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Learning and cognitive control are integral to adaptive behaviour in human 

beings. Learning allows us to constantly explore and understand our environment 

(“what is out there”) as well as to refine our goals (“what to do”). Cognitive control 

allows us to achieve said goals. Here, we briefly discuss learning and cognitive control 

prior to outlining the program of research described in this thesis.  

 

1.1 Learning 

Learning could be defined as the acquisition of information that was not 

available to the learner prior to the act. Consider, for instance, a child learning how to 

write or how to produce a certain pattern of sounds that might eventually be construed 

as music. Although a distinction can be made between the acquisition of knowledge 

(e.g.: the structure and meaning of a word) and the skills associated with having said 

knowledge (e.g.: the motor skills needed to produce the word), in both instances, the 

brain acquires information that then gets applied in different ways.  

Learning is a process that can take many forms. Learning can be through trial-

and-error (Thorndike, 1911); for example, a child learning to walk for the first time. 

This is a rich source of learning, but as its name suggests, it is prone to errors and 

attendant costs. Some such costs could be dangerous for the learner. For example, 

trying out a wild berry without prior knowledge could lead to allergic responses and 

even anaphylactic shock. Learning by observation (Bandura, 1977) is a way to 

circumvent these costs. Humans can and do learn by observing others and this has 

been studied extensively in psychology and the social neurosciences (Bandura, 1989; 

Cross, Kraemer, Hamilton, Kelley & Grafton, 2009). A third and highly influential 

form of learning in humans is instruction-following, or, learning-by-being-told.  

Humans learn in all these ways and sometimes combine different ways of 

learning to accelerate knowledge-acquisition. For instance, learning a form in the 

martial arts often involves observing the instructor, receiving verbal guidance, 

practicing the moves and eventually calibrating them according to feedback.   
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The phenomenon of learning has been studied extensively since Pavlov (1927) 

famously demonstrated classical conditioning in animals. In classical conditioning, a 

neutral stimulus (e.g. a tone) is paired with an unconditioned stimulus (e.g. air puff) 

that elicits an unconditioned response (e.g. eye-blink). Associative learning of the 

neutral stimulus leads to a conditioned response; in the given example eye-blinks are 

produced in response to the tone even in the absence of an air-puff. This demonstrates 

the power of simple associative learning in the brain. While this may seem far 

removed from the types of learning discussed above, a key idea explored in this thesis 

is that different forms of learning are fundamentally associative in nature. Associative 

learning refers to the linking of two occurrences or items by virtue of their being 

related in time. It reflects the brain’s capacity to discern and discover correlations in 

the environment. An elegant and useful form of associative learning in neuronal or 

neural networks is Hebbian learning.  

 

1.1.1 Hebbian learning 

Donald Hebb observed in The Organisation of Behaviour (Hebb, 1949), that 

"The general idea is an old one, that any two cells or systems of cells that are 

repeatedly active at the same time will tend to become 'associated', so that activity in 

one facilitates activity in the other." The idea has come a long way from that pithy 

observation and has found much application in computational accounts of learning in 

the brain. Hebbian learning, in its various incarnations, finds application in 

computational neuroscience (Kempter, Gerstner & van Hemmen, 1999), modelling of 

cognition (Verguts & Notebaert, 2008) and artificial intelligence (Hinton, 1989).  

Formally, Hebbian learning is expressed as a variant of the following general 

equation: 
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where Δwij is the change in synaptic connection strength (weight) between the i
th

 

presynaptic neuron and j
th
 postsynaptic neuron, λ is the learning rate, xi is the 

activation of the presynaptic neuron and yj is the activation of the postsynaptic neuron.  

Hebbian Learning is considered a biologically plausible learning mechanism, 

(Antonov, Antonova, Kandel & Hawkins, 2003; Kandel, Abrams, Bernier, Carew, 

Hawkins & Schwartz, 1983; Kelso, Ganong & Brown, 1986) and is understood to 

involve experience-based changes at synapses between neurons, with these changes 

encoding a change in connection strength. Hebbian learning is arguably the most 

realistic of all available learning rules in the study of neural networks as applied to 

cognition (see O’Reilly, 1998; 2001). In addition to simple associative processes, 

synaptic plasticity is also modulated by other factors, such as temporal aspects of 

spiking behaviour (Abbot & Nelson, 2000). One such factor, spike-timing-dependent-

plasticity, allows for the instantiation of a competitive Hebbian process (Song, Miller 

& Abbot, 2000). Reward-modulated Hebbian learning rules implement temporal-

difference learning (a type of reinforcement learning) (Rao & Sejnowski, 2001). More 

complex learning rules contain a Hebbian core; examples include predictive coding 

(Rao & Ballard, 1999) and the influential Bienenstock-Cooper-Munro rule 

(Bienenstock, Cooper & Munro, 1982; Cooper & Bear, 2012).  

 

1.2 Cognitive control 

Consider the example of shopping at a large supermarket. Shelves get 

rearranged with goods moving from one location to another, periodically. Shoppers 

learn the locations of their preferred brands/items only to have them changed within a 

few weeks. The first time someone encounters such a change, she/he is momentarily 

confused as the goal of reaching a certain object cannot be accomplished. Then she/he 

looks around, learns the new location and picks up the desired item. On subsequent 

trips to the supermarket, the shopper now has to override a previously acquired 

location map to navigate to the items they need correctly. Cognitive control refers to 

the ability to overcome such a prepotent response (for example, “go to the top shelf on 

Aisle 1”) in favour of the appropriate response (for example, “go to the middle shelf 
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on Aisle 4”). This ability is a general one that applies across behaviours and 

circumstances and contributes to adaptive behaviour.   

Recently, cognitive control has enjoyed much attention from psychologists and 

computational modelers alike, on account of its importance to human adaptive 

behaviour. Influential accounts of cognitive control include the conflict-monitoring 

model of Botvinick, Braver, Barch, Carter and Cohen (2001), the adaptation-by-

binding model of Verguts and Notebaert (2008) and the prediction-of-response-

outcome model of Alexander & Brown (2010). 

Despite the generality of the very concept of cognitive control, previous models 

(e.g., Botvinick et al., 2001; Verguts & Notebaert, 2008), have tended to restrict their 

scope to specific circumstances (e.g., Stroop or Simon tasks). Here, we begin from 

simple, powerful computational concepts and develop models of learning and control 

that account for hitherto neglected aspects of cognitive control. We focus on two such 

instances below; instruction following and self-control in decision making.  

 

1.2.1 Instruction following 

Once described as an unsolved mystery by Monsell (1996), the human ability to 

immediately and accurately implement instructions and rules remains an open 

question in spite of recent empirical investigations into its neural correlates (Cole, 

Laurent & Stocco, 2013; Hartstra et al. 2011; Ruge & Wolfensteller, 2010). 

Instructions are verbal or symbolic statements that associate stimuli with responses or 

require behaviours contingent upon specific stimuli/conditions (e.g. “if you hear a 

beep, please press the right arrow key”). From parents teaching rules to their children, 

to manuals for repairing advanced machinery, instructions pervade human life 

thoroughly. The ability to hold, interpret and implement an instruction has seen few 

theoretical attempts to understand it. Virtually every experiment in psychology relies 

on this phenomenon. Every model of human adaptive behaviour and cognitive control 

assumes the existence of a system that utilizes task-demand information (context, 

rules, instructions etc.), yet few models explore this system per se.  
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1.2.2 Self-control 

Second, we are interested in self-control, which is a form of cognitive control 

that is known to have significant implications for long-term success and well-being in 

the life of an individual (Casey et al. 2011). Self-control can manifest in diverse 

situations, such as overcoming a fear-response, overriding the impulse to act when the 

prudent course of action would be to wait and when temptations are overcome in 

favour of goals with more lasting benefits. When presented with a choice between two 

alternatives, differing in terms of reward-value over time (immediate, small, short 

term gains versus larger long-term gains requiring delays), how does the human brain 

resist the temptation of the more immediate reward in order to obtain a better one that 

would become available at a later point in time? And can this be conceptualized as just 

another instance of cognitive control?  

 

1.3 The modeling framework 

In this thesis, we present a unified computational framework applied to the 

phenomena described earlier; instruction following and self-control. In particular, they 

are treated as two instances of cognitive control. This framework conceptualizes 

complementary processing systems /pathways as instances along a computational 

tradeoff.  

Complementary processing systems have been hypothesised since the advent of 

cognitive psychology. Schneider and Schiffrin (1977) posited the existence of 

automatic and controlled processing in the brain. Automatic processes are fast, 

unconscious and inflexible by virtue of their automaticity, whereas controlled 

processing is more deliberate, modulated by attention and more flexible (Kahneman, 

2011). Dual-systems have been proposed to underlie several processes, including 

memory (Reyna, 2012), reasoning (Sloman, 1996) and learning (Ashby and Maddox, 

2005; Ashby & Crossley, 2010).  

Computational tradeoffs are a simple yet powerful way of understanding many 

aspects of adaptive behaviour in organisms. In the case of human behaviour, a very 

well known example is the speed-accuracy tradeoff. Speed (measured in terms of 
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response times) often comes at the expense of accuracy (measured in terms of errors) 

and vice versa, and this has been known to reflect the underlying information 

processing dynamics (Wickelgren, 1977) in the human brain. At its core, this tradeoff 

reduces to a simple consideration – “is there sufficient information to act on?” If the 

individual waits, then they acquire more information, in all likelihood increasing the 

accuracy of the response, while taking longer to respond. Responding immediately or 

relatively quickly might lead to poor decisions due to lack of information. Thus a 

computational tradeoff is born – where two variables (e.g. speed, accuracy) are 

complementary to each other.   

In dual-system models, one system can be thought of as instantiating one aspect 

of the pertinent tradeoff, with the other representing its anti-correlated twin. A very 

interesting application of this idea to learning and behavioural control is the modelling 

framework of Daw, Niv and Dayan (2005). In this framework two systems work 

together as well as competitively for behavioural control. One system computes 

responses by performing a tree-search through possible response alternatives, whereas 

the other exploits cached responses.  Caching can be thought of as using a previously 

learnt shortcut to reach a destination quickly, whereas tree-search would correspond to 

a more laborious estimation of the optimality of different routes. These two systems 

are not purely competitive, because the cached responses could also come from 

responses selected by the tree-search system, upon repeated application and 

reinforcement. This tradeoff between deliberative action and rapid action underlies 

many seemingly opposite aspects of human behaviour, such as decision making 

(Trimmer et al., 2008), ethics (utilitarian judgments versus deontological ones; Fox, 

2013) and learning. It can also be cast in the light of a learning-action continuum (cf. 

also Boureau & Dayan, 2011). The tree-search system learns fast but takes longer to 

respond, whereas the cached system responds quickly and learns slowly. This is the 

computational tradeoff we explore in our general computational framework. We 

derive two models from it; a model of instruction-following and a model of self-

control in decision making. Our models take into account known neural substrates of 

the phenomena of interest. We assume a general competitive Hebbian learning process 

to capture learning in each system. After this description of the general framework, we 

now provide a broad overview of the purpose of the different chapters of the thesis. 
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1.4 Computational model of instruction following 

Recent investigations into the nature of instruction following have yielded 

interesting insights into its neural correlates (Brass et al., 2009; Cole et al., 2010; 

Hartstra et al., 2011; Ruge & Wolfensteller, 2010). A common theme has been the 

centrality of the lateral prefrontal cortex (LPFC) to the acquisition and implementation 

of instructions and rules.  

On the theoretical side of things, Noelle and Cottrell (1996) proposed a 

computational model of instruction following which was arguably the first model to 

tackle this open question. The neuro-computational basis of instruction following has 

received more attention only recently (Biele, Rieskamp, Krugel & Heekeren, 2011; 

Doll et al., 2009).   

Following Doll et al. (2009), we developed a computational model of 

instruction following that accounts for behavioural findings while employing a 

neuroanatomically informed architecture (Ramamoorthy & Verguts, 2012). This 

model consisted of two learning systems; a lateral prefrontal cortical (LPFC) system 

and a striatal system. The former acquired and implemented instructions using fast 

Hebbian learning, whilst the latter learnt from contingencies, also through Hebbian 

learning. The LPFC system was capable of learning fast but responded slowly, 

whereas the striatal system learnt relatively slowly but responded more rapidly. The 

simulation studies exploring the usefulness of this model are reported in Chapter 2.  

 

1.5 Computational model of self-control 

Given its importance to everyday life as well as long-term well-being, self-

control has been studied extensively from multiple vantage points (Baumeister, 1998; 

Casey et al., 2011; de Ridder et al., 2012, Moffitt et al., 2011; Muraven & Baumeister, 

2000; Tangney, Baumeister, & Boone, 2004). As far as the neurobiology of self-

control is concerned, it is tightly associated with processes underlying value 

computation (Rangel and Hare, 2010). Value computation occurs in different regions 
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such as the anterior cingulate cortex (ACC) (Silvetti, Seurinck & Verguts, 2012), 

ventral striatum (Kable & Glimcher, 2007; Knutson, Taylor, Kaufman, Peterson & 

Glover, 2005), medial prefrontal cortex (Hare et al., 2009; 2011; Rangel & Hare, 

2010) and the orbitofrontal cortex (Sescousse, Redoute & Dreher, 2010). The nature of 

the value term being computed may differ, with some regions, such as the ACC being 

associated with reward predictions (Silvetti et al., 2012) and others, such as the ventro-

medial prefrontal cortex (vmPFC), being associated with overall goal-value 

computation (Hare et al., 2009). Here we focus on evaluation of different stimuli in the 

process of decision-making. In this context, the vmPFC has been hypothesised to 

perform the role of a comparator (Basten, Biele, Heekeren & Fiebach, 2010; 

Wunderlich, Dayan & Dolan, 2012) into which value inputs from other regions flow. 

Therefore, it can be reasoned that self-control processes must influence the 

computations in the vmPFC. Empirically, there appears to be a consensus on the fact 

that the LPFC plays an influential role in self-control (Figner et al. 2010; Hare et al., 

2009; 2011). Hare et al (2009, 2011) demonstrate that self-control in dietary choice is 

characterized by increased activation in the LPFC as well as increased functional 

coupling between the LPFC and the vmPFC.  

The application of self-control can be seen as deliberative processing 

corresponding to a fast-learning, slow-acting system, while the lack of control would 

correspond to the output of a system that responds to, immediacy. We constructed a 

general model of self-control which included a lateral prefrontal LPFC pathway and a 

ventral-striatal pathway (recruiting the nucleus accumbens specifically) converging 

upon the ventro-medial prefrontal cortex (vmPFC), which is believed to be a value 

computational terminus as noted above. Self-control was conceptualized as the 

preponderance of LPFC inputs in the computation of the overall value of a stimulus, 

over the ones from the one computing immediate reward value. We augmented the 

model to include representations of delay, to explore inter-temporal decision making. 

Temporal information was represented using the widely-used tapped delay line 

approach (Freeman & Nicholson, 1970; Medina & Mauk, 2000). This model 

performed decision making by integrating magnitude and delay across model 

iterations to compute the goal value in the vmPFC region. The corresponding 

simulation studies and their results are reported in Chapter 3.  
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1.6 Testing the theory 

Given their common point of origin and the fact that both instruction-following 

and self-control are reliably ascribed to processes in the lateral-prefrontal cortex 

(LPFC) in empirical studies as well as our models, we predicted that these two 

phenomena will be related to each other. More specifically, we hypothesised that a 

high degree of instruction-following would predict a high degree of self-control. We 

tested this hypothesis using behavioural experiments designed to elicit instruction-

following behaviour as well as self-control. The findings of this study are reported in 

chapter 4. Finally, Chapter 5 presents the larger picture emerging from our use of 

computational tradeoffs to study instruction-following and self-control, questions 

raised by the research presented here, and directions for future research.        

 

 



 





 

CHAPTER 2 

 
WORD AND DEED: A COMPUTATIONAL MODEL OF 

INSTRUCTION FOLLOWING 

Brain Research (2012) 
1
 

 

 

Instructions are an inextricable, yet poorly understood aspect of modern human 

life. Here we propose that instruction implementation and following can be 

understood as fast Hebbian learning in prefrontal cortex, which trains slower 

pathways (e.g., cortical-basal ganglia pathways). We present a computational model 

of instruction following that is used to simulate key behavioural and neuroimaging 

data on instruction following. We discuss the relationship between our model and 

other models of instruction following, the predictions derived from it, and directions 

for future investigation.  

 

 

 

 

1. Introduction 

                                                      

1
 This paper was co-authored by Tom Verguts. 
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There are many types of learning. Human beings can learn through trial-and-

error by interacting with the environment (Thorndike, 1911). This, however, is costly, 

time-consuming, and dangerous. Consider for example learning the consequences of 

touching fire or eating a strange berry, by trying it out.  Learning by observation can 

circumvent the costs associated with trial-and-error (Bandura, 1977). With the advent 

of language, yet a third option became available. Verbal information sharing promotes 

group cohesion while facilitating learning at reduced temporal cost. Understandably, 

learning from instructions (often verbal) became an integral part of the learning 

repertoire of the human brain.  

From to do lists to software manuals, instructions influence the lives of modern 

humans on multiple levels. Yet, how they are understood and implemented by the 

brain remains a mystery (Monsell, 1996). On the empirical side, a few recent studies 

have explored the effects of instructions on performance. A few themes emerge when 

the literature is surveyed. First, instructions can be rapidly and accurately implemented 

without explicit training (Ruge and Wolfensteller, 2010). Second, even verbally 

instructed mappings that have never been applied, can interfere with well-applied 

mappings if the two sets of mappings share stimulus dimensions (Cohen-Kdoshai & 

Meiran, 2009; De Houwer, Beckers, Vandorpe & Custers, 2005; Waszak, Wenke & 

Brass, 2008). A few recent studies have also explored the neural correlates of 

instruction following (Brass, Wenke, Spengler & Waszak, 2009; Cole, Bagic, Kass, & 

Schneider, 2010; Hartstra, Kühn, Verguts, & Brass, 2011; Ruge and Wolfensteller, 

2010). Third, dissociations may arise between instructions and their implementation: 

In particular, patients exhibiting goal neglect can verbally report the required 

instructions without being able to implement them (Duncan et al., 1996; Luria, 1966). 

On the theoretical front, instructions are crucial yet unexplained components in 

theories of cognition. For example, models of cognitive control typically incorporate 

task representations which implement the demands imposed by the task at hand 

(Botvinick, Braver, Barch, Carter & Cohen, 2001; Cohen, Dunbar & McClelland, 

1990; Verguts & Notebaert, 2008). However, investigations of instruction following 

itself are less common. One exception is the computational modeling work by Noelle 

and Cottrell (1996). More recently, Helie and Ashby (2009, 2010) proposed a 
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computational account of learning that begins with explicit rules and ends with 

procedural knowledge. However, they do not explore the acquisition of the rule itself. 

Doll, Jacobs, Sanfey, and Frank (2009) recently proposed a model of instruction 

control of reinforcement learning. In their model prefrontal cortex (PFC) projects 

directly to motor cortex and the basal ganglia (BG) to select responses consistent with 

the instructions.   

 Here, we follow up on the Doll et al. (2009) approach and consider 

instruction learning and implementation as instantiations of Hebbian learning. For that 

purpose, we combine two complementary models of learning and automatisation, 

namely SPEED and COVIS. In SPEED (Ashby, Ennis & Spiering, 2007), learning 

occurs initially in the basal ganglia and is eventually transferred to cortex with an 

attendant increase in automaticity. In the COVIS framework (Ashby et al., 1998, 

2011), performance is governed by two systems – a rule-based one (dependent on 

prefrontal cortex) and a procedural one (dependent on BG). We propose that a more 

general model that combines the main features of both SPEED and COVIS is suited to 

explain various forms of learning, including instruction following. In this framework, 

when instructions are provided, the prefrontal cortex learns them quickly, but executes 

them slowly (Boureau & Dayan, 2010; Daw et al., 2002). Indeed, novel learning 

typically activates prefrontal cortex (e.g., Miller & Cohen, 2001; Toni et al., 2001). 

Upon repeated application, the BG (which learn more slowly but execute more 

quickly) pick up the appropriate stimulus-response mapping by Hebbian learning, 

where the appropriate response is provided by the prefrontal route. Finally, after 

extensive application another cortical pathway would take over (hyperdirect pathway; 

Ashby et al., 2007). 

 With this general framework, we describe and test a model that focuses 

on the acquisition and transfer of instructed mappings. In the next section we describe 

the model and discuss its biological plausibility. This is followed by the simulation 

studies. Theoretical considerations and empirical predictions are elaborated in the 

General Discussion. 

 

1.1. The model 
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1.1.1 Architecture 

The first route in the model is indirect (left part of Figure 1); here, new 

instructions (such as “if you see a hexagon, press the left arrow key” and “if you see a 

square, press the right arrow key”) can be rapidly learnt. The second one is the direct 

route (right part of Figure 1); it gradually picks up the regularities implemented by the 

indirect route. 

 

 

 

Figure 1.  A schematic representation of the model. Weights from one layer to 

another are represented by an arrow connecting the two layers. Plastic weights are 

represented by dotted arrows.  PFC = Prefrontal Cortex. TL = Temporal Lobe. 
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In the indirect route, the instruction is represented in terms of its  

components. One component contains stimulus representations (e.g., “hexagon”) and 

the other response representations (e.g., “press right key”). These two components are 

typically (but not necessarily) verbal, encoded by two distinct layers (see Figure 1) 

and related to sensory and motor areas via long-term memory (temporal lobe (TL) and 

premotor cortex, respectively; see Figure 1). By premotor cortex we refer to the 

human analogue of the dorsal premotor cortex (PMd) in monkeys, which is a region 

associated with abstract motor planning (Nakayama, 2008). 

In the case of verbal instructions, stimuli and responses are connected to their 

verbal equivalents (e.g., “hexagon”, “left key”). It is reasonable to assume that a tight 

association between an object or attribute and its verbal analogue comes to be encoded 

during development (Fischer & Zwaan, 2008).  Also, action verbs evoke activation of 

motor representations (Fischer & Zwaan, 2008; Hauk, Shtyrov & Pulvermüller, 2008). 

The two components of the indirect route are linked together by PFC; in particular, 

PFC subregion Inferior Frontal Junction (IFJ) appears to be a candidate for this role 

given that it is active in circumstances that require task-set switching or the loading of 

novel task sets (Derrfuss, Brass, von Cramon, Lohmann, & Amunts, 2009; Derrfuss, 

Brass, Neumann, & von Cramon, 2005), both of which require flexible verbal 

mapping. In the model, associating stimulus and response representations is achieved 

by fast Hebbian learning during the instruction phase. Neurally, the associative 

striatum is probably also part of the indirect path (Ashby et al., 2010), but we don’t 

include it here for simplicity. 

The direct route includes, in addition to the stimulus and response areas, the 

basal ganglia. The circuitry of the cortico-striato-pallido-thalamo-cortical pathway 

(Mink, 1996) is approximated by a one-layer excitatory path. In particular, fronto-

striatal loops are not included, and the direct path can be considered a simplified 

version of subcortical control of action selection (e.g., Ashby, Turner, & Horvitz, 

2010; Dominey, 2005; Frank, 2005, 2006). The direct route gradually acquires 

stimulus-response associations by Hebbian learning, where the correct stimulus-

response pairs are provided by the indirect route. The hyperdirect cortical pathway 

mentioned in the introduction (e.g., Ashby et al., 2007) is not currently implemented.   
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It may be argued that the characterization of the indirect route as one having 

more intermediate steps than the direct one is contrary to the actual neural 

organization, where the BG has more intermediate synapses (e.g., Mink, 1996). 

However, the layout is consistent with the generally acknowledged finding that the 

PFC route is a slow processing route (e.g., Miller & Cohen, 2001). More generally, the 

number of synapses between two processing layers may be an imperfect measure of 

processing speed. Nevertheless, we report simulation studies that explore the influence 

of varying the respective path lengths in the two routes. 

 

1.1.2 Dynamics 

Information flows along the directions indicated by arrows in Figure 1. In each 

trial, activation in the stimulus layer is clamped, i.e., set at a specific value as opposed 

to allowing the layer to reach the activation level over time. Stimuli are represented by 

localist coding in a vector with the element corresponding to the stimulus set to 1 and 

all other elements set to zero. Activation of other model units is described by standard 

difference equations of the form (activation of input and output units denoted x and y, 

respectively): 

       

        

                             (1) 

 

where yj(t) is the activation of the j
th
 output unit at time t in the trial, xiwij is the net 

input from unit i to unit j, and τ is a cascade rate parameter (set at 0.9). A response is 

chosen if one of the response units reaches a threshold of 1. Reaction times (RTs) are 

calculated by counting the number of activation cycles (within a trial) needed to reach 

this threshold. 

We now describe how learning occurs in the model. Initially, all weights are 

random values sampled from a uniform distribution between 0 and 0.01. After 

response, a competitive process selects the most active unit in the PFC and the most 
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active unit in BG. Typically, the winner’s activation in a competitive model is a 

function of its original activation before the competition (e.g., Grossberg, 1973). As a 

simplified implementation of this process, we scaled the winner’s activation (stimulus 

j) after competition by                             

with Nrep (j) the repetition number of stimulus j in the trial at hand. In the instruction 

phase, learning occurs only in the connections between stimulus representations, PFC 

and response representations. In the test phase, learning occurs only in the BG. In both 

layers, learning follows the rule given below from trial n – 1 to n: 

 

                                  (2)    

where d is a weight decay parameter, set to 0.1. The term dwij(n - 1) is subtracted from 

the input xi to constrain the learning process in the direction of the input (as is typical 

in a Hebbian / competitive learning algorithm, e.g., Fritzke, 1997). 

 The fact that only the PFC learned in the instruction phase, and the BG 

only in the test phase, implemented our assumption of fast learning in PFC. In their 

respective phases (instruction and test, for PFC and BG respectively), the learning rate 

was  = 9 for each layer. In the simulations, we also explore the case when PFC learns 

in both instruction and test phases. 

 

1.2 Phenomena simulated 

1.2.1 From instructed to pragmatic representations (Ruge & 

Wolfensteller, 2010) 

Instructions can be implemented with a high degree of accuracy on the very first trial 

(e.g., Cohen-Kdoshai et al., 2009; Cole et al., 2010). With increasing practice, the 

mapping loses novelty and becomes automatic as reflected, for example, in RT. Ruge 

and Wolfensteller (2010) studied the transition from instructed to implemented 

stimulus-response mappings using fMRI. They used a simple stimulus-response 

mapping task to identify the neural correlates of mappings that had been instructed and 

subsequently applied. Each stimulus was mapped onto one of two possible responses 
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(press left or right key). Four stimuli (two for each key) and their mappings were first 

instructed (instruction phase). This was followed by 32 practice trials in which each 

stimulus appeared 8 times in a randomized sequence (test phase). This procedure was 

repeated over 20 blocks with new stimuli in each block to obtain accurate fMRI data. 

Within each block, responses became faster with repetition. Error rates also decreased 

with repetition. At the neural level, activation levels across repetitions decreased in the 

left IFJ and increased in the BG (in particular, the caudate nucleus). The reported 

changes in other areas (e.g., decrease in left posterior intraparietal sulcus) are beyond 

the scope of the current study and hence not discussed. 

 

1.2.2 Crosstalk of instructed and applied arbitrary S-R mappings (Waszak 

et al., 2008) 

Waszak et al. (2008) investigated the effect of merely instructed and applied 

visuomotor mappings. They used stimuli varying on two dimensions (colour and 

shape) and subjects were presented with colour-task or shape-task trials intermixed. 

The tasks involved applying arbitrary mappings from colours and shapes to left and 

right responses (for instance, “if circle, then press left arrow key” or “if brown object, 

then press right arrow key”; see Figure 6). A third of the stimulus-response 

associations in each task were merely instructed and the other two-thirds were applied 

(i.e., trained). The irrelevant stimulus dimension allowed the stimulus in any given 

trial to be categorized as univalent, bivalent, or instructed. In the case of univalent 

stimuli, only the relevant stimulus dimension had a valid response mapping; for 

example, the stimulus would be a shape in a particular colour with only the shape 

being associated with a response. For bivalent stimuli, both relevant and irrelevant 

dimensions had valid response mappings. The instructed stimuli were similar to the 

bivalent ones, except that the irrelevant stimulus dimension and its mapping were 

merely instructed and had never been applied. 

 The experiment consisted of an instruction phase, followed by five practice 

blocks of 96 trials each. The fourth and fifth practice blocks were preceded by two test 

blocks (each lasting for 36 trials) in which the instructed stimuli were presented as 
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valid targets. This rendered these stimuli effectively bivalent for the final two practice 

blocks.   

 Waszak et al. (2008) hypothesized that the presentation of a stimulus with two 

dimensions having valid response mappings (with one of the two mappings being 

valid for a second task) would lead to an interference effect. Interference effect refers 

to the delay in responding to bivalent or instructed stimuli (congruent or incongruent) 

relative to univalent stimuli. In addition, the RT differences between incongruent and 

congruent stimuli for the bivalent and instructed types were also computed 

(congruency effect). 

 Waszak et al. (2008) found an interference effect for both bivalent and 

instructed stimuli, but it was larger for bivalent stimuli. Moreover, the interference 

effect was larger for the practice blocks after the test blocks than before the test blocks 

(see Figure 7a). They also found a congruency effect for bivalent stimuli across all 

practice blocks. In contrast, the instructed stimuli did not show a congruency effect in 

the first three practice blocks but an effect was observed in the final two practice 

blocks (see Figure 7c). 

 

1.2.3 Goal neglect 

Goal neglect refers to being able to describe an instruction while not being able to 

implement it. First reported in frontal lobe patients (Luria, 1966), Duncan, Emslie and 

Williams (1996) demonstrated that goal neglect can also be observed in normal 

subjects if instructions are sufficiently complex. In a recent study, Duncan, Parr, 

Woolgar, Thompson, Bright, Cox, et al. (2008) demonstrated that it is specifically the 

total number of elements to be remembered in the task which determines the extent of 

goal neglect and its correlation with general intelligence. We hypothesize that the 

modeling framework presented here may yield insights into goal neglect. Currently, 

we apply an adapted version of the Ruge design as a first step toward modeling goal 

neglect. 
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2. Experimental Procedure  

2.1.1 Simulation study 1.1: Ruge and Wolfensteller (2010) 

There were four units in the stimulus layer, corresponding to the four stimuli. Left and 

right responses were similarly encoded by two units in the response layer. The same 

coding scheme was applied to the (verbal) stimulus representations and (verbal) 

response representations (indirect route), with the same number of units in the 

respective layers. The PFC and BG layers had 200 units each. 

The design of Ruge and Wolfensteller (2010) was replicated exactly, with 32 trials in 

the test phase. During the instruction phase, the stimuli and responses were presented 

as activation patterns in the stimulus representation and response representation layers 

(indirect route, left part of Figure 1) and the association was acquired by the PFC 

(Equation (2)). During the test phase, activation and learning obeyed Equations (1) 

and (2), respectively. PFC and BG activation vectors were collected before response 

competition for analysis. Mean RTs and mean error percentages were calculated 

across the 50 simulated subjects (as in Ruge and Wolfensteller, 2010). 

 

2.1.2 Simulation study 1.2:  Continuous learning in the PFC 

Model parameters and settings were the same as in study 1.1, except that PFC was 

allowed to learn throughout the experiment. Behavioural and activation data were 

collected and analysed as above. 

 

2.1.3 Simulation study 1.3: Model with equidistant paths from stimulus to 

response in both routes 

The intermediate layers in the indirect pathway (temporal lobe and premotor cortex in 

the original model) and the verbal representations (verbal stimulus representation and 

response representation) were removed. As a consequence, the PFC and BG paths 

were rendered equidistant. Otherwise, model parameters were the same as in study 

1.1. Behavioural and activation data were collected and analysed as above. 
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2.1.4 Simulation study 1.4: Model with equidistant paths from stimulus to 

response in both routes and PFC learning throughout the simulation 

The architecture used in study 1.3 was used with one modification, namely the 

continuation of learning in the PFC throughout the simulation (as in study 1.2). 

Model parameters were the same as in study 1.1. Behavioural and activation data were 

collected and analysed as above. 

 

2.2 Simulation study 2: Waszak et al. (2008) 

Model parameters were the same as in Simulation 1.1. Attention to the relevant 

stimulus dimension was encoded by a gating parameter (set at 0.6) by which the 

activation of the relevant stimulus dimension was multiplied (Verguts & Notebaert, 

2008). The activation of the irrelevant stimulus dimension was scaled by 0.4. Colour 

and shape stimuli were encoded using two vectors of equal length (six elements each). 

There were two stimulus layers (6 nodes/layer), each providing input to the PFC and 

BG layers. The PFC and BG layers were divided into task-relevant sub-populations (S 

and C, for shapes and colours, respectively). Both PFC sub-populations and BG sub-

populations had 1000 units each. Responses were the same across tasks and were 

encoded using two units. 

 The model was instructed in two consecutive phases (one for the color task, one 

for the shape task), before the start of the experiment, similar to Simulation 1. After 

the instructions, the stimuli (composed of two dimensions as described above) were 

presented. The model was given exactly the same task as the subjects in Waszak et al. 

(2008). It was exposed to 5 practice blocks of 96 trials each in which univalent, 

bivalent and instructed stimuli were randomized. The 4
th
 and 5

th
 practice blocks were 

preceded by two test blocks of 36 trials each (following the design of Waszak et al., 

2008). RTs were calculated as before. Stimulus-specific RTs were averaged across the 

different subjects (simulations). 
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2.3 Simulation study 3: Simulating goal neglect 

For a population of 100 models, the Ruge and Wolfensteller (2010) paradigm was 

adapted to include a verbal reporting task immediately following each of the 32 S-R 

trials. In the verbal reporting task, a stimulus probe was presented (the same stimulus 

presented for the S-R task) and the activation of the (verbal) response representation 

layer (on the left-hand side of Figure 1) was read out directly, corresponding to the 

production of a verbal response by the subject. 

To simulate the rapid presentation of stimuli as in Duncan et al (2008) , the time to 

respond in the S-R task was limited (temporal deadline, tmax = 20, 40, or 60 cycles), 

and the time to respond to the verbal task held constant (temporal deadline 200 

cycles). To implement the hypothesis that goal neglect is a function of the integrity of 

prefrontal learning, the learning rate of the PFC was set at 3 different levels (λPFC = 1, 

5 and 9).  The learning rate of the BG was kept at its original value of 9; however, 

similar results as those reported here were obtained when we varied this learning rate 

too. Goal neglect was quantified as the discrepancy between the mean percentage 

errors on the S-R and verbal task. 

 

3. Results 

3.1 From instructed to pragmatic representations 

3.1.1 Simulation study 1.1 

The major behavioral findings of Ruge and Wolfensteller (2010) were replicated. 

First, mean error percentage was zero (in the empirical study, it was very low and 

decreased across repetitions). Next, RTs decreased as a function of stimulus repetition 

(empirical and simulated data in Figure 2a and 2b, respectively). 

In the empirical data, activation decreased in PFC across stimulus repetition (Figure 

2c). The same is observed in the model (Figure 2d).  Also the activation increase 

across repetitions in basal ganglia (caudate nucleus in Ruge & Wolfensteller, 2010; 

Figure 2e) was obtained in the model (Figure 2f). The reason why activation decreased 

in the PFC across trials is because the basal ganglia become faster with additional 
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learning (i.e., across trials), leaving less opportunity for the PFC to be highly active 

before response threshold is reached.  

 

 

Figure 2: Simulation 1.1. 2a, RT curve as a function of stimulus repetition (Ruge & 

Wolfensteller, 2010). 2b, Model RT curve. Data points represent mean RT averaged 

across four stimuli and 16 subjects. Error bars indicate 95% confidence intervals. 2c, 

BOLD estimates for left-IFJ from Ruge and Wolfensteller (2009). 2d, activation levels 

in model PFC across repetitions. 2e, BOLD estimates for caudate nucleus from Ruge 

and Wolfensteller. 2f, activation levels in model basal ganglia across repetitions. 

 

3.1.2 Simulation study 1.2: Continuous learning in the PFC 

In the current simulation, learning continued throughout the task in PFC.  Of the 50 

simulations, 1 was excluded due to a large number of errors (more than 25%).The 

analyses were performed with the remaining 49 simulations.  The major behavioral 
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findings of Ruge and Wolfensteller (2010) were replicated. First, mean error 

percentage was zero (in the empirical study, it was low and decreased across 

repetitions). RTs decreased as a function of stimulus repetition (empirical and 

simulated data in Figure 3a and 3b, respectively). 

 

 

 

Figure 3. Simulation 1.2.  3a, RT curve as a function of stimulus repetition (Ruge & 

Wolfensteller, 2010). 3b, Model RT curve. Data points represent mean RT averaged 

across four stimuli and 16 subjects. Error bars indicate 95% confidence intervals. 3c, 

BOLD estimates for left-IFJ from Ruge and Wolfensteller (2009). 3d, activation levels 

in model PFC across repetitions. 3e, BOLD estimates for caudate nucleus from Ruge 

and Wolfensteller. 3f, activation levels in model basal ganglia across repetitions. 

 

Empirically, activation decreased in PFC across stimulus repetition (Figure 3c). The 

same trend appears in the model (Figure 3d). Also the activation increase across 
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repetitions in BG (caudate nucleus in Ruge & Wolfensteller, 2010; Figure 3e) was 

obtained in the model (Figure 3f). 

 

3.1.3 Simulation study 1.3: Model with equidistant paths from stimulus to 

response in both routes 

In this study the synapses from stimulus to response layers through both routes were 

made equal in number so that the two routes were of equal length.  The major 

behavioral findings of Ruge and Wolfensteller (2010) were replicated. First, mean 

error percentage was very low and remained below 0.01% (zero errors in the 

simulation). RTs decreased as a function of stimulus repetition (empirical and 

simulated data in Figure 4a and 4b, respectively). 

As before, activation decreased in PFC across stimulus repetition (data, Figure 4c; 

model, Figure 4d). Again, as BG learn more, there is less opportunity for PFC to be as 

active as in the initial phase of responding, even though the paths are equidistant. 

Activation increases across repetitions in BG (caudate nucleus in Ruge & 

Wolfensteller, 2010, Figure 4e; model, Figure 4f).  

Although the BG becomes increasingly active with learning, a complete switch from 

PFC to BG does not occur in this case (see Figure 4). For a complete switch to occur, 

it is required that PFC learns earlier than BG, but also that PFC acts slower than BG. 

This is not the case with equidistant paths, in which case the two paths act at 

approximately the same speed when both are well-trained.   
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Figure 4: Simulation 1.3. 4a, RT curve as a function of stimulus repetition (Ruge & 

Wolfensteller, 2010). 4b, Model RT curve. Data points represent mean RT averaged 

across four stimuli and 16 subjects. Error bars indicate 95% confidence intervals. 4c, 

BOLD estimates for left-IFJ from Ruge and Wolfensteller (2009). 4d, activation levels 

in model PFC across repetitions. 4e, BOLD estimates for caudate nucleus from Ruge 

and Wolfensteller. 4f, activation levels in model basal ganglia across repetitions. 
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3.1.4 Simulation study 1.4: Model with equidistant paths from stimulus to 

response in both routes, with PFC learning throughout the simulation 

Of the 50 simulations, 2 were excluded due to a large number of errors (25%). The 

analyses were performed with the remaining 48 simulations. Results were very similar 

as those obtained for study 1.3. Again, if the two paths act at approximately the same 

speed, there is no complete switch from PFC to BG.  

 

 

Figure 5: Simulation 1.4. 5a, RT curve as a function of stimulus repetition (Ruge & 

Wolfensteller, 2010). 5b, Model RT curve. Data points represent mean RT averaged 
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across four stimuli and 16 subjects. Error bars indicate 95% confidence intervals. 5c, 

BOLD estimates for left-IFJ from Ruge and Wolfensteller (2009). 5d, activation levels 

in model PFC across repetitions. 5e, BOLD estimates for caudate nucleus from Ruge 

and Wolfensteller. 5f, activation levels in model BG across repetitions. 

 

 

Figure 6 A representation of the task used in Waszak et al (2008), based on their 

original illustration. 
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3.2 Crosstalk of instructed and applied mappings 

 

Of the 50 simulated subjects, 6 were excluded due to less than 90% accuracy. The 

simulation results were very similar to those of the original study (Waszak et al., 

2008). First, there was an interference effect for both bivalent and instructed stimuli, 

which increased with practice (Figure 7b). Second, there was a congruency effect for 

bivalent stimuli which remained approximately constant after practice. In contrast, for 

the instructed stimuli, the congruency effect was initially very small for instructed 

stimuli (Figure 7d) but became larger after practice. One discrepancy is that the 

Waszak et al. study did not obtain a congruency effect for instructed stimuli whereas 

the model did. However, the model is consistent with other empirical studies that did 

find a congruence effect for instructed stimuli (Cohen-Kdoshai & Meiran, 2009; De 

Houwer et al., 2005). 
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Figure 7: Simulation 2. Interference effect before test blocks (BT) and after test 

blocks (AT) in data (7a) and model (7b). Congruency effect (BT and AT) in data (7c) 

and model (7d) 

3.3 Simulating Goal Neglect 

Here, we applied the model to the important finding that instruction understanding and 

following can be dissociated (i.e., goal neglect, Luria, 1966). For this purpose, the 

Ruge et al. (2010) paradigm was extended to include a verbal reporting task 

immediately after each S-R trial. We chose this approach, rather than emulating the 

Duncan et al. design in great detail, because it allowed us to simulate the core 

phenomenon of goal neglect in the simplest way possible. In line with typical 

behavioral paradigms, different response deadlines were used for the two tasks (S-R 
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and verbal report), with the reporting task deadline much less strict. Percentage error 

in the S-R task relative to the verbal task was used as a measure of goal neglect (see 

Duncan et al., 2008) and evaluated across different PFC learning rates (λPFC ) and S-

R task response deadlines (tmax). 

         

 

 

 

 

 

 

 

 

Figure 8: Simulation 3. Goal neglect. 3  3 plot of mean percentage error in the S-R 

and verbal tasks across prefrontal learning rates (λPFC, different columns) and S-R 

task response deadlines (tmax, different rows).  

A very low PFC learning rate (λPFC = 1) in combination with a strict S-R task 

response deadline (tmax = 20) resulted in a greater percentage of errors on the S-R 

task (30%), with respect to the verbal task (2.3%) (similar to goal neglect; Figure 8a). 

This was ameliorated by increasing the S-R task response deadline tmax from 20 to 40 

(resulting in error rates of 8.3% and 1% for the S-R and verbal tasks respectively) and 
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from 40 to 60 (resulting in errors rates of 0.5% and .3%, respectively) cycles (Figure 

8d, 8g). In contrast, with moderately high PFC learning rates (λPFC =5, Figure 8b, 8e, 

8h), or with high PFC learning rate (λPFC = 9, Figure 8c, 8f, 8i) there was overall low 

error rate (and the error rates were similar for the two tasks). 

 

4. General Discussion 

We presented a unified framework for instruction implementation, with Hebbian 

learning at its core. We derived a dual-route model from this framework and applied it 

to instruction following. The model was tested by simulating two recent experiments 

on instructions. The first simulation showed that sufficient practice can cause a switch 

from one route to another without need for a homunculus. However, a complete switch 

only occurred if the faster-learning path also acted more slowly. The second 

simulation study showed that merely instructed mappings can influence applied 

mappings (interference and congruency effects), but that they increase with practice. 

Finally, we proposed that goal neglect can be interpreted in this framework as 

emerging from a combination of an overall low learning rate (perhaps due to brain 

damage or dual tasking) and a strict response deadline for the S-R task. Consistent 

with this view, Czernochowski (2011) report evidence for impaired rule 

representations in older adults following short preparatory intervals but not long ones.  

 Learning in the BG was implemented as Hebbian learning. In general, though, 

Hebbian learning may be modulated by reward. In particular, if Hebbian learning is 

coincident with reward (phasic dopamine), then the Hebbian learning process is more 

efficient (e.g., Reynolds et al., 2001). However, given the very high accuracy rates in 

the experimental paradigms that we modeled, and given that explicit reward is never 

given, trial-to-trial variability in reward (phasic dopamine) is probably small. Hence, 

these influences are captured by the learning rate.  

The model also yields a number of predictions for future empirical work. One 

prediction issuing from the model is that the connectivity between instruction-related 

areas should change across repeated implementation of the instruction. This prediction 

will be tested in future empirical work. Another prediction is that disruption to the 
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PFC will abolish influences of merely instructed stimuli in the Waszak et al. 

paradigm. This can be tested using rTMS or working memory loading. In addition, 

when these merely instructed stimuli become practiced, the disrupting effects should 

disappear.  Finally, Simulation 1 suggests that the relative speeds of the PFC and BG 

routes determine the extent to which the processing switches from the PFC route to the 

BG one. Although this is difficult to test in humans, it may be testable using single-

unit recordings. 

In the remainder, we first discuss the relation between our approach and earlier 

models. Finally, we place the model in the broader framework of dual-route 

architectures and discuss the related but ill-understood topic of suggestions. 

 

4.1 Models of instruction following 

Noelle and Cottrell (1996) described a connectionist model of instruction following 

based on the simple recurrent network architecture (Elman, 1990; St-John & 

McClelland, 1990). Their approach to instruction following was activation-based, in 

the sense that a novel instruction was encoded as an activation pattern (Botvinick & 

Plaut, 2006). For instance, an instruction such as “if you see a hexagon, press the left 

key” would be encoded as a pattern of activation without changing the connection 

weights in the system.  To be able to do this for any novel (untrained) instruction, 

without any learning (weight changes) during the presentation of these instructions, 

their model needed a long training phase with error backpropagation in which it 

acquired a set of instruction+stimulus-to-response mappings that could then be 

generalized to novel mappings of this type. Learning in our model is, by contrast, 

Hebbian, weight-based (cf. Botvinick & Plaut, 2006) and it occurred in the instruction 

phase (in the prefrontal connections) as well as in the practice phase (in the direct 

route). 

In one sense, the long training phase of the Noelle et al. model corresponds to our 

hypothesized developmental acquisition of verbal and pragmatic associations. There 

are important differences, however. First, the Noelle et al. training regime used 

backpropagation, whereas ours can emerge from the simpler and more biologically 
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plausible Hebbian learning. Second, the associative structure emerging from the 

developmental process in our model can be more broadly recruited by other parts of 

the cognitive system, because it simply consists of associations between 

corresponding concepts (e.g., color red and word red). 

As mentioned in the Introduction, Doll et al. (2009) also presented a model of 

instructional control based on the well-known model of reinforcement learning in BG 

advanced by Frank (2005, 2006), which is implemented in a simplified form as the 

direct route in our model. The Doll et al. model also employed fast learning in PFC to 

implement instructions. It was applied to a probabilistic selection task in which a third 

of the instructions were incorrect with regard to the reward probabilities associated 

with a particular pair of stimuli. Their model was applied to a case of conflict between 

instructions and contingencies. While it was not inconsistent with our own approach, 

we think that the current model adds several features of interest, in particular, a 

demonstration of how the Hebbian framework can deal with different “instruction 

following” phenomena described above; a theoretical account of when and why 

switching should occur (complementary systems are either fast-learning and slow-

executing or vice versa); and an integration of the influential COVIS and SPEED 

models. 

 

4.2 Dual-route architectures 

Dual-route architectures are cognitive systems where one processing route is explicit, 

propositional, and effortful, and the other is implicit, associative (contingency-based), 

and effortless (e.g., Sloman , 1996). They have been claimed to underlie diverse 

neurocognitive phenomena from reasoning (Sloman, 1996) to self-regulation (Carver, 

Johnson & Joorman, 2008). Our model belongs to this general class with a 

propositional indirect route (of the form, “if …then…”) and a contingency-based 

direct route. Despite clear and important differences between the two routes, we have 

proposed that a similar learning mechanism may underlie both. This similarity 

between explicit and implicit routes may have an evolutionary basis, given that 

selection tends to recycle previously successful structures and processes (Dehaene & 
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Cohen, 2007). Moreover, the modelling process demonstrated that sufficient practice 

can cause a switch from one route to another without any need for a homunculus.  

Additionally, the model yielded the prediction that shifting from instructed to 

procedural knowledge consists of a gradual transition of response selection from PFC 

to BG. If the model were to be extended to the development of automaticity (e.g. 

Ashby et al., 2007), the dual-route architecture would be modified by the addition of a 

hyperdirect pathway which associates stimuli with responses without a mediating 

region. In our framework, learning in such a hyperdirect route would be even slower 

while it would be the fastest to execute the learnt mapping. Empirical (fMRI) tests of 

this prediction will be reported later on. 

 

4.3 Instructions and verbally mediated phenomena 

Suggestions are propositions used to influence an individual’s beliefs and behaviour. 

Examples include alterations of autobiographical memories (Mazzoni et al, 2001),  

eyewitness accounts (Frenda, Nichols and Loftus, 2011), modification of Stroop 

effects (Raz and Campbell, 2011), and the placebo effect (Benedetti et al, 2005). 

While several studies have aimed at uncovering the neural correlates of phenomena 

mediated by suggestion (Craggs, Price, Perlstein, Verne, and Robinson, 2008; 

Petrovic, Kalso, Petersson, Andersson, Fransson and Ingvar, 2010), its nature remains 

poorly understood. 

We propose that suggestions can be understood from the modeling framework 

proposed here. A suggestion would be rapidly learnt by the indirect route (specifically, 

the PFC) and applied immediately. This suggestion can be either cooperative or 

competitive with other processing routes (direct paths).The indirect route is expected 

to influence regions associated with attentional and evaluative processing, such as the 

anterior cingulate cortex (e.g., Ploghaus et al, 2003) or ventromedial PFC  (Hare et al, 

2011). Consistently, recent studies have identified increased PFC activation in 

suggestion-mediated analgesic effects (Derbyshire et al, 2009). Hence, the core 

principles proposed here can be used to generate a model to account for suggestion-
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mediated phenomena. Currently, however, this remains an area for future 

investigation. 

 



 



 

CHAPTER 3 
OF VALUES AND THE WILL: 

A COMPUTATIONAL MODEL OF SELF-CONTROL 

Manuscript in preparation 
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Self-control is a key aspect of adaptive behaviour and a predictor of long-term well-

being in humans. Despite extensive empirical studies and more recent neurobiological 

investigations into the nature and substrates of self-control, computational accounts 

are scarce. Here we propose a computational model of self-control situated in a 

general computational framework based on a learning/acting tradeoff realized in 

fronto-striatal and striatal pathways. We conceptualize self-control as increased 

lateral-prefrontal influence over value computation. We report the results of two sets 

of simulations, one on dietary choice and the other on intertemporal choice. The first 

simulation study replicates the behavioural findings of Hare et al. (2009) on self-

control in food-choice. The second simulation study explores the influence of self-

control in intertemporal choice. It captured the phenomenon of preference-reversal 

(reflecting poor or no self-control) as well as choice-invariance over time (reflective 

of self-control). We discuss the model in the light of theoretical work on self-control as 

well as recent empirical findings and propose avenues for future research. 

 

 

 

 

                                                      

1
 This paper was co-authored by Tom Verguts. 
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1. Introduction 

 

A hungry person steers clear of the neighborhood fast-food restaurant to go 

home and prepare a healthy meal. A child awaits her turn to be served dessert at the 

dinner table, and picks a single truffle when offered a few. A police officer subdues a 

hostile with force proportionate to the threat. Diverse though these scenarios may be, 

they have a common denominator; self-control.  This prized human ability remains 

valued across cultures and has historically been celebrated in myths, legends and 

certain schools of philosophy (for example, Aurelius, circa 180 AD).   

Self-control can be defined as the ability to overcome a habitual, automatic, 

impulsive or prepotent response or evaluation in order to achieve an instrumental goal 

(Muraven & Baumeister, 2000). In that it entails overcoming one response in favour 

of a more relevant one, self-control is akin to cognitive control (Botvinick et al., 

2001). It is vital for adaptive behaviour and has profound implications for long-term 

success in various aspects of life (Casey et al., 2011; de Ridder et al., 2012;  Moffitt et 

al., 2011; Tangney, Baumeister, & Boone, 2004). Loss of self-control is associated 

with maladaptive behaviours that lead to potentially disastrous consequences for the 

individual as well as society. For instance, addiction is considered to be a malfunction 

of the control mechanisms involved in adaptive behaviour (Baler and Volkow, 2006). 

Also, according to the general theory of crime, criminality is considered a 

consequence of a dysfunction of self-control (Gottfredson & Hirschi,1990; but see 

Wikstrom & Svensson, 2010).  

 

Self-control has been characterized in various ways, including: a limited 

resource that gets depleted with use (ego-depletion; Baumeister, Bratslavsky, Muraven 

& Tice, 1998; Hagger et al.  2010; Hofmann, Vohs & Baumeister, 2012); internal 

commitment (Benhabib & Bisin, 2005); and a predominance of lateral-prefrontal 

cortical activity in decision making and valuation (McClure et al., 2004, 2007; Hare et 

al. 2009, 2011).  However, it has not been studied as extensively from a computational 

perspective. In addition to parsimony and mechanistic integration of empirical 
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findings within (e.g. behavioural) and across (e.g. behavioural, neural) levels of 

investigation, computational modelling yields predictions that inform future research. 

To address the relative paucity of computational work on self-control in decision 

making, we extended our previous framework (Ramamoorthy & Verguts, 2012) to this 

phenomenon. In particular, we explored two instances of self-control in decision-

making; dietary choice and intertemporal choice. In what follows, we discuss these 

two instances in detail and present the theoretical framework in which the model is 

situated. 

Individuals are faced with dietary choices on a daily basis – whether to consume 

healthy food items or to consume foods of convenience which are more readily 

available or less expensive. Hare et al. (2009) investigated the behavioural and neural 

aspects of dietary choice in self-controllers and non-self-controllers. In their study, 

active dieters were recruited to perform a dietary choice task. The subjects rated a set 

of food items on the basis of taste and health independently. An item rated neutrally 

on both scales by a particular subject was chosen as the reference item for that subject. 

This was followed by a decision block in which subjects had to choose between the 

reference item and a test item on every trial. Food items were classified into four 

types; disliked-unhealthy, disliked-healthy, liked-unhealthy and liked-healthy. 

Subjects were classified into self-controllers and non-self-controllers based on 

performance. Figure 4a presents the key behavioural results of this study. All subjects, 

regardless of self-control status, tended to avoid disliked-unhealthy items but chose 

liked-healthy items. The food-types of interest were the disliked-healthy and liked-

unhealthy types. Self-controllers chose the disliked-healthy items more often, and 

rejected the liked-unhealthy items, whereas the non-self-controllers rejected the 

disliked-healthy items and chose the liked-unhealthy items more often. Simulation 1 

details the replication of these findings by our model.  

The second instance concerns choices that affect rewards over time. 

Intertemporal decision making has been extensively studied in economics (Ainslie, 

1992, 2001; Laibson, 1997; Diamond, 2003) and has recently been investigated using 

the tools of cognitive neuroscience (McClure et al 2004, 2007).  The core of this form 

of decision-making is as follows; given a choice, should an agent select a sooner but 
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smaller reward, or defer selection in favour of a larger reward that can only be attained 

later? In reinforcement learning terminology, this is the problem of delayed 

gratification (Sutton & Barto, 1998). Economists expect a rational human agent to 

discount exponentially when faced with intertemporal choices, meaning that value at a 

given delay is only worth a fraction exp(-K*delay) of the immediate value, in which K 

is a discounting parameter. This implies that the agent’s preferences remain 

unchanged across delays. If the agent prefers a larger reward to be experienced later 

relative to a smaller reward available more immediately, this preference should remain 

unchanged if a fixed amount of time is added to the waiting times for each reward. 

Human behaviour, however, is largely inconsistent with this picture. Subjects 

presented with intertemporal choices do not typically display choice-invariance across 

delays to the rewards (Loewenstein & Prelec, 1992).  

Consider the larger-later and smaller-sooner rewards in Figure 1. Time T3 and T4 

correspond to the points at which the smaller-sooner and larger-later rewards are 

delivered, respectively. At time T1, the larger-later reward  

is valued more than the smaller-sooner reward. As time advances and approaches T2, 

the values of the smaller-sooner and larger-later rewards become more similar. At T2, 

the agent is indifferent to the options. Between T2 and T3, the curves have crossed, 

implying a reversal of preferences relative to T1. Humans typically choose the 

smaller-sooner reward instead of waiting until T4 (Ainslie, 1992, 2001; O’Donoghue 

and Rabin, 1999). This has also been demonstrated in pigeons (Mazur & Biondi, 

2009) and rats (Reynolds, de Wit & Richards, 2002). 

 



64     CHAPTER 3 

 

Figure 1: The evolution of subjective value over time in intertemporal choice. SS 

refers to the smaller-sooner reward and LL refers to the larger-later reward. T1 is the 

initial time point, T2 is the point of indifference and T3 and T4 represent the time-

points at which the SS and LL are delivered, respectively. 

 

Instead of exponential, value can also be discounted hyperbolically. In this case, value 

changes over delays by a factor of 1/(1+K*delay), with K a discounting parameter. 

Hyperbolic models can predict the reversal of preferences shown in Figure 1, and 

accordingly fit behavioural data pertaining to intertemporal choices better than 

exponential models (Ainslie, 1992; Kirby & Marakovic, 2002; Kirby & Herrnstein, 

1995; for a contrasting viewpoint, see Rubinstein, 2003).  Models that also are able to 

predict this shift, but have a functional form different than hyperbolic, are termed 

quasi-hyperbolic (Laibson, 1997). From a behavioural/economic perspective, the 

reversal of preferences at a time when the smaller-sooner reward is closer, is 

interpreted as a lack of self-control. Self-control would correspond to remaining 
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consistent in valuation of rewards over time. Simulation 2 explores reversal as well as 

non-reversal, of preferences, in intertemporal choices, within the context of self-

control. 

Here we present an integrative view on self-control situated in a broader 

theoretical framework on the computational tradeoff between fast acting versus fast 

learning (Boureau & Dayan, 2007). In a general decision making context Daw et al. 

(2005) argued that a prefrontal tree-search system and a dorsolateral striatal cached 

system compete for behavioural control on the basis of the relative uncertainty 

associated with responses computed by the two systems. In their model, tree-search 

would correspond to fast learning with slow responding (as traversing the tree takes 

time). Cached learning would be slower, but cached responses faster in execution (no 

tree search required). Our model (Ramamoorthy & Verguts, 2012) implemented this 

principle (fast learning vs. fast acting) as applied to instruction following. Here, we 

present a computational account of self-control that is consistent with the general 

theoretical framework. We focus in particular on self-control in the context of 

competition between valuation pathways, such that one pathway learns values fast, 

while exerting influence over decisions slowly, while the other pathway acquires 

values slowly but responds faster. This scheme is used to account for self-control 

scenarios involving different dimensions of value (for instance, taste and health in 

Simulation 1) or different predictions of value over time (Simulation 2). 

 

2. Method 

2.1 Model Architecture  
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Figure 2: Schematic diagram of the model of self-control as applied to dietary choice. 

NAcc = Nucleus Accumbens. PFC = Prefrontal Cortex. VMPFC = Ventromedial 

Prefrontal Cortex 

 

 

The model has two separate valuation pathways, the lateral-prefrontal (LPFC) 

pathway and the ventral-striatal pathway, each having the ventromedial prefrontal 

(VMPFC) cortex as a terminus (see Figure 2).  

The VMPFC has been hypothesised to integrate different value-inputs from other 

regions (Basten et al., 2010; Hare et al., 2010; Philiastides, Biele & Heekeren, 2010; 

Smith et al., 2010;) and computes a value (Harris et al., 2011) that guides decision 

making (Grabenhorst & Rolls, 2011).   
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The ventral-striatal pathway consists of sensory input areas, the Nucleus Accumbens 

(NAcc), and the VMPFC (Hare et al., 2009) as a terminus. The NAcc receives input 

from the sensory cortices, and projects (via ventral pallidum and thalamus) to VMPFC 

(Pierce & Kumaresan, 2006). The conception of this pathway is consistent with 

several findings showing that the NAcc plays a role in value-computation and decision 

making (Knutson et al. 2005; Samanez-Larkin et al., 2010; Peters & Büchel, 2010).  

The LPFC pathway starts with sensory input areas projecting to lateral-prefrontal 

areas. These areas are functionally connected to the VMPFC (Hare et al., 2009, 2011). 

The role of LPFC in self-control is supported by several empirical findings. Increased 

LPFC function is proposed as a correlate of self-control by Hare et al. (2009, 2011). 

Consistent with this, reduced LPFC sensitivity to reward reflects impaired self-control 

in addiction (Goldstein et al., 2009).   

The model was implemented as a feedforward network with the activation propagating 

along the direction specified by the arrows in Figure 2. Activation in the stimulus 

layers (Stim1 and Stim2 for first and second stimulus, respectively) was encoded 

locally (unit i coding for stimulus i).   

 

2.2 Simulation 1: Self-control in dietary choice 

The taste and health ratings associated with a given stimulus were encoded in the 

connection strengths (weights) between the stimulus layers and the NAcc and LPFC 

layers respectively. The connection strengths varied in increments of 1, from 1 to 5 (to 

reflect the rating scale used). Taste ratings are construed to reflect innate values 

(learned at phylogenetic scale) or instead reflect experientially acquired values that 

take time to learn but are subsequently cached. In either case, responding is fast. 

Health ratings, on the other hand, are acquired fast, perhaps socially through 

instructions (e.g. parent pontificating to child on benefits of broccoli) but are applied 

more slowly. 

Activations of NAcc and LPFC units were calculated using standard difference 

equations of the form: 
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      (1) 

 

 

    (2) 

 

 

where VNAccj  and VPFCj are the activations of the j
th
 unit in the corresponding area 

(NAcc , LPFC) at time t in the trial (j = 1 or 2, because there are two options on each 

trial), xiwij is the net input from input-layer unit i to unit j  and corresponds to the 

magnitude of the pertinent dimension of value, and τ is a cascade rate parameter (set to 

0.5).  

Several studies (Hare et al., 2011; Hollman et al., 2012) report a regulatory influence 

of the LPFC on VMPFC. We implemented this influence through a gating variable S, 

which constrained the LPFC and NAcc inputs to the VMPFC as follows: 

 

(3) 

 

where Vj(t) is the value computed by the j
th 

 unit in the VMPFC layer at time t, 

representing the value of the j
th
 stimulus (option). VNAccj and VPFCj are value-inputs 

from the NAcc and LPFC layers respectively, τ is a cascade rate parameter (set to 0.5) 

and S is a gating variable that constrains the contributions of the two pathways to the 

overall input to the VMPFC. The VMPFC units compete through lateral inhibition. 

This is represented by the inhibitory input Vkwinh, where Vk is the activation of the 

competing VMPFC unit, and winh (< 0) is the strength of the inhibitory connection 

between the two VMPFC units.  
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2.2.1 Simulation 1.1: No ego-depletion 

We replicated the design of Hare et al. (2009) which investigated self-control in food 

choice (Fig. 2). 50 stimulus items (tokens for food items) were evaluated relative to a 

reference item and a choice was made on each trial. Following Hare et al. (2009), we 

used a rating scheme to qualify the items on two dimensions taste and health. In the 

model, connections between stimulus layer and the NAcc varied from 1 to 5 units in 

strength, to correspond to the rating scheme used. Health as an abstract value was 

encoded in the weights between stimulus layer and PFC with the same range of 

values. The VMPFC integrated the two value components. The model was considered 

to have made a choice when the maximally responsive VMPFC unit reached threshold 

(set at 2), or if the maximum number of model cycles, set at 250, was reached.  This 

selection informed the choice of the corresponding option.  

The reference object was selected to be neutral in health and taste. Each stimulus 

carried value on two dimensions and this was randomized so that any given stimulus 

could have any combination of the two. Four kinds of stimuli were identified on this 

basis; liked-healthy, liked-unhealthy, disliked-healthy and disliked-unhealthy.  

To generate individual differences between models, gating variables were randomly 

sampled from a uniform distribution between 0 and 1 for each of 50 simulated 

subjects. Simulated subjects were classified as self-controllers or non-self-controllers 

based on whether the gating parameter was bigger or smaller than 0.5.  

All choices made by each simulated subject were classified according to the taste-

health rating scheme described above. The mean proportion of choices per category 

were calculated across subjects and plotted to examine the influence of the gating 

parameter on choice.  

 

2.2.2 Simulation 1.2: Ego-depletion case  

Model architecture, parameters and simulation specifics were the same as in 

Simulation 1.1 except for the gating parameter S, which was subject to ego-depletion. 

Ego-depletion (Baumeister, et al., 1998; Baumeister et al., 2008) is a conception of 
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self-control as a limited resource and refers to the exhaustion of self-control as a 

function of repeated application. It was implemented here as a trial-dependent decay in 

the gating variable. In particular, the gate grew smaller over time and with each 

decision made by the model across trials: 

    

                                           (4) 

where S(n) is the gating variable for trial n, μ is a decay constant set to 0.99 and S0 is 

the initial value of the gating variable. An alternative labeling for the process 

described by equation (4) could be habituation or neural fatigue (Grill-Spector et al., 

2006). We are theoretically not committed to the biological origin of the effect. 

 

2.2.3 Simulation 1.3 Self-control as a function of gating variable – without ego-

depletion  

To study the effects of gating on choice, we produced a family of models with 

different gating parameters. Each had the architectural and parametric specifications 

described in study 1.1 but the gating variables were systematically varied from 0.05 to 

0.9 (with intervals of 0.05). Each model was subjected to the Hare paradigm as 

described in Simulation 1.1, and the extent of self-control exerted by the model was 

quantified as the difference between the percentage of selections of disliked-healthy 

items and liked-unhealthy items. This quantity was estimated for each value of the 

gating parameter and plotted to examine the effect of gating strength on self-control.  

 

2.2.4 Simulation 1.4: Self-control as a function of gating variable – with ego-

depletion  

A family of models conforming to the architectural and parametric specifications 

described in Simulation 1.1 was constructed, with gating variables varied from 0.05 to 

0.9 (with intervals of 0.05). Ego-depletion was introduced in the form of a reduction in 

gating parameter values with each trial, consistent with equation (4) above. The 

procedure was the same as in Simulation 1.3 in all other respects.  
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2.3 Simulation 2: Intertemporal choice 

In Simulation 2, we extended the model to discounting in intertemporal choice. We 

reasoned that for such choices, especially hypothetical ones, the two valuation systems 

would simulate the evolution of value across time for each option separately. This 

would correspond to prospection, or simulating future possibilities to guide decision-

making. To capture this, the architecture was modified slightly to include time 

representations in the LPFC and NAcc layers (see Figure 3). The LPFC and NAcc 

layers were divided into two sets of units; one computed the magnitude of the stimulus 

and the other the delay associated with it.  
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Figure 3. Schematic diagram of the model of self-control as applied to intertemporal 

choice. NAcc = Nucleus Accumbens. PFC = Prefrontal Cortex. VMPFC = 

Ventromedial Prefrontal Cortex. ‘m’ and ‘t’ sub-layers correspond to magnitude and 

time representations, respectively. 

 

Reward magnitudes (values) were encoded in the connection strengths (weights) 

between the stimulus layers and the NAcc and LPFC layers respectively (cf. 

Simulation 1). In the NAcc and LPFC layers, net activation was calculated as a 

product of the magnitude (net input) and the delay to reward. Magnitude was 

computed as in Simulation 1. This applied to units in NAcc and LPFC.  

Following Buonomano and Merzenich (1995), we encoded temporal information as a 

change in response patterns across time. Delay was encoded as a travelling spike, with 

the amplitude of the spike decreasing across time. The basic time representation 

scheme assumed an array of neurons, with each neuron responding to a certain unit of 

time. This is akin to the tapped delay line formalism used in the study of temporal 

processing in the cerebellum (Freeman & Nicholson, 1970; Medina & Mauk, 2000) 

and basal ganglia (Brown, Bullock & Grossberg, 1999; Niv, O Duff & Dayan, 2005). 

Time representations were integrated with magnitude information to compute the 

value components of each region as follows: 

 

 

                                              (5) 

 

 

                                              (6) 
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for option j. This prediction of the future value V(t) was calculated across time points t 

until the delay associated with each option was reached (i.e., V(delay) was calculated). 

Given that prefrontal and ventral-striatal valuation networks encode abstract and 

immediate values respectively, it follows that this is reflected in their responses to 

delay. This was captured by making the time representations in the NAcc and LPFC 

layers decay across their respective delay lines. In the NAcc layer the decay was the 

reciprocal of the current timestep; in the LPFC layer, the decay assumed an exponent 

of the timestep of the current model cycle, with the exponent r set to 0.5. 

In each timestep VMPFC units integrated these two value components as per equation 

(3) above. In this simulation, the VMPFC units representing the two alternatives 

receive temporally decaying inputs from the NAcc and LPFC regions, with the unit 

representing the smaller-sooner option completing its computation of value sooner 

than the unit representing the larger-later reward. This obviates the need for active 

competitive inhibition and therefore the inhibitory connections in the VMPFC layer 

were set to 0.  

 

2.3.1 Simulation 2.1: Weak gating without ego-depletion 

We presented the intertemporal choice paradigm to each of 50 simulated subjects. 

Each simulated subject was exposed to 50 trials. Within a given trial, the simulated 

subject was presented with varying delays to reward delivery, for a given pair of 

rewards and delays (the smaller-sooner and larger-later options). Each simulated 

subject had an architecture corresponding to Figure 3.  We model delay as described 

earlier. The overall value was computed by the VMPFC layer, as a weighted (gated) 

sum of the PFC and NAcc components (cf. equation (3)). The gating parameter was 

set to 0.3.  

In each trial the model was presented with stimuli representing two magnitudes and 

their respective delays. The smaller-sooner (SS) reward was fixed at a magnitude of 

10 units and the larger-later (LL) reward was 100 units. The time of delivery for the 

smaller-sooner reward was always immediate (i.e., within a fixed number of model 

cycles, less than or equal to 20) and the larger-later reward had a delivery time 



74     CHAPTER 3 

corresponding to a maximum of 110 model cycles. The model simulated the evolution 

of each stimulus value over its corresponding delay period. This was iterated over a 

number of delays. In each trial (choice between two stimuli), the stimulus values were 

computed over the corresponding delays to reward (each delay took the subject closer 

to the rewards). These values were collected and averaged across blocks and subjects 

to generate the value versus time plots.  

 

2.3.2 Simulation 2.2: Strong gating without ego-depletion 

Model architecture and parameters were the same as in Simulation 2.1, except for the 

gating parameter which was set to 0.9. This was done to explore the effect of 

increasing LPFC input to the VMPFC on intertemporal choice. We hypothesized that 

self-control would be captured by increased LPFC influence on VMPFC 

computations, given that LPFC is less sensitive to immediacy than the NAcc in our 

model. 

2.3.3 Simulation 2.3: Weak gating with ego-depletion 

In this study, we explored the effect of ego-depletion on model performance in 

intertemporal choice. Model architecture and parameters were the same as in 

Simulation 2.1, except for the gating parameter. As in Simulation 2.1, it was set to 0.3, 

but ego-depletion was introduced in the form of reduction in gating parameter values 

with each trial, consistent with equation (4) above.  

2.3.4 Simulation 2.4: Strong gating with ego-depletion 

In this study, we explored the effect of ego-depletion on model performance in 

intertemporal choice. Model architecture and parameters were the same as in 

Simulation 2.1, except for the gating parameter. As in Simulation 2.2, it was set to 0.9, 

but ego-depletion was introduced in the form of reduction in gating parameter values 

with each trial, consistent with equation (4) above.  

 

3. Results 



MODEL OF SELF-CONTROL 75 

3.1.1 Simulation 1.1: Self- control in food choice (no ego-depletion) 

The simulations replicated the findings of Hare et al (2009). Fig. 4b shows the 

proportion of choices made by the self-controller and non-self-controller groups of 

simulated subjects (identified on the basis of the gating parameter values). As in the 

original study, both self-controllers and non-self-controllers among the simulated 

subjects choose the liked-healthy option and tend not to select the disliked-unhealthy 

option.  Non-self-controller models select the unhealthy-liked option whereas the self-

controllers do not. In  

Figure 4: Simulation 1: Self-control in dietary choice  

(4a) Behavioural results from Hare et al. (2009) (4b) Simulation results from model 

(4c) Simulation results from model with ego-depletion. 
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contrast, self-controllers choose the disliked-healthy option more often than the non-

self-controller models. 

 

3.1.2 Simulation 1.2: Self- control in food choice (with ego-depletion)  

Fig. 4c shows the proportion of choices made by the self-controller and non-self-

controller groups of simulated subjects (identified on the basis of the gating parameter 

values). The pattern of results remains the same as those reported above, with two 

minor differences. Self-controller models choose the disliked healthy option, but 

slightly less often than in the no ego-depletion case.  They also chose the liked-

unhealthy option more often.  

 

3.1.3 Simulation 1.3: Self-control as a function of gating variable (without ego-

depletion) 

The extent of self-control, quantified as difference between percentage of disliked-

healthy choices and liked-unhealthy choices increased as a function of gating. In the 

absence of ego-depletion, this increase reaches its highest point at a gate value of 0.7 

and remains stable thereafter (Figure 5a).  

 

3.1.4 Simulation 1.4: Self-control as a function of gating variable (with ego-

depletion)  

The extent of self-control increased as a function of the gating variable. Given ego 

depletion, this increase is slower (Figure 5b) compared to that seen in Simulation 1.3 

(Figure 5a).  
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Figure 5: Extent of self-control as a function of the gating variable: (5a) without ego-

depletion; (5b) with ego-depletion. 

 

3.2.1 Simulation 2.1:  Self-control in intertemporal choice (weak gating without 

ego-depletion) 

The major behavioral finding of quasi-hyperbolic discounting in intertemporal choice 

was replicated, corresponding to an absence of self-control. In Fig. 6a, the model is 

shown to be tracking the evolution of value over time. At Time T1, the larger-later 

reward has a higher value compared to the smaller-sooner reward. As time approaches 

T2, there is a crossing of the curves. At time T3, the model shows reversal of 

preferences and chooses the smaller-sooner reward.  
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3.2.2 Simulation 2.2: Self-control in intertemporal choice (Strong gating without 

ego-depletion)  

Fig. 6b shows the evolution of value over time in intertemporal choice. Here the 

larger-later reward has a higher value from the start of the trial (at time T1), and this 

increases with decreasing delay to reward. The smaller-sooner reward increases in 

value but always remains below the curve corresponding to the larger-later reward’s 

subjective value over time, even at the time point T3 that marks its delivery. This is 

due to the preponderance of the LPFC valuation system over the NAcc system 

consistently across delays. As noted in section 1.1, this corresponds to exponential 

discounting.  

 

 

 

 

 

 

 

 

. 
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Figure 6: Simulation 2. Self-control in intertemporal choice as a function of gating 

variable. (6a) Low gating; (6b) High gating; (6c) Low gating with ego-depletion; (6d) 

High gating with ego-depletion. T1 is the initial time point, T2 is the point of 

indifference in curves (6a) and (6c) and T3 and T4 represent the time-points at which 

the SS and LL are delivered, respectively 

 

3.2.3 Simulation 2.3: Self-control in intertemporal choice (weak gating with ego-

depletion)  

The major behavioral finding of quasi-hyperbolic discounting in intertemporal choice 

was replicated, corresponding to an absence of self-control. In Fig. 6c, the model is 
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shown to be tracking the evolution of value over time. At Time T1, the larger-later 

reward has a higher value than the smaller-sooner reward. As time approaches T2, the 

curves cross. At time T3, the model shows a preference reversal and chooses the 

smaller-sooner reward.  

 

3.2.4 Simulation 2.4: Self-control in intertemporal choice (strong gating with ego-

depletion) 

Fig. 6d shows the evolution of value over time in intertemporal choice. Here the 

larger-later reward has a higher value from the start of the trial (at time T1), and this 

increases with decreasing delay to reward. The smaller-sooner reward increases in 

value but always remains below the curve corresponding to the larger-later reward’s 

subjective value over time, even at the time point T4 that marks its delivery. The effect 

of ego-depletion reduces the difference between the two curves, although the strength 

of the gating preserves dynamic consistency in choice. 

 

4. General discussion 

We extended a general computational framework of learning-action tradeoffs to self-

control in decision making. This complements the model of instruction following 

developed under the same framework (Ramamoorthy & Verguts, 2012). The self-

control model replicated the food-choice data from Hare et al. (2009); a model with an 

additional time component replicated behaviour in intertemporal choice. Here we 

examine the theoretical framework in relation to other accounts of self-control. 

Further, we discuss inhibitory control and ego-depletion. We conclude with questions 

and directions for future research.  

 

4.1 Theoretical considerations  

Theoretical accounts of temporal discounting have led to several kinds of models; 

exponential discounting, hyperbolic discounting and quasi-hyperbolic discounting.  

Quasi-hyperbolic discounting models have recently been used in the interpretation of 
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neural correlates of temporal discounting (McClure et al, 2007). McClure et al. (2007) 

discuss the β-δ model where overall value is a weighted sum of the contributions of 

the two exponentially discounted value components computed by two valuation 

systems, the β-system and the δ-system, with slightly different exponential 

discounting factors.  

Recently, Scherbaum, Dschemuchadse and Goschke (2012) have proposed a 

connectionist model of temporal discounting. This model employs an additive 

valuation process that integrates value and time information to compute relative values 

of different options. Representations of the discounted options compete through lateral 

inhibition, and the winning option determines the choice. Our model shares these 

aspects with the Scherbaum et al. model, but differs in a few crucial respects such as 

prefrontal influence (gating) over value computation in the VMPFC and the 

representations of delay using tapped-delay-lines. Most importantly, our model 

focuses on self-control and how it is implemented in biologically specified 

interactions between brain areas, thus providing a computational base for future tests 

and manipulations that may modulate self-control.  

 

4.2 Inhibition and self-control 

The ability to inhibit oneself is considered vital to adaptive behaviour. Inhibitory 

control has been extensively studied at the behavioural and neural levels. 

At face value, the importance of inhibition to self-control appears obvious.  

Explorations of the neural bases of self-control tend to identify regions associated with 

inhibitory control, such as the right inferior frontal gyrus (rIFG) (Aron, 2008) and 

some conceptual accounts of self-control have proposed inhibition as a putative 

mechanism (Jasinska, Ramamoorthy & Crew, 2011). A recently proposed theoretical 

framework suggests that inhibitory control can be of two types (Munakata et al. 2011). 

Direct inhibition is associated with rIFG, and leads to a global shutdown of processing 

in the target region (i.e. to stop a response).  It may be achieved by rIFG 

representations that project excitatory connections to  GABAergic interneurons which 

then inhibit neurons in the target region. The other means of achieving inhibition is by 
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biasing relevant areas in a competitive, winner-takes-all mechanism. The losing 

representation and the behaviour it would have engendered are thus indirectly 

inhibited. Our model is an instance of the latter type. Self-control in our model 

emerges through the interplay between LPFC representations, gating of LPFC and 

NAcc inputs to the VMPFC and competition between values within the VMPFC, such 

that the winning value-representation laterally inhibits the competing value-

representations.  

 

4.3 Ego-depletion 

As mentioned earlier, ego-depletion is a key construct in the self-control literature 

(Baumeister, 1998). It refers to the progressive weakening of the ability to exert self-

control, when the agent is called upon to exert such control repeatedly. In our model 

self-control is a consequence of strong LPFC gating of value computation in the 

VMPFC. We incorporated ego-depletion into this account by allowing the gating 

variable to decay with time. As we view deliberate processing as akin to tree-search in 

Daw et al. (2005), repeated use of this mechanism would be exhausting, given the 

limited time for such searches to be performed. The learning/acting tradeoff could then 

account for ego-depletion, as a consequence of the computational cost of tree-search 

as opposed to caching (Daw et al., 2005).  

Interestingly, ego-depletion is counteracted by motivation as well as beliefs, 

particularly beliefs concerning willpower (Job, Dweck & Walton, 2010). This effect, 

however is contingent upon the extent of depletion (Vohs, Baumeister & Schmeichel, 

2011). Severe depletion is not reversed by beliefs and motivation. Within our 

framework, the effect of motivation would correspond to a boost to the prefrontal 

learning system.  

 

4.4 Self-control as rule-following  

In our earlier computational work (Ramamoorthy & Verguts, 2012), we speculated on 

the influence of the prefrontal-striatal instruction-following machinery on various 
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phenomena (e.g., suggestions). Given the conservation of theoretical principles across 

the models, interesting predictions emerge when the individual phenomena are 

considered in the light of the general theoretical framework. Instruction following 

influences response selection against actual contingencies (Doll et al., 2009), which 

means abstract representations counteract the effects of experience. In the context of 

self-control, value inputs of an immediate, appetitive or hedonic nature (such as taste), 

are overcome by abstract value inputs (such has health). This leads us to hypothesise 

that the extent of instruction-following observed in an individual would predict the 

extent of self-control they can exert under a given circumstance. We note that both 

instruction following and exertion of control can be mal-adaptive if they do not co-

occur with flexible updating of policies. Strong rule-following in the absence of 

flexible updating of the rules or incorporation of contextual information could have 

potentially damaging consequences. In this case, the self-control exerted ceases to be 

regulatory and is a merely unilateral influence. 

 

4.5 Directions for future research  

Self-affirmation is effective in sustaining self-control in the face of ego-depletion 

(Schmeichel & Vohs, 2009). Self-affirmation refers to the activation of a core value, 

i.e., an abstract value associated with oneself. Affirmation of core values, rules of 

conduct and other such abstract beliefs, is widely recognized as a coping mechanism 

in diverse scenarios including combat (Asken, Christensen & Grossman, 2010). In the 

light of our framework, this would correspond to a lateral-prefrontal representation 

being strengthened. It is conceivable that this leads to heightened prefrontal processing 

overall and therefore has an effect on value computation, resulting in self-control in 

the face of temptation or fatigue. Consistent with this notion is the recent empirical 

finding that cue-based consideration of health-values leads to increased selection of 

healthy items in a food-choice task (Hare et al., 2011). Avenues for future research 

include integrating the instruction-following model with the self-control model to 

explore the mechanistic underpinnings of this phenomenon, behavioural investigation 

of the relation between instruction-following and self-control and simulating self-
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control malfunction to examine implications for addiction, decision-making and other 

real-world phenomena.  

 

 



 



 

CHAPTER 4 

 
TWO SIDES OF THE SAME COIN? A BEHAVIOURAL STUDY ON 

INSTRUCTION-FOLLOWING AND SELF-CONTROL 

 

 

Instruction following and self-control are potent aspects of human behaviour 

that influence our lives every day. Following recent empirical investigations into 

instruction following and self-control, we proposed computational models, derived 

from a general computational framework, to further theoretical understanding of 

these phenomena. A key feature of our models was the significance of the lateral 

prefrontal cortex (LPFC) to instruction following as well as self-control. An 

immediate prediction that emerges from the framework and its offshoots, is that 

instruction following and self-control must be related. More specifically, a strong 

tendency to follow instructions is expected to correlate significantly and positively 

with a high degree of self-control. To test this prediction, we conducted a study in 

which three tasks were used to compute an individual’s tendency for instruction 

following, self-control and their working-memory capacity.  The tasks used were, a 

dietary choice task (to measure self-control), a probabilistic selection task with an 

instructed component (to measure instruction following) and a working memory task 

(to control for the effect of working memory). Here we describe the study in detail, 

and report the results obtained. We found no significant correlations between the 

variables of interest. We discuss the results and what they might mean in the light of 

the general framework, and in turn, what they imply for the framework itself.  
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1. Introduction 

Learning takes many forms and is ubiquitous in the biological world. Unique to 

human beings, however, is the use of verbal/symbolic information in learning. Given 

the finitude of human existence, this provides a tremendous advantage to humans in 

adapting to and shaping the environment they inhabit. Imagine having to learn every 

aspect of everyday life and human knowledge by trying to discover everything anew 

through trial-and-error. Such a task would be arduous, ambitious and would likely 

render the learner less adapted to surviving and thriving in a human environment. Of 

course, exploration lies at the root of all revolutionary insights into the nature of the 

world, but a majority of those who engage in such exploration do not strike gold. 

Chance, as Pasteur observed, favours the prepared mind and culturally/socially 

mediated learning contributes immensely to such preparation. A particularly 

influential instance of such learning is learning from instructions, or instruction 

following. Instruction following, once described as an unsolved mystery (Monsell, 

1996), has been explored in recent times, both empirically (Ruge & Wolfensteller, 

2010;Waszak et al., 2008) and computationally (Doll et al. 2009; Noelle & Cottrell, 

1996; Ramamoorthy & Verguts, 2012). 

Self-control, too, is all-pervasive in organisms and is essential to survival. Self-control 

can be defined as the ability to overcome prepotent, impulsive or habitual responses or 

evaluations to produce behaviours that are more compatible with longer-term benefits 

or goals. A good example would be the avoidance of unhealthy snacks which are 

consumed exclusively for their taste. While such avoidance would deprive the 

individual of momentary pleasures, it would promote long-term health. Indeed self-

control as a human behaviour is very important to individuals as well as societies. 

Given its importance it has been studied extensively, from behavioural and neural 

perspectives (Baumeister, 1998, Hare et al. 2009, Hare et al. 2011, McClure et al. 

2004, McClure et al. 2007). 

Given the paucity of theoretical work on these phenomena, we developed a framework 

in order to integrate them conceptually and thus to understand them better. The 

framework was based on the concept of computational tradeoffs. Such tradeoffs are 
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well known in cognitive neuroscience, the most well-known being that between 

generalization and (avoidance of) interference, hypothesised to be handled by cortex 

and hippocampus, respectively (McClelland et al., 1995; O’Reilly & Norman, 2002). 

To understand instruction following, we looked at another tradeoff, one between fast 

learning and fast acting. This computational tradeoff pits learning speed against the 

speed of acting or responding. Rapid learning is typically associated with slow 

responding and rapid responding is associated with slow learning.  We proposed a 

computational framework which instantiated this tradeoff in the form of 

complementary systems /processing pathways, capable of learning and producing 

responses to stimuli. The lateral prefrontal cortical (LPFC) system learnt fast but 

responded slowly, and the second system, situated in the basal ganglia (BG) (mostly 

the striatum) learnt slowly while responding rapidly. We extended this framework to 

instruction following and self-control respectively. In the instruction following model 

(Ramamoorthy & Verguts, 2012), instructions were learnt rapidly by the LPFC and 

implemented slowly, and in turn, learnt slowly by the BG and applied rapidly once 

learnt. This model replicated empirical findings such as the quickening of responses, 

the change in relative contributions of frontal and striatal regions (Ruge & 

Wolfensteller, 2010), interference between instructed and applied mappings (Waszak 

et al., 2008) and also suggested a possible mechanism behind goal neglect (Duncan, 

1996).  

Following the application of the framework in the study of instruction following, we 

extended it to self-control. Recent research suggests that self-control is realised 

through the influence of the LPFC on value computation in the ventro-medial 

prefrontal cortex (vmPFC) (Hare et al., 2009; 2011). We further hypothesised that the 

LPFC could influence (or gate) the overall value computation in the vmPFC by 

accentuating its contribution and attenuating the contribution of the other valuation 

system. The model successfully replicated the pattern of choice-behaviour reported for 

self-controllers and non-self-controllers (delineated computationally via a gating 

parameter) by Hare et al. (2009). Next, we used the model to capture self-control in 

intertemporal choice. The crux of intertemporal choice is the problem of rewards 

crossed with delays; when a larger reward can be reached only after a relatively long 

delay period, whilst a smaller reward is accessible more immediately. The former is 
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typically referred to as the larger-later reward and the latter, the smaller-sooner 

reward. If faced with a choice between a larger-later reward and a smaller-sooner one, 

a supposedly rational agent’s preference would remain unchanged over time . 

Economists who assumed this (referred to as exponential discounting, where the 

difference between the subjective value of the two rewards remains constant as they 

depreciate with delay), were stymied by human behaviour. Humans (among other 

animals) appear to prefer the larger reward at first, but as time elapses and the smaller-

sooner reward becomes more appealing due to its proximity, they switch preferences 

(preference reversal) and opt for the smaller-sooner reward (Ainslie, 1992). This is 

typically interpreted as a lack of self-control.  

From our framework, we reasoned that the LPFC system (fast-learning, slow acting) 

could be thought of as simulating future reward value and consequently would be less 

vulnerable to delays in obtaining a desired good. By contrast, the BG system (slow-

learning, fast acting), and the ventral-striatal reward-value processing regions in 

particular would simulate future value with a high sensitivity to delay. The model 

successfully captured both preference-reversal (Ainslie, 1992) and no-reversal 

(interpreted as self-control).  

Recent research has suggested that self-control can be sustained through the use of 

self-affirmations (Schmeichel & Vohs, 2009). Self-affirmations are statements that 

promote positive beliefs or evaluations of the self or serve to link specific goals or 

desired states with the self (e.g. “I am calm”). We hypothesised that self-affirmations 

are instructions to oneself and therefore, self-control can be treated as an instance of 

instruction-following. This would imply that individuals with a marked tendency to 

follow instructions are also likely to be better at controlling themselves (i.e., self-

control). From a cognitive neuroscience perspective, the importance of lateral 

prefrontal cortex (LPFC) to both instruction-following (Hartstra et al., 2012; Ruge et 

al. 2010 ) and self-control (Figner et al, 2010; Hare et al.,2009; 2011)  appears to lend 

credence to this idea. As described previously, the LPFC pathway in our models 

implements both instruction following and self-control.  An important prediction 

issuing forth from the framework is that instruction-following and self-control may be 

functionally related. More specifically, we hypothesize that a strong tendency to 
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follow instructions would correlate with a high degree of self-control. In other words, 

those who are good at instruction following should also be good at controlling 

themselves in the face of temptation. As a first step towards examining this prediction, 

we designed a behavioural study consisting of three components; a probabilistic 

selection task with an instructional component to measure the tendency to follow 

instructions, a dietary choice task to measure self-control, and a working memory task 

to control for working memory effects.                        

 

2. Methods 

The study consisted of three behavioural experiments completed sequentially. A 

dietary choice task adapted from Hare et al. (2009), a probabilistic selection task 

adapted from Doll et al. (2009) and a working memory task sourced from the WAIS 

IV (2008). Ethical approval for the study was obtained from the local Ethics 

committee (faculty of Psychology and Educational Sciences). 

Subjects were screened for neuro/psychopharmacological drug use through a 

standard screening checklist. Only those without such a history or ongoing 

prescription were invited to participate in the study. All subjects had to abstain from 

consuming food for a period of three hours prior to the experimental session. This 

restriction was conveyed through written instruction during the screening process. 

Compliance to this instruction was tested in the questionnaire administered after the 

dietary choice task. Consumption of water was allowed.  

The two tasks of interest, dietary choice and probabilistic selection were 

counterbalanced across subjects with all subjects completing the working memory task 

last.  

Sixty-four subjects participated in the study after providing informed consent. 

Twelve subjects were excluded due to one of the following reasons: non-completion 

of task, interruptions during experiment session, non-adherence to experiment 

protocol (e.g. not abstaining from food 3 hrs prior to participation despite instructions 

provided in advance). The remaining 52 subjects (37 female, mean age 22.56 standard 

deviation (sd) 3.28) completed all three tasks successfully. 
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24 subjects completed the food choice task first and the remaining 28 completed 

the probabilistic selection task first. This was encoded as an order parameter and used 

as a between-subjects factor in the analysis of the probabilistic selection task.  

 

2.1 Dietary choice task  

Following Hare et al. (2009), we presented images of food items sequentially to 

the subjects in three blocks. We used 60 images downloaded from the internet for this 

purpose. The first two blocks were rating blocks. In the “Taste” rating block, subjects 

rated the tastiness of each item on a Likert scale ranging from 1 to 5 (where 1 = “not 

very tasty”, 2 = “not tasty”, 3 =”neutral”, 4 = “tasty” and 5 = “very tasty”). In the 

“Health” rating block, subjects rated the healthiness of each item on a Likert scale 

ranging from 1 to 5 (where 1 = “very unhealthy”, 2 = “unhealthy”, 3 = ”neutral”,4 = 

“healthy” and 5 = “very healthy”). The order of these two rating blocks was 

counterbalanced across subjects.  

Once the ratings had been collected, a reference item unique to the subject was chosen 

from the items that had been given a neutral rating (i.e., rating 3) on both scales. In the 

absence of such an item (with taste and health ratings of “3” each), we selected an 

item rated neutrally on Taste and slightly positively on Health (i.e., a rating for “4”) as 

the reference (see Hare et al., 2009, supplementary materials). The reference image 

was then presented on screen until the subject chose to move to the third and final 

block.  

The third block was a decision block. In this block, all images excluding the 

reference (therefore a set of 59 items) were presented sequentially and in random 

order. On each trial, the subjects had to make a simple binary choice; would they like 

to eat the item on the screen or the reference (shown before the decision block) at that 

moment? Subjects were told to choose naturally and that one of the choices they made 

would be implemented at the end of the experiment (cf. Hare et al., 2009). Choices 

were recorded and used in the analysis. The design is represented schematically in 

Figure 1.  

After the task, subjects answered the following questions with yes/no responses: 



92     CHAPTER 4 

1. Are you vegetarian/vegan? 

2. Are you allergic to any of the food items presented in the task? 

3. Did you consume any food during the 3 hours before the experiment? 

4. Are you currently on a diet? 

 

 

 

 

Figure 1: The design of the dietary-choice task. In the rating blocks , subjects rated 

each item presented on the screen on a 5-point Likert scale assessing one of two 

dimensions (taste, health) specific to the block, (i.e., all items were rated on the taste 

dimension in the taste-rating block). Following the ratings, a reference item was 

chosen (from the subset of items rated neutrally on both health and taste in previous 

blocks) and presented  before the decision block. In the decision block, subjects had to 

choose between the reference and the item currently being shown on screen. In all 

blocks, the stimuli were presented until a response was made, to facilitate natural 

responses on the part of the subject.  
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Using the choice data from the decision block, we computed a self-control measure 

using the following equation: 

                                                                       

 

 

 

                            (1) 

 

where S is the self-control measure, yi is the health rating of the i
th
 item (from a set of 

n trials in the decision block) and xi is the taste rating of the i
th
 item and νChoicei  

indicates whether the ith item was chosen over the reference or not. This computation 

resulted in a self-control score that was a continuous variable. 

Here and in the other tasks, we examined split-test correlations to assess reliability of 

the data. Across subjects, we computed the variable of interest twice, from the odd-

numbered and even-numbered trials to obtain trial-parity-specific scores. We then 

examined the correlations between odd and even scores between subjects.  

 

2.2 Probabilistic selection task 

Following Frank et al. (2004), and Doll et al. (2009), we designed a probabilistic 

selection task to test the effect of instructions on reinforcement learning.  

The stimuli were 6 Hiragana characters, labeled A to F (see Figure 2). During training, 

only pairs AB, CD and EF were presented. Each item was associated with a 

probability of being rewarded i.e., reward contingency). The contingencies associated 

with the stimuli were the same for all subjects. The Stimulus A was determined to be 

rewarding on 80% of the trials. Its counterpart B was rewarded only on 20% of the AB 

trials. C and E were set at 70% with D and F being rewarded only on 30% of the 

respective trials. This marks a departure from the design used by Doll et al. (2009) 

where they used a different reward distribution for CD (70/30) and EF (60/40) pairs. 
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We used the same reward probabilities for CD and EF to use CD as a control 

condition for pair EF. Due to an error in the program used for the probabilistic 

selection task, 24 of the 52 subjects were exposed to a slightly different set of 

contingencies for the uninstructed pairs in the training blocks. They were also exposed 

to one additional CD pair in the test block in place of a BD pair, but these 

combinations were not relevant to the calculation of the instruction following measure. 

In particular, the contingencies were (76.19/23.81) for AB and (68.42/32.58) for CD. 

The effect of this change is checked in the analysis (see below, factor contingency 

type). The remaining 28 subjects experienced contingencies (AB (80/20), CD (70/30), 

EF (70/30)) and test block pairings strictly as per the design described above. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The design of the probabilistic selection task. In the training phase, subjects 

were exposed to pairs of stimuli (Hiragana characters labeled A-F for convenience 

here).  The stimuli were rewarded probabilistically (reward contingencies shown in 

percentages next to each stimulus). The pairs were AB, CD and EF. During the 

training phase, only these pairs were presented. Hiragana characters were chosen to 
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minimize verbal encoding as in Doll et al. (2009). Prior to training, subjects were told 

that “E” would be an inferior stimulus and that they should try to avoid it. Following 

instruction, each trial presented a randomly selected pair (from AB, CD and EF) and 

the subjects had to choose one of the stimuli from it. Feedback indicating whether the 

stimulus was rewarded (“Correct”) or not (“Incorrect”) was provided after each trial 

and the distribution of feedback reflected the contingencies associated with the 

stimuli. Subjects trained until they achieved a certain level of performance (see 

probabilistic selection task in the Methods section for details). Following this, they 

had to undergo a test phase where the stimuli were presented in old as well as novel 

pairs, exhausting the possible binary combinations available with 6 stimuli. Responses 

to stimuli with 70% reward contingency, i.e., C and E were of particular interest, as 

one of the two (E) had been devalued by prior instruction. The figure depicts pairs of 

interest for this instructed stimulus and indicates optimal behaviour for each type of 

pairing (deviation from this would imply they were influenced by the instruction to 

avoid E). 

 

The task consisted of a training phase and a test phase. In the training phase, each 

stimulus pair was presented a fixed number of times within a block. In this design, 

there were 60 trials in a training block, with each pair occurring 20 times. Stimulus 

presentation was randomized within blocks. Each trial was preceded by a fixation 

cross and followed by feedback as to whether the symbol chosen was correct or not. 

Following Doll et al. (2009) we imposed a performance criterion to ensure learning of 

the uninstructed contingencies (with EF being the instructed pair; see below for 

explanation). This criterion was the simultaneous (as in within one training block) 

attainment of (at least) 65% A choices on AB and (at least) 60% C choices on CD 

training pairs. To minimize the risk of some subjects learning only one of the pairs and 

passing the criterion by chance selection of correct symbols on the other pair, we 

imposed a minimum of two training blocks per subject, with the assessment being 

performed only from the second block onwards. If a subject failed to achieve the 

requisite level of performance, they had to undergo further training until they did. 
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Performance was always measured within a given training block and not across 

blocks.  

Upon successful passing of the criterion, subjects completed a single-block test-phase 

in which all the symbols appeared in all possible combinations (e.g., AB, AC, AD, 

etc.). The test phase comprised of 90 trials without feedback.  

Prior to the training phase, the experimenter provided detailed verbal 

instructions to the subject as follows: 

“This is a probabilistic selection task. It has two parts – a training phase and a test 

phase. In this task, on each trial you will be presented with two symbols on the screen. 

You have to choose one of them. Following this you will be informed whether your 

choice was correct or not. As this is a probabilistic task, no symbol will be correct 

100% of the time. There is no absolute correct answer. Some symbols are likely to be 

correct more often than others. Your task is to guess the better symbol in any given 

pair.” 

After this the subjects were asked to read the instructions presented on the computer 

screen very carefully. The same set of general instructions were presented in Dutch to 

reiterate the basic concept of the probabilistic selection task. This was followed by a 

screen that displayed the following misleading instruction (in Dutch): 

“The symbol shown below is least likely to be correct. You should avoid selecting it” 

and the Hiragana character for the “E” symbol was provided below. This was followed 

by the following instruction: 

“To choose the symbol on the left, press 1 and to choose the symbol on the right, press 

0”. 

Subjects read through the instructions at their own pace and commenced training 

afterwards. Upon completion of the training phase the subjects received an instruction 

that they would proceed to the test phase in which they will be exposed to all possible 

pairs of the stimuli they were trained on (training phase pairs interleaved with novel 

pairs). They were informed that the test phase would not include feedback following 

each trial and that they would have to go with their intuition. This was followed by the 
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test phase. Each pair appeared 6 times within the test block, and the occurrence of any 

given pair was randomized across the block. No feedback was provided in this block. 

Following successful completion of the task, subjects were asked to provide feedback 

on the following questions: 

1. Please provide general feedback on the experiment 

2. Did you notice anything in particular about the experiment? 

3. Did you follow all instructions given to you? 

4. Did you notice anything in particular about the instructions? 

An instruction-following measure was computed by calculating the difference (C-E) 

between mean C choices and E choices in conditions where they were paired with 

statistically inferior stimuli (i.e., B, D, and F) across the test block of the probabilistic 

selection task. The rationale behind this was that the instruction to avoid E would 

result in a positive difference between C choices and E choices on these trials, where 

both C and E are clearly the better stimuli.  

 

2.3 Working memory task 

The working memory task (taken from WAIS IV, 2008) consisted of subjects being 

asked to report sequences of letters and numbers presented to them on a trial. There 

were two blocks in this task. In the first block, the subject saw a sequence of letters 

and numbers appearing one element at a time in the middle of the screen. They then 

had to reproduce (i.e., type in) the elements, with the numbers being typed in first and 

the letters next. The numbers had to be in increasing order and the letters, in 

alphabetical order. The sequences increased in complexity over trials (2 items in the 

first trial and 8 in the final trial). There was a short training phase consisting of 5 trials 

prior to the commencement of the experiment. This was followed by 21 trials. The 

second block consisted of 16 trials in which subjects had to remember and reproduce 

the exact sequence in which numbers had appeared on screen during stimulus 

presentation, without reordering them. The stimuli were presented as in the first 

block. A working memory score was calculated by dividing the number of correct 

responses, up until the first erroneous one, by the total number of trials in the block. 
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For the purpose of our study, we used the score from the first block to compute a 

measure of working memory. The second block was not used in the analysis due to its 

focus on short-term memory span (cf. Daneman & Carpenter, 1980).  

 

 

3. Results 

3.1 Dietary choice task 

Taste and health ratings for each item were averaged across subjects (N= 52) to obtain 

a colormap (Figure 3) indicating the rating distribution of the items. Most items were 

found to be distributed around a taste value of 3 and a health value of 4. Figure 4 

presents the distribution of self-control scores across the sample (equation 1). Most 

subjects received negative self-control scores (mean = -22.11, sd = 24.07). 19.2% of 

the subjects self-identified as vegetarians. 11.5% reported being on a diet. 2 of the 52 

subjects reported having consumed food within the 3 hours prior to the study. The 

reliability of the task was, r(50) = 0.605, (p < 0.001). 
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Figure 3: Colormap generated from health and taste ratings assigned to different food 

items by subjects in the dietary choice task. This shows the distribution of rating 

combinations (taste, health; each rated on a 5-point Likert scale) for the 60 items rated 
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Figure 4: Self-control scores from dietary choice task  

 

 

3.2 Probabilistic selection task 

Our dependent variable of interest in the probabilistic selection task was percent 

choice of the 70%-stimulus, with independent variables stimulus (C or E, control or 

instructed) and block (training block 1, training block 2, or test). Given the error in 

contingencies in one version of the task we used contingency type as a between-

subjects factor and tested for interactions with variables of interest . 

Subjects completed the training phase before proceeding to the test phase. Subjects 

completed a minimum of 2 training blocks prior to test. The number of training blocks 

needed by subjects to reach performance criterion ranged from 2 to 5 (mean= 2.289, 

sd = 0.637). Due to the fact that only 21.15 % of the 52 subjects required more than 2 

training blocks, we used only the first two blocks from each subject’s data for 
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analysis. The reliability of the test (measured as indicated in methods section) was 

equal to (r(50) = 0.834, p < 0.01).  

To measure the effect of instructions on EF pair relative to the uninstructed pairs, we 

obtained choice and accuracy information for each pair in the training blocks. Figure 5 

provides a comparison of choice behaviour on A, C and E across training and test 

blocks.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Percent choice on stimuli A, C, and E across blocks in probabilistic 

selection task.  
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In the training phase, subjects chose A (in the AB pair) often throughout training 

(77.30% of the time (sd = 19.31%) in the first training block; and 82.11% of the time 

(sd = 15.67%) in the second training block). Choice of C in the CD pair was above 

chance in the first training block (58.36% of the time, sd = 19.91%) and was close to 

the actual contingency in the second training block (75.19% of the time, sd: 19.60%). 

Subjects’ choice of E in the EF pair (which had the same reward probability as C in 

CD, 70%) was suboptimal in the first training block (44.03% of the time, sd: 22.05%) 

but improved in the second block (72.69 % of the time, sd: 22.19%). These results 

show that by the end of the training phase subjects had learnt to select the better 

stimulus in each training pair. They are summarised in Figure 5. An ANOVA was 

performed with within-subjects variables stimulus, C or E; and block (training block 1, 

training block 2, test) and with order (Dietary choice task first or Probabilistic 

selection task first), contingency type, and the answer to the feedback query (whether 

the subjects followed all instructions (yes/no/no useful answer)), as between-subjects 

factors. This revealed a significant effect of block (Training block 1/ Training block 2 

/ test) (Greenhouse-Geisser corrected, F(1.775, 76.317) = 14.306, p <0.01), meaning 

that the optimal stimulus was chosen more frequently as the task progressed. In other 

words, subjects learned from the experimental contingencies. There was no significant 

effect of stimulus (F(1, 43) = 0.338, p =0.564), but the interaction between block and 

stimulus was significant (F(1.726, 74.232) = 3.477, p = 0.043). Hence, despite being 

nominally in the predicted direction (see percentages above and Figure 5), the 

instruction manipulation did not have a robust effect on subjects’ performance. The 

between-subject factors did not have any significant interactions with stimulus, 

(contingency type: F (1, 43) = 0.898, p = 0.349; order: F(1, 43) = 0.949, p = 0.335; 

feedback query: F(2, 43) = 1.725, p = 0.190) and block (contingency type: F(1.775, 

76.317) = 0.867, p = 0.413; order: F(1.775, 76.317) = 2.391, p = 0.104; feedback 

query: F(1.775, 76.317) = 0.868, p = 0.477). Among the between-subjects factors, 

contingency type (F(1, 43) = 5.130,  p = 0.029) and feedback query ( F(2, 43) = 5.339, 

p = 0.008) had significant main effects, unlike order, which had no significant effect 

(F(1, 43) = 0.5, p =0.483).  

In the post-task questionnaire, the question “did you follow all instructions?” received 

a positive answer (“yes”) from 76.9 % of the subjects, with 19.2% replying “no” and 
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the remaining 3.8 % providing unclear feedback. The question “did you notice 

anything in particular about the instructions?” received replies in the negative from 

55.8% of the subjects. Of the remaining 44.2%, 30.8% reported that the instruction to 

avoid E was wrong with regard to the contingencies, and the remaining 13.4% 

provided feedback that could not be quantified within the binary encoding used. The 

feedback question “did you notice anything in particular about the instructions?” 

showed a weak correlation with instruction-following, tending towards significance 

(r(50) = -0.238, p = 0.089). The feedback question “did you follow all instructions” 

was not correlated with instruction-following as measured in the main task (r(50) = 

0.211, p = 0.133). This latter query was however negatively and significantly 

correlated with the choice of E in the test phase (r(50) = -0.309, p = 0.026), meaning 

that adherence to all the instructions resulted in a reduction in choice of the E stimulus 

in the test phase, which is consistent with the fact that the stimulus-specific instruction 

was to avoid selecting E. 

 

3.3 Working memory task 

Working memory scores were calculated by dividing the number of correct responses 

up to the point of the first error, by the total number of trials in the block. We 

computed this score using data from the first block of the working memory task (see 

above). Working memory scores ranged from 0.048 to 0.952 (mean = 0.509, sd = 

0.235). The reliability of the task was, r(50) = 0.979 (p < 0.001). 

 

3.4 Correlations across tasks 

Contrary to our prediction, self-control was not significantly correlated with the 

instruction following measure (r(50) = 0.165, p = 0.242). Likewise, the correlations 

between working memory and self-control (r(50) = -0.162, p = 0.251), and working 

memory and instruction following (r(50) = -0.175, p = 0.216) were not significant. 

The statistical power of these correlations given the sample size (N= 52) was lower 

than 35% (32% for instruction following versus self-control, 31.22% for working 
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memory versus self-control and 34.64% for working memory versus instruction 

following, respectively).  

 

4. General discussion  

In this study, we aimed to test whether an increased tendency towards instruction-

following predicted a high degree of self-control. We used tasks designed to elicit 

instruction-following tendency and self-control within the context of dietary choice to 

this end. A working memory task was used a control task. The study yielded no clear 

evidence in favour of the prediction derived from the models. Here we detail possible 

interpretations of the results and discuss avenues for future research.  

 

4.1 Dietary choice task 

The sample contained a majority of non-self-controllers (in the context of dietary 

choice). This differs from the distribution of subjects in the Hare et al. (2009) study. 

There were few dieters in the sample (11.5%) and it is conceivable that this 

contributed in part to the observed distribution of self-control scores.  

 

4.2 Probabilistic selection task 

The probabilistic selection task did not yield a marked effect of instructions on 

contingency-learning. This could be due to a number of factors. Firstly, the instructed 

(EF) and control (CD) pairs shared a contingency that was easy to disambiguate 

(70/30), as opposed to the one used by Doll et al. (2009), (where EF pair had a reward 

contingency of 60/40). Our reason to equalize these percentages was to make sure that 

a proper control stimulus (C) would be available for the manipulated (E) stimulus. 

Yet, as a result of this change our experiment does not serve as a strict replication of 

the earlier work by Doll et al. (2009). Secondly, a focus on the instructed symbol (E) 

coupled with clear-cut contingencies could have led to abandonment of the instructed 

policy (avoid E). Thirdly, given that we imposed a minimum of two training blocks 

(i.e., subjects could not proceed to the test phase even if they had learnt the 
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uninstructed contingencies within one block), it is conceivable that this could have 

been sufficient for subjects to learn that the “avoid E” instruction was inconsistent 

with the actual reward contingencies associated with the EF pair.  

 

4.3 Correlations across tasks 

Our prediction that high self-control scores would correlate positively with 

instruction-following behaviour was not supported by the evidence. Reliability of the 

individual tasks was probably not the reason, as reliabilities were generally quite high. 

In addition to the possible factors that led to the observed task-specific results, the 

absence of an interaction between the variables of interest could be due to multiple 

factors.  

First, given the computational framework described previously, these results could 

also be interpreted to mean that the subjects were skilled at contingency-learning and 

responded to immediate rewards (tasty food items). Second, as it stands, the sample 

comprises of subjects with low instruction-following tendency and low self-control. It 

is likely that there were floor effects in the variables of interest. Third, subjects 

performed all three tasks (probabilistic selection, dietary choice and working memory) 

in one session, and did not consume food for 3 hours prior to it. This requirement is 

pertinent only to the dietary choice task. It is conceivable that this might have 

presented the subjects with increased cognitive demand, thereby introducing an 

additional, uncontrolled, factor influencing the results.  

Null results are akin to an ambiguous silence punctuating a spirited conversation. The 

results yielded by the experiment do not categorically invalidate our prediction but 

they also do not favour it. Given the success of the modelling framework in replicating 

recent datasets dealing with both instruction-following and self-control, we opine that 

the experiment described in this study needs to be repeated with one or more of the 

following modifications.  First, the probabilistic selection task might benefit from a 

modification of the contingencies of the two stimuli of interest; C and E. Instead of the 

easy to disambiguate reward contingency, (70/30) a finer one (60/40) can be used for 

both control (CD) and instructed (EF) stimulus pairs. We predict that this would 
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render the effect of instruction more pronounced. Second, testing the same group of 

subjects on each task separately at different time periods or on different days could be 

a way to circumvent any unintended influence of cognitive demand, on overall 

performance. Third, the sample should be larger to increase power. Indeed, the 

correlation was nominally in the right direction, so it is a possibility that low power (< 

35%) contributed to the null result, given the sample size. And finally, a more 

balanced sample (including dieters in greater number) could yield a more balanced 

distribution of self-control scores and increase the sensitivity of our tests. 
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Human behaviour, be it the utterly arbitrary or the most arcane, is the product of 

interactions that span multiple levels of description, from the biophysics of the action 

potential to coordinated information processing in brain systems. In this thesis, we 

investigated the computational underpinnings of two very important facets of human 

behaviour; learning and cognitive control, and explored the predictions derived from 

the computational approach to these phenomena, empirically. Here, we discuss the 

two aspects of this program of research (i.e., theoretical and empirical) in detail and 

systematically outline pertinent ideas for future research.  

 

5.1 The Computational theory: an overview 

David Marr (1982) proposed a three-level framework for understanding information 

processing systems; the computational (“what is the computational problem being 

solved?”), the algorithmic (“what are the ways in which the problem can be solved”) 

and the physical (implementation) (“how does a physical system support the process 

described by the preceding levels?”) (Poggio, 1981).  Originally applied to the 

problem of vision, this framework has a well-deserved generality and can be applied 

to the study of those facets of behaviour that we seek to understand as well. Our 

approach covered the computational, algorithmic and high-level mechanism levels of 

analysis. We used a broadly defined theoretical framework to address open questions 

in the study of learning and cognitive control.  

Following Daw et al. (2005), our framework consisted of complementary 

learning/control systems that instantiated a learning-action tradeoff. One of the 

systems learnt rapidly while being slow to respond, whereas the other required more 

time to learn while responding with rapidity once said learning had occurred.  

 

5.1.1 Models and Mechanisms 

We derived two distinct (but related) models from the framework described above; a 

model of instruction following and a model of self-control. Here we discuss the 
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individual models and their relation to other models aimed at capturing the same 

phenomena.  

 

5.1.1.1 Model of Instruction following  

The model described in chapter 2 was a straightforward instance of the framework in 

that it had dual-systems architecture carrying out learning and responding across the 

computational tradeoff of interest (rapid-learning/slow-acting versus slow-

learning/fast acting). The LPFC system (fast-learning/slow-acting) acquired 

instructions (encoded as instructed S-R mappings in the model, to capture a simple, 

but sufficiently rich form of instruction following) through fast-Hebbian learning and 

responded slowly. While this is a simplification, it can also be seen as an instance of 

model-based learning (as described in Daw et al. 2005), where the system acquires a 

model of the world (in this case, a simple rule for responding to specific stimuli or 

categories of stimuli) and uses it to constrain its responses. Typically, (world) models 

(and their learning algorithms) are more complex, but in their simplest form they can 

be reduced to straightforward associations between required stimuli and required 

responses. See Gläscher et al. (2010) for an example how such more complex models 

may be learnt. The second, slow-learning system, on the other hand, is model-free, in 

that it learns by integrating contingencies over time but acquires “cached” responses 

that can be implemented rapidly. In the context of instruction following, the “cached” 

learning system (hypothesised to be predominantly striatal), acquires its mappings by 

picking up reinforced responses delivered initially by the LPFC system. This is an 

instance of cooperative learning between the different systems along a tradeoff. 

Competitive interactions could also occur, for example, when the rule learnt by the 

instruction-following system is no longer applicable. The flow of information can also 

go the other way round: The “cached” learning system integrates novel contingencies 

and could then contribute to the extraction of a new rule (Pasupathy & Miller, 2005) 

which would then lead to updating of the previous “(world)model”.  

It is interesting to note that this competition/conflict between the two learning systems 

can also be cast in the light of reward prediction-error driven learning in the brain 

(Gläscher, Daw, Dayan & O’Doherty, 2010; Silvetti & Verguts, 2012). The “model” 



112     CHAPTER 5 

held by the LPFC system (or the instruction following system) is associated with a 

response to an external circumstance. This amounts to a prediction of a specific 

outcome given a specific response. If the rule is no longer valid, then the model-based 

response would lead to an outcome that would fall short of the expected reward and 

this would result in a prediction error. Given that the brain appears to perform 

optimization, which corresponds to the computational level in Marr’s sense, it would 

try to minimize this error by updating its representation of the world and the rules used 

to respond in the world (for a discussion of this idea see Friston, 2010). When this 

fails to occur, mal-adaptive behaviours and/or cognitive biases can be observed.  

 

5.1.1.2 Model of self-control  

The model discussed in chapter 3 is derived from the same framework as the model of 

instruction following, but its correspondence to the framework is less direct. This is 

because, as it stands, the model of self-control takes value information of different 

kinds and integrates them at a specific site (the vmPFC) to compute a decision. The 

learning/action tradeoff is implicit in its architecture and function. The two learning 

systems are very much prevalent in this model. The LPFC valuation system which 

influences overall value computation and is thus seen as the seat of self-control, is yet 

another instance of a fast-learning, slow-acting, model-based system. Instructions can 

be conceived of as very simple models of the world (and complexes of such rules 

generate richer, more comprehensive models). Likewise, abstract values such as 

“health”, “savings” etc., can be seen as being part of the model-based system. One has 

a notion of becoming healthier over time due to application of specific rules (“eat 

more vegetables”, “avoid chocolate fudge ice-cream for breakfast”) but the results are 

not immediately apparent. Therefore, such rules belong to a model of the world, of 

things to be done to achieve specific goals (better health, retirement money). The 

model-free element here is the ventral-striatal valuation system which learns value 

based on immediate reward and reward prediction errors (Gläscher et al; for a different 

perspective on the role of ventral-striatum in reinforcement learning, see McDannald, 

Lucantonio, Burke, Niv & Schoenbaum, 2011). The gustatory pleasure associated with 

a tempting snack is not experienced in some future state, as in if one persistently 
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consumes chocolate cake, one would then experience a very satisfying taste. It is an 

immediate one. Therefore, when it comes to “wanting” a certain reward, be it dietary 

or monetary, the ventral-striatal system performs similarly to the “cached” system in 

the previous model, by responding quickly to things that have been learnt to be 

rewarding immediately. The LPFC system, on the other hand, can be thought of as 

estimating value by simulating the future and selecting the response in accordance 

with rules or goals (“eat healthy”, “spend wisely”) and it is essentially akin to the 

instruction-based system seen previously. A self-control goal can be learnt or acquired 

rapidly (e.g. New Year’s resolutions) but its implementation is not immediate or easy 

(Gollwitzer & Schaal, 1998; Koestner, Lekes, Powers & Chicoine, 2002) . If this 

account reflects something that is going on in the brain, then the following scenario 

must be demonstrable upon investigation. Just as the instruction-following system 

imparts instructed contingencies to the striatal system, the self-controlling, LPFC 

valuation system should, in principle, be able to “teach” the ventral-striatal valuation 

system to assign greater reward value to choices that are more in-line with the long-

term goals. For example a self-controller’s striatal valuation system would come to 

view healthier options (broccoli) as being tasty if not tastier, than more immediately 

rewarding but unhealthy food items (fried doughnuts). Such a change in evaluation 

should be discernible on the behavioural and neural levels. Indeed, caching of 

previously rule-based responses improves the likelihood of attaining personal goals 

requiring the exercise of self-control (Gollwitzer & Schaal, 1998).  

 

5.1.1.3 Other models of instruction following and self-control 

Instruction following As detailed in chapter 2 instruction following has received 

much attention in recent years, albeit from the empirical level of investigation. 

Theoretical accounts of instruction following were rare with no major modelling 

efforts directed at acquisition and implementation of instructions until the pioneering 

work of Noelle and Cottrell (1995). 

Noelle and Cottrell’s model employed a recurrent network architecture (Elman 1990) 

to capture instruction following. Their network acquired an instructional language 

over a long training phase, using the error-backpropagation learning algorithm 
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(Rumelheart, Hinton & Williams, 1986). Instructions were represented as activation 

patterns (see Botvinick & Plaut, 2006) in the network as opposed to synaptic changes. 

This model is a fine example of connectionist modelling of cognition, but is not 

grounded in neurobiological considerations and is therefore not a learning account 

situated in the human brain per se.  

Ashby et al. (1998) proposed the influential COVIS model of category learning, in 

which category learning is realised in distinct verbal (rule-based) and implicit 

(procedural) learning systems (for a review, see Ashby, 2011). As noted in chapter 2, 

this modelling approach is compatible with our general framework and COVIS can be 

seen as a predecessor of our model of instruction following. However, COVIS does 

not focus on the acquisition of an instructed rule, and is therefore not a model of 

instruction following in the same sense as the one described here.  

More recently, Doll et al. (2009) proposed a model of instructional control of 

reinforcement learning. This model shares an important feature with our model, in that 

instructions are learnt by fast Hebbian learning in the prefrontal cortex. A point of 

departure is the purported influence of the instruction following system on the striatal 

learning system. In our model (Ramamoorthy & Verguts, 2012), this influence is 

cooperative, with one system teaching the other. In Doll et al.’s account, the 

instructions manage to bias the contingency learning system in the basal ganglia, to 

the detriment of the cognitive agent. They also report a variant of their model similar 

to ours (with prefrontal cortex influencing the motor system directly), but they dismiss 

this model in favor of the other one.  

More recently, Huang, Hazy, Herd and O’Reilly (2013) have proposed a model of 

instruction following consisting of complementary learning systems that allow rapid 

instruction-learning and slow automatisation, in a manner that is conceptually 

identical to our model of instruction following. The differences between the two 

models are architectural. In their model, instruction following is achieved by fast-

learning in a fronto-hippocampal system, and the parietal learning system carries out 

slow learning. It is interesting to note that this idea of complementary learning 

pathways has been proposed as a means of capturing instruction following by multiple 
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investigators independently, suggesting a theoretical convergence that might have a 

meaningful correspondence to empirical reality.  

Self-control Our model of self-control is, to the best of our knowledge, novel. 

However, phenomena such as temporal discounting and preference reversal have been 

explored using models derived from behavioural economics (Ainslie, 1992), and such 

models have been applied to fMRI data (McClure et al., 2007). McClure et al. (2007) 

apply the double-exponential discounting model (the so-called β-δ model) to 

intertemporal decision making in the brain and suggest that the brain recruits two 

distinct valuation systems for intertemporal choice; the reward-sensitive/delay-

aversive β-system and the delay-tolerant δ-system. This model is very interesting and 

indeed, provides neurobiological inspiration for our model, but it does not provide a 

neurocomputational mechanism to account for intertemporal decision making. More 

recently, Scherbaum, Dschemuchadse and Goschke (2012), have proposed a 

connectionist account of intertemporal choice and discounting. Their model employs 

an additive valuation process that computes the relative values of competing options 

by integrating both reward magnitude and temporal information. The two discounted 

options compete and the winner inhibits the other option, thereby leading to a choice. 

Our model shares some similarities with this approach, but has a more specific 

neurobiological focus, and suggests that delay and magnitude are combined with 

varying levels of tolerance to delay in competing valuations systems (see chapter 3 for 

details). 

Our model appears to be the first to bring phenomena such as self-control in 

dietary choice as well as self-control in intertemporal choice within the purview of a 

general computational framework.  

 

5.2 The computational theory: Concluding remarks  

The general computational framework described above derives from the dual-

controller framework proposed by Daw et al. (2005) and is in some respects, a simpler 

version of the same. Constructs such as instruction following or self-control refer to 

complex phenomena: We attempted to provide a simplified account capable of 
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addressing these. Our models make contact with previous findings and offer testable 

predictions, but are by no means exhaustive in their capacity for describing instruction 

following and/or self-control. They are the sum of their strengths as well as 

shortcomings. Shortcomings, more than strengths, inform and influence the evolution 

of a theory, and the models spawned by it. Specific boundaries/limitations add to the 

scientific quality of theories and models, as they render them testable and therefore, 

refutable (Feynman, 1965, 1974; Popper, 1963). Here we summarize the strengths and 

weaknesses of the models, and in turn, the overarching framework and remark on the 

future of this line of research 

5.2.1 Model of instruction following: strengths and shortcomings  

Upon examining the strengths of the model of instruction following, the following 

facts become apparent. First, our model of instruction following (Ramamoorthy & 

Verguts, 2012), has been successful in replicating basic behavioural findings, such as 

progressive quickening of responses (Ruge & Wolfensteller, 2010), interference 

between instructed and applied mappings (Waszak et al., 2008) as well as some 

aspects of the neural dynamics of  instruction following (Ruge & Wolfensteller, 2010), 

such as declining prefrontal contribution to responses over increased application of an 

instruction, and increased striatal contribution to responses over time. Second, it 

employs a Hebbian learning rule, which, as noted in chapter 1, is an elegant and 

biologically plausible learning mechanism. It recasts instruction following as 

associative learning.  Third, the model is not burdened by more parameters than 

needed, and in fact, given its architecture, produces interesting behaviours with just 

one free parameter (learning rate). Other parameters such as response threshold, 

cascade rate etc. (see Chapter 2 for details) are standard parameters used in modelling 

neural networks, and are not unique to the model. Fourth it yields testable predictions; 

the dynamics and transfer of learning across the different processing routes in the 

model are empirically testable, as is the model’s account of goal neglect (Duncan, 

1996). 

The instruction following model has its share of shortcomings. First, the 

proposed architecture does not support processes such as context representation, rule 

retrieval from long-term memory and is as such a relatively partial account of 
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instruction following. Second, it presumes the existence of previously learnt 

associations between components of an instruction and their physical counterparts, 

such as objects and actions. While it can be argued that this is a reasonable assumption 

to make, it does add to the problem of incompleteness as mentioned previously. Third, 

the model produces an interesting shift from the LPFC route to the striatal one, 

without being chaperoned, but this shift depends on the way the architecture is 

configured; if the LPFC route and the striatal route have the same number of synapses 

to the motor cortex (overseeing the response), then their activations come to resemble 

one another, as opposed to a “passing of the baton”. This dependence on architectural 

specifics, coupled with the difficulty in estimating a realistic path length for the LPFC 

route (see Chapter 2) render the model vulnerable to the criticism that it is, in the 

worst case, a model of convenience. Fourth, the prediction offered by the model, that 

instructions can eventually be automatised by procedural learning followed by 

overtraining, is one shared by the COVIS and SPEED models of Ashby et al. (1998; 

2007) and shares their difficulty in finding empirical support for the suspected transfer 

from rule-based to procedural learning (Helie, Roeder & Ashby, 2010).  

 

5.2.2 Model of self-control: strengths and shortcomings  

The model of self-control (Ramamoorthy & Verguts, under review) has the following 

strengths; first, it has been successful at capturing two very broad and important 

instances of self-control, dietary choice regulation (Hare et al., 2009) and avoidance of 

preference-reversal in intertemporal choice (Ainslie 1992). Second, it is consistent 

with several recent findings that point to an integrative account of value computation 

in the medial frontal cortex (Kable & Glimcher, 2007, 2009; Peters & Buchel, 2009; 

Rangel & Hare, 2010) and provides a simple mechanistic account of the same. Third, 

it predicts the behavioural distinctions between self-controllers and non-self-

controllers in dietary choice a priori, as self-control in model terms, is a function of 

LPFC gating in the VMPFC (see chapter 3 for details) and this gating parameter also 

influences the distinction between steep and shallow discounting in the intertemporal 

choice version of the model, such that high gating of LPFC input to the VMPFC leads 

to self-control in both dietary choice as well as intertemporal choice. This adds to the 
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economy of the description provided by the model. Fourth, it yields testable 

predictions, namely, the possibility that repeated application of a self-control rule (e.g. 

“eat healthy”) would then lead its being cached  and that this would come to be 

reflected in the response of the striatal valuation pathway, such that the two systems 

have a cooperative dynamic. In the example of dietary choice, this would correspond 

to an oft-chosen healthy food item acquiring a higher subjective taste-rating over time, 

therefore becoming easy to choose over time. It also provides a testable mechanism 

for temporal discounting that does not involve the explicit representation of a discount 

function. Recent research appears to support the representation of delay used in our 

model (Jimura, Chushak & Braver, 2013; for a related yet subtly different perspective 

on the issue of discounting in the brain, see Marco-Pallares et al., 2010). 

As was the case with the previous model, the self-control model has a few 

shortcomings, in addition to the strengths touched upon above. First, it comes with in-

built values specific to the task-at-hand and the acquisition of those values is assumed 

rather than encapsulated in the model description. This weakens its connection to the 

model of instruction following, which is, primarily, a model of learning. Second, the 

model of intertemporal choice and the model of dietary choice are closely related, but 

distinguished by a single architectural difference; the intertemporal choice model has 

temporal representations, whereas the latter does not. While the two models do share 

an architectural core, and use the same mechanism for capturing self-control in 

decision making, this architectural detail renders the overall approach to self-control 

less parsimonious than it would have been with a single architecture capable of 

supporting both instances of self-control. Third, it does not address the widely studied 

and pertinent phenomenon of inhibition in cognitive control (for a review, see 

Munakata et al., 2011).  

 

5.2.3 General computational framework: evaluation and perspectives 

Just as the individual computational models have their strengths and weaknesses, so 

does their progenitor, the general computational framework. Briefly, this framework 

rests on two influential concepts, namely, complementary processing pathways and 

computational tradeoffs. These are general ideas and generality is often achieved at the 
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expense of granularity of description, i.e, a high-level idea such as a computational 

tradeoff offers no purchase on the specifics of how such a tradeoff might work in a 

very particular physical system that processes information. On one hand, this allows it 

to be applied to diverse phenomena, and as elucidated previously, such is the case with 

our framework too.  

5.2.3.1 Complementary processing systems  

Complementary processing systems have been proposed time and again, in 

psychology (Kahneman, 2011; Metcalfe & Mischel, 1999; Schneider & Shiffrin, 

1977; Sloman, 1996), neuroscience (Hare et al., 2009; Milner & Goodale, 1993, 2006, 

2008; McClure et al., 2004, 2007;). and computational modelling of cognition (Ashby 

et al. 1998; Daw et al., 2005). Despite its generality and influence, or perhaps because 

of them, this idea has also received its share of criticism in recent times (Keren & 

Schuul, 2009). Recent studies on reinforcement learning (Daw, O’Doherty, Dayan, 

Seymour, & Dolan, 2006), value computation( Hare et.al, 2009; McClure et al., 2004, 

2007; for a contrasting viewpoint see Kable & Glimcher, 2007, 2009) and visual 

processing (see Milner & Goodale ,2008) suggest that complementary information 

processing routes do function in the human brain.  

The two systems in our models represent processing pathways that operate at opposite 

ends of a computational tradeoff. The existence of relatively independent processing 

systems could also allow the brain to accomplish more in terms of information 

processing by using one system to perform low-cost computations (automatic 

responding, for instance) and the other to engage in high-cost computations (tree-

search as described in Daw et al., (2005)). Finally, having complementary systems 

instantiate a tradeoff ensures that reduction in performance in one system does not 

immediately disadvantage the brain. A unitary system would suffer from performance 

degradation than one which has multiple layers of processing.  
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5.2.3.2 Homunculus-free computation 

A key strength of our computational framework is that it is not home to a homunculus. 

In the model of instruction following, all information is learnt locally through Hebbian 

learning, and the transfer of learning from one system to another does not require the 

system to “know” in some higher sense of the term, when and where to effect such a 

transfer. Responses are produced by integrating the output of the available processing 

systems. Likewise, in the model of self-control, two valuation systems contribute to a 

goal-value computation in the vmPFC (see chapter 3 for details) without the need for a 

“self” overseeing self-control. The gating mechanism presented as a potential causal 

influence in self-control, is a parameter that is distributed across individuals and is not 

an implicit homunculus which tells the model to control or not.  

 

5.2.3.3 Biological Realism and Marr’s third level 

O’Reilly (1998), articulated six principles for biologically realistic computational 

models of cortical cognition in an eponymous article; biological realism, distributed 

representations, inhibitory competition, bidirectional activation, error-driven task 

learning and Hebbian model learning (here the term is used in the sense of a “model of 

the world”). From this perspective, our framework realizes most of these principles; 

all learning in our models is Hebbian, response selection is achieved through 

inhibitory competition between response units and the architectures are informed by 

recent neurobiological findings. Below, we discuss the principle of biological realism 

and its implications for our framework.  

Biological realism is an important test of a computational model of brain function. 

Seen from the perspective of Marr’s tri-level analysis of information processing 

systems (Marr, 1982), biological realism corresponds to the third level, or the 

implementation level, i.e., e answer to “how are the algorithms supporting the 

computation of interest realized in a physical system?” 
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As mentioned at the outset, our models capture a general high-level computation 

(goal-directed behaviours, instructions, self-control etc., aimed at optimizing overall 

adaptive behaviour and reward) while retaining a strong focus on the algorithmic 

level. The neural architectures we propose are indeed grounded in neurobiological 

findings, but they do not correspond to Marr’s third level. They are architectures that 

support specific algorithms (e.g., Hebbian learning, additive value computation) and 

hint at a biological foundation for the same. However, our models do not venture 

deeply into the biological implementation of the algorithms they represent. This 

derives in part, from an a priori choice to limit modelling efforts to the neurocognitive 

level as well as the lack of clear biological correlates for commonly assumed model 

parameters (such as learning rate). This leaves us with open questions on the precise 

biology of the brain mechanisms we propose, such as the gating parameter used to 

encapsulate LPFC control over valuation. In this regard, our models display a telling 

weakness, in that they do not reflect the reality of a changing, adaptive human agent. 

Learning rates and gating parameters are assumed to be static or utterly deterministic 

in our models. Reality is, of course, likely to be far richer than this simplification. It is 

not inconceivable that an integrative account of information processing in the brain 

across the three levels can be built, from membrane biophysics to behaviour and the 

extensions of our computational framework provide sufficient motivation to delve into 

the third level of analysis.  

 

5.3 Predictions and reality: empirical contact   

Ideas when subjected to rigorous empirical testing shape the landscape of theory, in 

science. The general computational framework described here and its instances (i.e., 

the models derived from it) belong to the theoretical level of scientific discourse. 

Simulation studies yield useful tests of models but they are no substitute for empirical 

testing. In the empirical work described below, we attempted to test a specific 

prediction that related the model of instruction following to the one dealing with self-

control; a strong tendency to follow instructions should correlate positively and 

significantly with a high degree of self-control. This prediction appears to resonate 

with recent findings that the use of cognitive control is facilitated by the use of 
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implementation intentions (which are “if-then” statements that function as self-

instructed stimulus-response contingencies or cue-response associations), (Cohen, 

Bayer, Jaudas & Gollwitzer, 2008) as well as the use of self-affirmations to counteract 

ego-depletion (Schmeichel & Vohs, 2009), (for a detailed account of ego-depletion, 

see Muraven & Baumeister, 2000).  

 

5.3.1 The behavioural study and its implications  

To test the prediction described above, we designed a behavioural study (see chapter 4 

for details) that incorporated three different tasks; a dietary choice task to measure 

self-control (adapted from Hare et al., 2009), a probabilistic selection task with an 

instructional component (adapted from Doll et al., 2009) and a working memory task 

(from the WAIS IV, 2008). We calculated measures of instruction following tendency, 

self-control and working memory capacity from the tasks, and examined them across 

52 subjects. Upon detailed analysis, the individual tasks and the measures computed 

from them were found to be reliable and the sample sufficiently powerful for each 

component of the overall study. The correlation between the variables of interest 

(instruction following, self-control) was found to be nominal and non-significant. 

Prima facie, the results of this study do not support our principal hypothesis. 

However, they do not yield an unambiguous refutation either. This ambiguity derives 

from the existence of a nominal (non-significant) correlation between the two 

variables of interest (instruction following tendency and self-control score), the lack of 

sufficient power for the correlation of interest (<32%) and the fact that null results are 

typically difficult to interpret (Aberson, 2002).  Additionally, nearly 50% of the 

subjects experienced a slightly different contingency in the probabilistic selection task 

with this factor (contingency type) having a significant effect (as reported in chapter 

4). This implies that the sample suffered from a lack of homogeneity with respect to 

experimental conditions. Subjects performed all 3 tasks in one session, and as we have 

discussed in chapter 4, this could have contributed to noise in the data, reducing the 

quality of performance in individual tasks. Also, the sample perhaps did not contain 

enough instruction followers or self-controllers to adequately test for a relation 

between the two phenomena.  
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While it may well be the case that controlling for these factors and replicating the 

study with a larger sample could potentially yield a different outcome, we note here 

that the results of our study suggest that we reduce belief in the hypothesis and remain 

open to invalidation of the theoretical motivations for the same. Given recent findings 

that lend support to the individual models such as the dynamics of learning-transfer in 

instruction following (Wolfensteller & Ruge, 2012) and temporal representations in 

value discounting (Jimura et al., 2013) and the interaction between them, for instance, 

the influence of affirmations on self-control (Schmeichel & Vohs, 2009), we suggest 

that the framework requires additional testing to achieve true falsification and as such 

it has not been disconfirmed by the null result obtained from our behavioural study. 

 

5.4 Taking stock, moving forward: directions for future research  

Thus far, we have articulated a set of models to capture two indispensable 

aspects of human adaptive behaviour; instruction following (Ramamoorthy & Verguts, 

2012) and self-control (Ramamoorthy & Verguts, under review). We tested an 

important prediction through a behavioural study and encountered a null result which 

remains open to interpretation. Here we address the following pertinent query.  

 

5.4.1 Where do we go from here?  

5.4.1.1 Computational modelling 

The models described here and any future models derived from the aforementioned 

framework would likely benefit from more detailed biological specification to increase 

their testability. A model that lays down a specific way of realizing a systems-level 

mechanism is more refutable than one that is mechanistically vague or agnostic. We 

hope to achieve greater biological realism and therefore a realization of all three levels 

of analysis in Marr’s framework in future modelling endeavors.  

Of immediate and particular interest, in this context, are the findings concerning the 

role of neuromodulators in learning (Daw & Doya, 2006), cognitive control (Cools, 

2008) and temporal discounting (Schweighofer, Tanaka & Doya, 2007). The current 
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models can be augmented to include the effects of neuromodulators on self-control; 

for example, recent findings suggest that serotonin depletion leads to impulsive choice 

and steep-discounting (Crockett, Clark, Lieberman, Tabibnia & Robbins, 2010; 

Schweighofer et al., 2007). It would be useful to explore the computational basis of 

this phenomenon.  

 

5.4.1.2 Empirical testing 

First, in the case of the instruction following model, an extensive model-based fMRI 

study to examine the temporal dynamics of initial instructional-learning of a stimulus-

response association and eventual automatisation of the same would likely prove 

useful (for a review on model-based fMRI, see Gläscher and O’Doherty, 2010).  

Specifically, the model performs instruction following and automatically transfers the 

instructed mapping from one learning-system (LPFC) to another (striatal). One way of 

testing this proposed transfer empirically, would be to conduct an fMRI study where 

subjects perform an instruction-following task (for example, the task from Ruge & 

Wolfensteller (2010), where simple stimulus-response associations are instructed and 

tested) in the scanner over an extended period of time (i.e., multiple training sessions). 

Behavioural results for each session, from each subject would be used to generate the 

corresponding activations and temporal dynamics in the computational model, with 

the output from the model being used as a regressor in the analysis of the fMRI data. 

Given that transfer in the model is a consequence of the computational tradeoff, it 

depends on the speed of learning as well as responding in the two pathways. We 

predict that, given inter-individual differences in processing speed in the LPFC and 

striatum, the model’s activation patterns for these regions over time should correlate 

with maximally active voxels in the brain that correspond to the LPFC and striatum of 

the individual subjects.  

Second, a similar approach can be used to study temporal changes in valuation. Self-

control is, in our framework, an instance of cognitive control. Given our 

computational framework, it can be argued that self-control can be learnt and 

automatised for specific stimuli or circumstances, just as instructions applied over and 

over again become cached responses to stimuli. The work of Gollwitzer and Schaal 
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(1998) lends support to this idea. It would be interesting to study whether repeated 

application of self-control leads to a transfer of the valuation from the LPFC to the 

striatal system, such that choices which needed deliberate control become valued as 

being immediately rewarding over time. An example of this would be the change in 

the subjective evaluation of a food item, which is initially considered merely healthy 

and not particularly tasty, but comes to be perceived as having higher taste value than 

before, due to repeated application of self-control to select it. A model-based fMRI 

study, as described above, can be used to delineate the occurrence of such a change in 

evaluation by tracking the activation in regions of interest across over time.  

 

 

 

5.4.2 Conclusion 

To summarize, our relatively simple models appear to capture otherwise complex 

phenomena such as instruction following and self-control and provide insights into 

how they might occur in the brain but we do not purport to know this in any conclusive 

manner. Our research raises a fresh set of questions to be explored and is best viewed 

as work-in-progress. We tentatively conclude (for science is an interminable process), 

by expressing belief in the utility of our theoretical framework and looking forward to 

exploring open questions in learning and cognitive control. In this ongoing endeavor, 

we concur with Richard Feynman; “I think, it is much more interesting to live not 

knowing, than to have answers which might be wrong.” (Feynman, 1999); for in the 

acknowledgment of fallibility and uncertainty lies the hope for increased 

understanding.  
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Inleiding 

Deze thesis bestudeert leren en cognitieve controle vanuit computationele en 

empirische perspectieven. Leren en cognitieve controle beïnvloeden menselijk gedrag 

grondig en op vele manieren. We kozen ervoor om te focusen op het volgen van 

instructies en zelfcontrole, omdat deze aspecten van cognitieve controle nog slecht 

begrepen zijn. In lijn met Daw et al. (2005) vertrokken we van een computationeel 

kader gekarakteriseerd door een tradeoff tussen leren en handelen, geïmplementeerd in 

complementaire paden in het brein. Meer bepaald, het ene pad leert snel maar handelt 

traag, terwijl het andere pad traag leert maar snel handelt. We pasten dit kader toe op 

de fenomenen waarvan sprake, namelijk het volgen van instructies en zelfcontrole. We 

bouwden computationele modellen gebaseerd op deze tradeoff en gebruiken deze 

modellen om relevante fenomenen te simuleren uit de literatuur omtrent het volgen 

van instructies en zelfcontrole.  

 

Model voor het volgen van instructies 

Elk experiment in de psychologie begint met instructies relevant voor de taak die de 

proefpersoon uit te voeren heeft. Vele modellen voor cognitieve controle gaan ervan 

uit dat de relevante taakinformatie op een of andere manier aanwezig is in het brein en 

toelaat om de taak uit te voeren. Echter, hoe dit precies gebeurt is nog slecht begrepen. 

Recent heeft het volgen van instructies verhoogde aandacht gekregen van zowel 

theoretici als experimentele onderzoekers. Onderzoek naar de gedragsaspecten ervan 

toonde aan dat instructies snel en met zeer hoge accuraatheid geïmplementeerd kunnen 

worden (zie bijvoorbeeld Ruge & Wolfensteller, 2010). Instructies kunnen ook 

interfereren met eerder geleerde responsen (zie bijvoorbeeld Waszak et al., 2008). 
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Men vermoedt dat het volgen van instructies een prefrontaal-striataal netwerk 

aanspreekt (zie bijvoorbeeld Hartstra et al., 2011; Ruge & Wolfensteller, 2010).  

We construeerden een computationeel model voor het volgen van instructies. Het 

model heeft twee paden; een lateraal-prefrontaal pad en een striataal pad. Het eerste 

pad implementeert instructies via snel Hebbiaans leren. Het tweede pad zorgde voor 

geleidelijke automatizatie van de instructies. Dit model kon typische fenomenen 

verklaren zoals versnelde reactietijden naarmate training toeneemt, en zeer hoge 

accuraatheden vanaf de eerste proefbeurt. Het model gaf ook een verklaring voor de 

interferentie-effecten die gerapporteerd werden door Waszak et al. (2008), waar een 

geïnstrueerde stimulus-respons mapping die nooit echt geïmplementeerd werd, toch 

reactietijden kon vertragen van (andere) toegepaste stimulus-respons mappings. Tot 

slot bekeken we met dit model ook het fenomeen van zgn. “goal neglect” (Duncan, 

1996) waar proefpersonen of patiënten een doel kunnen uitspreken (in dit geval, een 

simpele stimulus-response mapping) zonder het effectief te kunnen implementeren. 

Predicties van het model kunnen in gedrags- of fMRI vervolgonderzoek getest 

worden. 

 

Model voor zelfcontrole 

Zelfcontrole is een belangrijk maar minder goed bestudeerd aspect van cognitieve 

controle. Hoewel het op empirisch niveau wel bestudeerd werd in de psychologie en 

de cognitieve neurowetenschappen (bijvoorbeeld, Baumeister, 1998) is er zeer weinig 

geweten over de computationele basis ervan. Om dit aspect aan te pakken, pasten we 

het algemene kader toe op zelfcontrole, in de domeinen van dieet-gerelateerde 

beslissingsprocessen en intertemporele keuzes.  

Met betrekking tot dieet-gerelateerde beslissingen probeerden we de bevindingen van 

Hare et al. (2009) te repliceren. Deze auteurs toonden aan dat mensen die zelfcontrole 

uitoefenen zowel gezondheids- als smaakinformatie in hun beslissingen incorporeren, 

en ze toonden aan welke hersengebieden bij deze soorten informatie betrokken waren. 

Het model had complementaire paden. Elk pad leverde een waarde-input aan een 

centrale waarde-vergelijker, die de informatie van beide paden integreerde. 
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Gezondheid werd “berekend” door de lateraal-prefrontale cortex, en smaak door de 

nucleus accumbens. De waarde-vergelijking werd uitgevoerd door de ventraal-mediale 

prefrontale cortex. Het model simuleerde o.a. de gegevens van Hare et al. (2009).  

Hierna bouwden we een model voor zelfcontrole bij intertemporele keuzes. Dit 

verwijst naar een keuze tussen opties die op verschillende tijdsmomenten beschikbaar 

zijn. Het klassieke voorbeeld is tussen een kleine beloning die onmiddellijk 

beschikbaar is en een grote beloning die pas later komt. Het model had dezelfde 

algemene architectuur als voorheen beschreven. Zelfcontrole, of de afwezigheid ervan, 

werd gemoduleerd door een “gating” parameter in de lateraal-prefrontale cortex. Een 

sterke “gating” leidde tot keuzes die consistent waren over de tijd. 

 

Empirische test van het model 

Een predictie uit het modelleerkader was dat er een correlatie is tussen de mate waarin 

iemand instructies volgt en zelfcontrole uitoefent. Om dit te testen, voerden we een 

studie uit met de volgende taken; een dieetkeuze taak (gebaseerd op Hare et al., 2009); 

een probabilistische selectietaak (gebaseerd op Doll et al., 2009); en een 

werkgeheugen taak om te controleren voor werkgeheugen aspecten.  

In de dieetkeuze taak moesten proefpersonen telkens zeggen of ze een bepaald voedsel 

verkozen ten opzichte van een referentie item. Zo berekenden we een mate voor 

zelfcontrole. In de probabilistische selectietaak moesten proefpersonen een keuze 

maken tussen één van twee stimuli (Hiragana karakters) die telkens op het scherm 

verschenen. De stimuli waren statistisch geordend (A beter dan B; C beter dan D; E 

beter dan F). We gaven echter de instructie aan proefpersonen om een statistisch 

superieure stimulus te vermijden (vermijd E in het paar EF). Op basis hiervan 

berekenden we per proefpersoon een mate van instructievolgen. Er bleek echter geen 

correlatie te zijn tussen de twee variabelen. We argumenteren dat de studie hernomen 

moet worden met een nieuw, strikter design om de predictie te testen. 
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Conclusie  

Computationele modellering is een krachtig instrument voor het begrijpen van vele 

natuurlijke processen, inclusief cognitie in de hersenen. Het nut bestaat erin dat het 

fenomenen over vele niveaus van beschrijving heen toelaat te integreren. We pasten 

deze algemene benadering toe op het volgen van instructies en zelfcontrole. Na een 

succesvolle implementatie van deze modellen, testten we een predictie, die echter 

onduidelijke resultaten opleverde. Gegeven de algemene toepasbaarheid van het 

algemene kader, blijven we echter optimistisch dat latere experimenten meer 

duidelijkheid kunnen verschaffen. Hoe het ook uitdraait, op deze manier hopen we dat 

we in de toekomst een beter zicht zullen kunnen krijgen op deze processen. 
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