or most complex pathologies. However, in order to have some simple damage level 

indicator, DH displays a unique warning message if it diagnoses one of the most dangerous 

pathologies.  

Comparing DH with other significant expert systems in the field of building inspection 

it is possible to obtain a better perspective of which are the achievements of the work herein 

presented. For example, MDDS (Masonry Damage Diagnostic System) from Van Balen (1996 

and 2001) is an expert system aimed to carry out in situ inspections of masonry damage due to 

air pollution. Most of the information included in MDDS came from literature what also 

happens with DH but the main difference is how this knowledge is codified. As MDDS only 

uses decision tables and no production rules, the last decision step done in DH (usually a 

production rule) is not so easy in MDDS. This makes difficult to deal with uncertainty even in 

the simpler way used in DH. Comparing MDDS with DH other similarities are observed: both 

used an expert system shell to be developed, are goal oriented so only the necessary questions 

are asked and divide the variables between those that are fundamental to come up with a 

diagnostic and those complementary which are not even used in MDDS while in DH are 

considered in the last questions to give more confidence in the system output. After doing the 

tests with the developed expert system, two main advantages of MDDS are noted comparing 

with DH: the possibility of on-line actualisation and the recommendation of further tests to 

improve the diagnosis. 

Other possible comparison that could be made is between DH and REPCON, which 

was developed by Moodi and Knapton (2003). REPCON is aimed for offering a repairing 

solution for damages in concrete elements. Indeed, its knowledge is structured in 13 decision 

tables and just one of them is dedicated to diagnosis while it is the full purpose of DH which 

also has a greater scope. The main difference between REPCON and other expert systems in the 

field of damage evaluation of buildings that have been studied is that this one is able to evolve 

with the knowledge of the users. To do that it first assign a confidence level to the user based on 

the answers the expert system asked they. Then, if it is proved the user is an expert it is allowed 



to modify the data base. The confidence of the information is also evaluated taking into account 

only the source of it. On the contrary, DH has a static knowledge which offers more confidence 

in the obtained results but less upgrading velocity. However, in this branch of knowledge where 

almost every single pathology has already been studied it does not seem a big deal. Finally, 

whilst DH is clearly oriented to the formation of novel inspectors, REPCON has also this 

possibility but it is not directly aimed for it, resulting in a more complex system that covers a 

deeper analysis than DH in concrete elements.  

Finally, a comparison between DH and the KBES (Knowledge Based Expert System) 

presented by Lu and Simmonds (1997) has been carried out to highlight the possibility of 

incorporating calculus results as an input data to the expert system and, more important, to 

remark the possibility of reaching a global evaluation of the whole building from the evaluation 

of each element. This is a clear advantage in front of DH that shows not enough efficiency at 

gather all the diagnostic to offer a global assessment. On the other hand, the way the uncertainty 

is handled in the KBES presented by Lu and Simmonds (1997) is not the most useful for 

teaching purposes as it requires the user to assign a confidence level to each observed symptom. 

Moreover, the aim of DH differs from the aim of KBES by Lu and Simmonds (1997) because 

the latter makes an assessment of the building but does not identify the causes of the damages. 

To conclude with all these comparisons, one more time (see section 4.4) it is pointed 

out that the way DH deals with uncertainty is simpler than the common way other expert 

systems analysed by the authors (REPCON or KBES by Lu and Simmonds) do because, from 

the point of view of the developers of DH, in a first on field inspection it is not necessary to 

assign a probability percentage to a detected pathology and it is even less necessary to request a 

confidence level on the observation made when the user is being trained. It is also worth 

highlighting the way DH has its knowledge encoded using both production rules and decision 

tables together, which results in a more flexible system, with the variables clearly classified by 

their importance and allows the possibility of handling uncertainty in the way it has been done. 



A sample of DH (Doctor House) can be freely distributed under request. For greater 

detail on the procedure followed and the results obtained, the reader is referred to Bernat (2007). 

 

7. Conclusions 

Nowadays the industry is slowly changing from classical construction towards sustainable 

building. Therefore, most of the recently constructed building will have to be surveyed and/or 

repaired during the following years. The field of construction is clearly marked by an ever 

increasing amount of “illnesses”, but “doctors” are not being trained quickly enough to be able 

to address these cases with a level of quality required by the market. Hence, there is a pressing 

need for a commercially available tool for this area, which would not only increase productivity 

in technical inspections but would also allow for on-going training of the professionals who use 

it, as well as it could easily become a research and data compilation tool on the “health” of 

buildings. 

After DH was developed and evaluated in the first phase, the following conclusions 

were reached: 

• Expert systems were determined to be the best platform on which to develop software 

for decision-making on diagnosis of building pathologies, despite the difficulty in 

establishing internal order that is inherent to these types of programs. 

• The type of damage that is easiest to classify is that affecting concrete structures, as they 

share many similarities, which limits casuistry and the data required for diagnosis. In 

contrast, the most difficult ones are those that affect masonry elements, which are more 

complex and are difficult to encode. Diagnosis of these pathologies requires diverse 

data. This means that the module rules for diagnosing masonry elements are more basic, 

less compact and have more entry objects. 

• Treating uncertainty qualitatively is a feasible approach; it provides good results. 

Indeed, for building pathology diagnosis, this treatment is actually recommended, as it 



provides greater transparency to the user and greater value in terms of critical analysis 

of the presented results. 

• The interface could be easily improved and the knowledge base could be expanded in 

all areas of building pathology. 

The last and most important conclusion is that the development of an expert system for 

diagnosing building pathology is feasible; indeed, creating a new, commercially available tool 

for practical applications is merely a question of providing the needed resources.  

7.1. Future work 

In 6th section some weaknesses of DH have arisen from analysing its results and 

comparing it with other expert systems which means some improvements should be done in the 

future. These future developing directions would include the following activities:  

• to widely promote the use of DH among professional inspectors for detecting the main 

weaknesses and come up with a statistically more significant range of results,  

• to spread the knowledge data base which should grow to cover all possible common 

pathologies in every structural element,  

• to join the actual independent modulus in order to face a global assessment of the 

building instead of the evaluation of each structural element by their own, 

• to include graphical information to assure a better understanding of the damages, 

• to increase the functionality including suggestions about further tests or reparation 

techniques, 

• to open a new development branch to create a professional version aimed at diagnosing 

the most complex pathologies that should include a quantitative approach in handling 

uncertainty,  

• to include a function aimed for recollecting the data of the real uses in order to obtain 

new information about real damages and its frequency, 



• to interconnect DH’s users to create a network that would help further improvements 

and faster upgrading, 

• to add an optional calculus module in the hypothetical professional version in order to 

obtain analytical evidences that could back the obtained solution, 

• to move the expert system on other informatics support allowing it to be executed in 

nowadays smartphones and making it universally available. 

It is thought all this future work is necessary and would be worthy once the technical 

feasibility of this kind of software has been proved. 
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Figure 1. Encoding knowledge 

 

 

Figure 2. A production rule of the developed prototype 

 



 

Figure 3. A pathology diagnostic tree 

 

 

Figure 4. Flowchart of DH 

 



 

Figure 5. Crack to be analysed from side 1 

 

  

Figure 6. Crack to be analysed from side 2 

 



 

Figure 7. A screenshot of DH 
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