40 research outputs found

    Biologically Plausible Cortical Hierarchical-Classifier Circuit Extensions in Spiking Neurons

    Get PDF
    Hierarchical categorization inter-leaved with sequence recognition of incoming stimuli in the mammalian brain is theorized to be performed by circuits composed of the thalamus and the six-layer cortex. Using these circuits, the cortex is thought to learn a ‘brain grammar’ composed of recursive sequences of categories. A thalamo-cortical, hierarchical classification and sequence learning “Core” circuit implemented as a linear matrix simulation and was published by Rodriguez, Whitson & Granger in 2004. In the brain, these functions are implemented by cortical and thalamic circuits composed of recurrently-connected, spiking neurons. The Neural Engineering Framework (NEF) (Eliasmith & Anderson, 2003) allows for the construction of large-scale biologically plausible neural networks. Existing NEF models of the basal-ganglia and the thalamus exist but to the best of our knowledge there does not exist an integrated, spiking-neuron, cortical-thalamic-Core network model. We construct a more biologically-plausible version of the hierarchical-classification function of the Core circuit using leaky-integrate-and-fire neurons which performs progressive visual classification of static image sequences relying on the neural activity levels to trigger the progressive classification of the stimulus. We proceed by implementing a recurrent NEF model of the cortical-thalamic Core circuit and then test the resulting model on the hierarchical categorization of images

    Artificial ontogenesis: a connectionist model of development

    Get PDF
    This thesis suggests that ontogenetic adaptive processes are important for generating intelligent beha- viour. It is thus proposed that such processes, as they occur in nature, need to be modelled and that such a model could be used for generating artificial intelligence, and specifically robotic intelligence. Hence, this thesis focuses on how mechanisms of intelligence are specified.A major problem in robotics is the need to predefine the behaviour to be followed by the robot. This makes design intractable for all but the simplest tasks and results in controllers that are specific to that particular task and are brittle when faced with unforeseen circumstances. These problems can be resolved by providing the robot with the ability to adapt the rules it follows and to autonomously create new rules for controlling behaviour. This solution thus depends on the predefinition of how rules to control behaviour are to be learnt rather than the predefinition of rules for behaviour themselves.Learning new rules for behaviour occurs during the developmental process in biology. Changes in the structure of the cerebral 'cortex underly behavioural and cognitive development throughout infancy and beyond. The uniformity of the neocortex suggests that there is significant computational uniformity across the cortex resulting from uniform mechanisms of development, and holds out the possibility of a general model of development. Development is an interactive process between genetic predefinition and environmental influences. This interactive process is constructive: qualitatively new behaviours are learnt by using simple abilities as a basis for learning more complex ones. The progressive increase in competence, provided by development, may be essential to make tractable the process of acquiring higher -level abilities.While simple behaviours can be triggered by direct sensory cues, more complex behaviours require the use of more abstract representations. There is thus a need to find representations at the correct level of abstraction appropriate to controlling each ability. In addition, finding the correct level of abstrac- tion makes tractable the task of associating sensory representations with motor actions. Hence, finding appropriate representations is important both for learning behaviours and for controlling behaviours. Representations can be found by recording regularities in the world or by discovering re- occurring pat- terns through repeated sensory -motor interactions. By recording regularities within the representations thus formed, more abstract representations can be found. Simple, non -abstract, representations thus provide the basis for learning more complex, abstract, representations.A modular neural network architecture is presented as a basis for a model of development. The pat- tern of activity of the neurons in an individual network constitutes a representation of the input to that network. This representation is formed through a novel, unsupervised, learning algorithm which adjusts the synaptic weights to improve the representation of the input data. Representations are formed by neurons learning to respond to correlated sets of inputs. Neurons thus became feature detectors or pat- tern recognisers. Because the nodes respond to patterns of inputs they encode more abstract features of the input than are explicitly encoded in the input data itself. In this way simple representations provide the basis for learning more complex representations. The algorithm allows both more abstract represent- ations to be formed by associating correlated, coincident, features together, and invariant representations to be formed by associating correlated, sequential, features together.The algorithm robustly learns accurate and stable representations, in a format most appropriate to the structure of the input data received: it can represent both single and multiple input features in both the discrete and continuous domains, using either topologically or non -topologically organised nodes. The output of one neural network is used to provide inputs for other networks. The robustness of the algorithm enables each neural network to be implemented using an identical algorithm. This allows a modular `assembly' of neural networks to be used for learning more complex abilities: the output activations of a network can be used as the input to other networks which can then find representations of more abstract information within the same input data; and, by defining the output activations of neurons in certain networks to have behavioural consequences it is possible to learn sensory -motor associations, to enable sensory representations to be used to control behaviour

    Attractors, memory and perception

    Get PDF
    In this Thesis, the first three introductory chapters are devoted to the review of literature on contextual perception, its neural basis and network modeling of memory. In chapter 4, the first two sections give the definition of our model; and the next two sections, 4.3 and 4.4, report the original work of mine on retrieval properties of different network structures and network dynamics underlying the response to ambiguous patterns, respectively. The reported work in chapter 5 has been done in collaboration with Prof Bharathi Jagadeesh in University of Washington, and is already published in the journal \u201dCerebral Cortex\u201d. In this collaboration, Yan Liu, from the group in Seattle, carried out the recording experiments and I did the data analysis and network simulations. Chapter 6, which represents a network model for \u201dpriming\u201d and \u201dadaptation aftereffect\u201d is done by me. The works reported in 4.3, 4.5, and the whole chapter 6 are in preparation for publication

    Hebbian learning and cognitive control : modeling and empirical studies

    Get PDF

    INVESTIGATIONS ON COGNITIVE COMPUTATION AND COMPUTATIONAL COGNITION

    Get PDF
    This Thesis describes our work at the boundary between Computer Science and Cognitive (Neuro)Science. In particular, (1) we have worked on methodological improvements to clustering-based meta-analysis of neuroimaging data, which is a technique that allows to collectively assess, in a quantitative way, activation peaks from several functional imaging studies, in order to extract the most robust results in the cognitive domain of interest. Hierarchical clustering is often used in this context, yet it is prone to the problem of non-uniqueness of the solution: a different permutation of the same input data might result in a different clustering result. In this Thesis, we propose a new version of hierarchical clustering that solves this problem. We also show the results of a meta-analysis, carried out using this algorithm, aimed at identifying specific cerebral circuits involved in single word reading. Moreover, (2) we describe preliminary work on a new connectionist model of single word reading, named the two-component model because it postulates a cascaded information flow from a more cognitive component that computes a distributed internal representation for the input word, to an articulatory component that translates this code into the corresponding sequence of phonemes. Output production is started when the internal code, which evolves in time, reaches a sufficient degree of clarity; this mechanism has been advanced as a possible explanation for behavioral effects consistently reported in the literature on reading, with a specific focus on the so called serial effects. This model is here discussed in its strength and weaknesses. Finally, (3) we have turned to consider how features that are typical of human cognition can inform the design of improved artificial agents; here, we have focused on modelling concepts inspired by emotion theory. A model of emotional interaction between artificial agents, based on probabilistic finite state automata, is presented: in this model, agents have personalities and attitudes that can change through the course of interaction (e.g. by reinforcement learning) to achieve autonomous adaptation to the interaction partner. Markov chain properties are then applied to derive reliable predictions of the outcome of an interaction. Taken together, these works show how the interplay between Cognitive Science and Computer Science can be fruitful, both for advancing our knowledge of the human brain and for designing more and more intelligent artificial systems

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics
    corecore