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Abstract 

Hierarchical categorization inter-leaved with sequence recognition of incoming stimuli in 
the mammalian brain is theorized to be performed by circuits composed of the thalamus 
and the six-layer cortex. Using these circuits, the cortex is thought to learn a ‘brain-
grammar’ composed of recursive sequences of categories. A thalamo-cortical, 
hierarchical classification and sequence learning “Core” circuit implemented as a linear 
matrix simulation and was published by Rodriguez, Whitson & Granger in 2004. 
 
In the brain, these functions are implemented by cortical and thalamic circuits composed 
of recurrently-connected, spiking neurons. The Neural Engineering Framework (NEF) 
(Eliasmith & Anderson, 2003) allows for the construction of large-scale biologically-
plausible neural networks. Existing NEF models of the basal-ganglia and the thalamus 
exist but to the best of our knowledge there does not exist an integrated, spiking-neuron, 
cortical-thalamic-Core network model. 
 
We construct a more biologically-plausible version of the hierarchical-classification 
function of the Core circuit using leaky-integrate-and-fire neurons which performs 
progressive visual classification of static image sequences relying on the neural activity 
levels to trigger the progressive classification of the stimulus. 
 
We proceed by implementing a recurrent NEF model of the cortical-thalamic Core circuit 
and then test the resulting model on the hierarchical categorization of images. 
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Organization of Chapters 

The chapters are organized as follows. For those most interested in purely the 

computational model, please skip directly to Chapter 6.  

 

Chapter 1, titled “Introduction”, introduces the history of cortical exploration and discovery 

and the current state of the search for the algorithms and dynamics that govern cortical 

processing. This situates the work of Rodriguez, Whitson and Granger and their Core and 

Matrix Model of thalamo-cortical processing in that context, and then introduces this 

thesis’ work in building a spiking version of the Core circuit model. 

 

Chapter 2, titled “Cortex and Cortical Models”, gives the anatomical and theoretical 

functional background needed to understand the Rodriguez, Whitson and Granger model 

(the Granger model) and our NEF model of it. We proceed in this chapter by discussing 

what we know about the cortex and then review the most prominent relevant models of 

the cortex. 

 

Chapter 3, titled “Categorization”, discusses computational algorithms of categorization 

in general, both mathematical and neural algorithms. 

 

Chapter 4, titled “The Granger model”, describes both the Core and Matrix Granger 

models and the matrix implementation by the authors. 

 

Chapter 5, titled “The Neural Engineering Framework (NEF)”, gives an overview of the 

NEF and Nengo, the neural modelling software that implements the NEF. This is given in 

preparation for discussing our implementation of the Granger Core model in the chapter 

6. 

 

Chapter 6, titled “The NEF Granger Core circuit”, discusses the implementation of the 

Granger Core circuit using the NEF that is the subject of this thesis. 

 

Chapter 7, titled “Simulations and Results”, details the model runs performed and the 

results of those runs. 

  

Chapter 8, titled “Discussion and Future Work”, reviews this work in the context of cortical 

theory and describes some future work ideas that arise from this effort. 
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Devotion to the cerebral hemispheres, enigma of enigmas, was old in me... the supreme 
cunning of the structure of the gray matter is so intricate that it defies and will continue to 
defy for many centuries the obstinate curiosity of investigators. That apparent disorder of 
the cerebral jungle, so different from the regularity and symmetry of the spinal cord and 
of the cerebellum, conceals a profound organization of the utmost subtlety which is at 
present inaccessible. 

 
Santiago Ramón y Cajal, 1937 

 
 
 
 
 

All of this does not alter my belief that a new essentially logical theory is called for in order 
to understand high-complication automata and, in particular, the central nervous system. 
It may be, however, that in this process logic will have to undergo a pseudomorphosis to 
neurology to a much greater extent that the reverse. 
 

John Von Neumann, 1958 
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1. Introduction 

The human neocortex is among the least understood areas of the brain. One of the brain’s 

most celebrated explorers, Ramon y Cajal called it the “impenetrable jungle” (Cajal, 

1937). The computational processes occurring in the neocortex are an area of open 

research. We lack good, integrated theories of exactly what computations are occurring 

in the neocortex. We also do not yet understand how the cortex computationally 

integrates to the sub-cortical structures such as the thalamus, the striatum and the basal 

ganglia to produce intelligence. Nor do we have good theories that explain how goal 

directed behaviour emerges from these structures.  

 

The cortex is thought to be a “vast memory of unknown capacity that contains literal and 

abstract representations of our life experience, as well as prescriptions of what to do 

about them” (Ballard, 2015, p. 63). All complex computational systems invariably employ 

some form of hierarchical computational abstraction (Ballard, 2015, p. 38) even if for no 

other reason than to perform computation on large input and output spaces using limited 

computational resources. Some form of encoding must be used, and it invariably requires 

the ability to learn and compute with these encoded abstractions organized into layers. 

Any theory of how cortex works must explain how the cortex learns and processes these 

hierarchical abstractions (Valiant, 2014).  

 

Some of the first evidence of how hierarchical abstractions are implemented in the brain 

came from Hubel and Wiesel (1962) who showed that primary visual cortex neurons 

respond to edge-like stimuli instead of the circular receptive fields of the lateral geniculate 

nucleus neurons that feed them. This led them to propose that the primary visual cortex 

neurons were “feature combination neurons” and that the brain uses a hierarchical 

computational architecture at very least in the visual system, if not overall. 

 

The cortex is composed of three classes of cells; inhibitory neurons, and excitatory 

neurons, and glia. Excitatory cells compose an estimated 80% of the cortical neuron cell 

population while inhibitory cells compose the remaining 20%. Korbinian Brodmann 

stained cortex and observed that cortical cell bodies are arranged in six bands or layers, 

numbered from I to VI starting from the surface of the cortex and moving inward 

(Brodmann, 1909). Vernon Mountcastle’s landmark review (Mounstcastle, 1997) 

summarized most of the work on vertical structures in rat cortex since the discovery of 

vertical cylinders in the cortical layers by Lorente de No (1938). Mountcastle also was 

one of the first to note that the functional properties of cortex change laterally but not 

vertically (Mountcastle, 1957). Areas of cortex that have the same function were named 

columns (also known as hyper-columns in visual cortex, and segregates in 

somatosensory cortex) and were found to be composed of between 60 and 80 “mini-

columns” (Favorov & Kelly, 1994). A mini-column is a vertical cylinder stack of the six 
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cortical layers containing approximately 80 to 120 neurons in total where the neurons in 

the mini-column all have similar or the same receptive fields. Axons and dendrites of 

neurons intermingle across mini-columns as well as connect within columns. The nature 

connectivity is still a subject of research with physical proximity being solely insufficient 

to explain connectivity (Kasthuri, et al., 2015) while there is recent evidence of highly non-

random connectivity such as clustered connections and log-normally distributed synaptic 

cortical connection strengths (Song, Sjostrom, Reigl, Nelson, & Chklovskii, 2005). While 

widely cited, it also should be noted that it is still a subject of debate if columns, macro or 

mini, even exist in cortex generally. 

 

There are many levels of physical and logical hierarchy in the cortex. The cortical sheet 

has a laminar structure. Inter-connected cortical columns are connected starting with 

incoming primary sensory columns that project to columns that process higher-level 

abstractions. Computation is thought to progress also in a series of hierarchically 

organized phases. Specifically, the circuits connecting the thalamus and the six-layer 

cortex are theorized to perform iterative, hierarchical-categorization inter-leaved with 

sequence recognition (Rodriguez, Whitson, & Granger, 2004).  

 

One model of this hierarchical temporal processing in cortex has been advanced by 

Rodriguez, Whitson and Granger in a 2004 paper entitled “Derivation and analysis of 

basic computational operations of thalamo-cortical circuits” (Rodriguez, Whitson, & 

Granger, 2004). Granger was the supervisor on the paper and the common author of the 

papers that follow in the series (Ambros-Ingerson, Granger, & Lynch, 1990; Anton, Lynch, 

& Granger, 1991; Coultrip & Granger, 1992; Granger R. , 2006; Lynch & Granger, 2008; 

Granger R. , 2011; Chandrashekar & Granger, 2012; Rodriguez & Granger, 2016). 

 

Granger is also the lead proponent of the theory of brain grammar that we shall be 

investigating. We shall refer to the model herein as “the Granger model” for brevity. The 

origin of the model traces back to 1990 and 1991 where the process by which the olfactory 

cortex would respond to stimuli and then subtract from the input the portion of the stimuli 

that the superficial layer of cortex responded to. The circuit would then reprocess the 

result. This was described in two papers (Ambros-Ingerson, Granger, & Lynch, 1990; 

Anton, Lynch, & Granger, 1991). The model was then generalized by Granger and Lynch 

(Granger & Lynch, 1991).  

 

Granger proposes that the brain computes with a recursive grammar of sequences of 

categories implemented in two recurrent circuit motifs; the core and the Matrix circuits. 

The neural correlates of these circuits are found in the many thalamo-cortico-cortical 

loops in the brain. Using these circuits, the cortex is thought to learn a ‘brain-grammar’ 

composed of iterative, recursive sequences resulting from such hierarchical 

categorizations. These functions are thought to be implemented by the recurrently 

connected, spiking neurons of cortical and thalamic circuits. In the paper, the authors 

propose “a simplified anatomically based model of topographically and non-
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topographically-projecting (respectively the core and Matrix circuits) thalamic nuclei and 

their differential connections with superficial, middle, and deep neocortical laminae” 

(Rodriguez, Whitson, & Granger, 2004). The thalamo-cortical, hierarchical-classification 

and sequence-learning circuit is referred to as the ‘Core’ circuit and was implemented as 

a linear matrix simulation in the Rodriguez et al. paper.  

 

The model focuses on the thalamo-cortical circuits in the posterior neocortex that are 

driven by and reciprocally connect to the nuclei of the dorsal thalamus. Input arising from 

areas of cortex lower in the processing hierarchy, innervates topographically organized 

thalamus which in turn drives topographically organized cortical circuits.  

 

This Core circuit is responsible for hierarchical classification of its inputs, be they sensory 

or higher order abstractions. The Matrix circuit is another cortico-thalamic loop in which 

the outputs of the Core circuit drive layer V cortical cells that in turn drive non-

topographically organized thalamic circuits that learn sequences of the Core circuit’s 

outputs. These two circuits work together to output temporal-spatial, hierarchical and 

sequential representations in the cortico-thalamic loops that form the brain grammar in 

time that Granger proposes. 

 

The computational model of the Core and Matrix circuits built by the authors was 

developed in MATLAB and is a vector-based, non-spiking model. This thesis seeks to 

reimplement that model in spiking neurons using the Neural Engineering Framework 

(“NEF”) (Eliasmith & Anderson, 2003). The NEF is a mathematical method characterizing 

how biological systems encode, into representations, quantities from the environment, 

and then transform those representations leading to behaviours. The NEF allows for the 

construction of large-scale biologically plausible neural networks.  

 

The central question for this thesis is: can we construct a more biologically plausible 

version of the hierarchical-classification function of the Core circuit this using leaky 

integrate-and-fire neurons that performs progressive visual classification of static 

images? The use of spiking neurons and a categorization process driven by the neural 

activities themselves, rather than relying on procedural algebra in code, increases the 

biological plausibility of the resulting model. 

 

We first present the NEF, specifically the parts of it relevant for our model. We then 

discuss implementing a recurrent NEF model of the Core circuit using the existing Nengo 

basal ganglia and thalamus networks, and then discuss the results of running the model 

to hierarchically classify single, and then multiple, MNIST digits. 

 

The contribution of this thesis is that while existing NEF models of the many parts of the 

brain exist, such as the basal ganglia and the thalamus, there does not exist an 

integrated, spiking-neuron, cortico-thalamic-cortical circuit model implementing the 

Rodriguez et al. Core circuit model. 
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The circuit, as implemented, performs a small version of competitive feature detection, 

but is less complex than many of the other implementations that use deep learning for 

feature detection. The point of interest here lies in the other aspects of the circuit. The 

temporal dynamics that produce the flow of categories and sequences into the thalamo-

cortical circuits. Specifically, we are interested in how these multiple representations are, 

at the same time, both categorized and temporally organized. In the operation of the 

circuit the hierarchical category representations are serialized and then the transition 

dynamics from both the changing categorizations and changing visual images that make 

up the visual scene are learned by the neurons in the circuits of layer V of cortex and the 

non-topographic thalamus. This process may partly explain how we represent 

simultaneously concepts at multiple levels (both the generic category and the specific) at 

the same time and are able to attend to both conceptual levels at once. In this thesis the 

focus is on a model that captures the recognition and categorization of hierarchies, 

represented as sequences of categories and sub-categories, not just static pattern 

classification. Rodriguez et al.'s work is among the best circuit theories for explaining 

these phenomena. 

 

To situate the work of building the hierarchical classification Core circuit (Rodriguez, 

Whitson, & Granger, 2004) in spiking neurons in this thesis we will attempt to survey the 

history and current state of the theories of cortical processing, narrowed to those that 

propose dynamical, stateful processing architectures. The model of the Core circuit will 

then be discussed within the context of this larger discussion. Finally, extensions to the 

model will be suggested in the Future Work section that present the opportunity to test 

these larger more integrated theories. 
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2. Cortex, Thalamus and Thalamo-

Cortical Models 
Which way should we begin to describe a system founded on feedback loops whose 

ultimate functioning is theoretical? All options will lead to things being referenced before 

they are explained. 

In trying to lay it out as simply as possible, we start with a classic overview of the cortex’s 

layered structure and then proceed to discuss thalamic anatomy and function in detail, 

then describe major brain circuits, and finally discuss computational models of the cortex. 

From there we are in a position to review algorithms of categorization, and then the 

specifics of the Rodriguez, Whitson and Granger model and finally our implementation of 

it.  

Readers who wish to skip the literature review are advised to go directly to the 

presentation of the Granger model Chapter 4 on page 70. 

2.1. Cortex 

“The cortex is the crowning achievement of brain evolution.” (Cajal, 1899) 

The brain is thought to have emerged from a clustering of neurons in the front end of the 

body of the flatworm Planaria about 560 million years ago while the cortex is thought to 

have emerged as a fold with six layers about 200 million years ago (Plebe & De La Cruz, 

2016, p. 24). When considering the history of scientific discovery of the cortex, as with 

many writings on the brain, it is hard not to begin by mentioning the amazing scientific 

work done by Ramon y Cajal (Cajal, 1909). Cajal is famous for his astounding drawings 

of neurons and brain tissue but also the creation of the neural doctrine. The neuron 

doctrine is the concept that the neuron is the central computational unit of cognition. This 

doctrine has guided much of neuroscience, computational neuroscience and artificial 

intelligence research ever since. The first major detailed mapping of cortex occurred in 

the middle of the 19th century when Meynert labelled the layers he observed under his 

microscope starting from the outside of cortex inward based on similar morphology as 

layers I through V. After Meynert a series of authors repeated this kind of work, each 

coming to slightly different names.  
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2.1.1.  Cortical Layers and Regions 

At the beginning of the 20th century Korbinian Brodmann stained the whole of cortex and 

divided it into many contiguous regions of homogeneous layer arrangements based on 

whether the cellular layers had the same structure and appearance under staining. This 

produced a patchy map of cortex that today is one of the primary ways of looking at 

cortical areas and attempting to assign functionalities to them. Broadman, like Meynert, 

observed that cortical cell bodies are arranged in up to six bands or layers numbered from 

I to VI starting from the surface of the cortex and moving inward (Brodmann, 1909). The 

modern view of the layers and their proper names are shown below. 

 

Number  Name Contains 

I Molecular 

supragranular 

layer  

Dendrites of cells from deeper layers and axons 

connecting with them. 

II External 

supragranular 

cell layer 

Granule cells which are small and spherical. 

III External 

supragranular, 

pyramidal Layer  

Many different cells types including pyramidal shaped 

cells. 

IV Internal Granule 

Cell Layer 

Mostly granule cells but also pyramidals. Primary 

connection area of thalamic axons. 

Table 1: General basic laminar patterns according to various authors (Brodmann, 1909, p. 15) 
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V Infragranular 

Pyramidal Cell 

Layer 

Mostly large pyramidal cells. Sends many projection s to 

non-specific thalamic nuclei and may be a major source 

of cortico-thalamic-cortico and cortico-cortico 

connections, feeding information hierarchically from one 

cortical area to another both directly and via the 

thalamus.  

VI Infragranular, 

polymorphic or 

Multiform Layer 

Heterogeneous neural cell types, filed with axons 

connecting the sub-cortical white matter to cortex. 

Table 2: Cortical layers names and cellular contents (Strack, 2013). 

Recently a new map based on many functional MRI studies has been published, 

aggregating areas of cortex that are activated by similar tasks and/or physiological 

behaviour (Glasser, et al., 2016). It is shown below, next the Brodmann map from 1909.  

 

 

It appears that Brodmann was correct (Glasser, et al., 2016). Cortex is in fact a sheet of 

differing functional areas correlated somewhat with macro-anatomical differences. This 

movement from trying to explore the cortex anatomically to functionally is today powered 

by new tools for scanning cortex, but also by many new theoretical models of how cortex 

functions.  

 

Our goal here is to study one of the core functions that cortex performs in making sense 

of the world, that of grouping incoming stimulus to identify categories of things, and to 

classify them in related ways, to generate a hierarchical classification map of the 

environment and the associated mental concepts.  

 

To begin to explore how these connected layers might perform hierarchical classification 

we next turn to reviewing our understanding of the vertical functional structure of cortex 

Table 3: 3D Color-coded Brodmann map of cortex on left (Brodmann, 1909), new functional map on right (Glasser, 
et al., 2016) [Reprinted by permission from Macmillan Publishers Ltd: Nature copyright 2016]. 



8 

in the form of the theory of cortical columns, but first we briefly review the cell types found 

in cortex. 

 

2.1.2.  Cortical Cell Types 

The cortex is composed of three classes of cells, inhibitory neurons, excitatory neurons 

and astrocytes. Excitatory cells compose an estimated 80% of the cortical cell population 

while inhibitory cells compose the remaining 20%. There are many sub-types for each of 

the excitatory and inhibitory cell types. A one-millimetre square surface area of cortex 

(excluding primary visual cortex which has 2.5 times as many) on average in mammals 

contains between 100,000 and 150,000 cells composed of neurons and glia (Carlo & 

Stevens, 2012). In the rat, mouse, cat and monkey, across four different cortical areas, 

approximately 94,000 ± 10,700 were found to be neurons (Carlo & Stevens, 2012).    

 

Excitatory neurons receive relatively sparse afferents from other excitatory cells with the 

prevalence of inter-connection dropping off quickly with the distance between any two 

such neurons. There is a ten percent (10%) chance of synapsing if they are 0.2 mm to 

0.3 mm apart but only a less than 1% chance if they are less than 1 mm apart (Rodriguez, 

Whitson, & Granger, 2004). Excitatory neurons release glutamate while the inhibitory 

interneurons release GABA. Inhibitory interneurons project their axons within the local 

circuit whereas the excitatory interneurons can project much further. 

 

Inhibitory interneurons typically terminate on the soma or proximal dendrite of excitatory 
pyramidal cells giving them powerful influence on the circuit’s behaviour. Inhibitory 
neurons’ effects also typically last longer, approximately 100-150 milliseconds whereas 
excitatory neurons effects last typically 15 to 25 milliseconds. Excitation is generally 
briefer and sparser topographically while inhibition is generally stronger and longer lasting 
but more topographically concentrated. The current state of research into excitatory and 
inhibitory neural function is though more complex than we have described. There are 
several subclasses of GABA receptors, including, GABAa, GABAb. and GABAc Some 
have slower, and some have faster, time constants than excitatory neurons. For the 
Granger model and our implementation of it, only simple inhibitory and excitatory neurons 
are used so we will not delve further into the subtypes here. 

For our purposes, our model will include analogues of several of these cell types including 
the most common neuron in cortex, the excitatory pyramidal layer IV neuron, which is 
predominately stimulated by the spiny stellate cells of layer IV which are in turn driven by 
thalamic axonal projections from topographic, specific thalamus. The Granger model 
contains these projections. We will also model the action of the layer II and III pyramidal 
cells as well as the layer V pyramidals, including their inhibition inducing back projections 
to the thalamus.      
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Figure 1: Major excitatory and inhibitory mammalian cortical cell types. Axons are in black and dendrites are red. 
Republished with permission of [The Biologists Company Inc.], from (Kwan, Šestan, & Anton, 2012), permission 

conveyed through Copyright Clearance Center, Inc.]. 

2.1.3. Cortical Macro & Mini Columns or Swirling Slabs 

Vernon Mountcastle’s landmark review (Mounstcastle, 1997) summarized most of the 

work on vertical structures in the cortex since the discovery of vertical cylinders in mouse 

cortical layers by Lorente de No (1938). Mountcastle’s review included his physiological 

and anatomical work and of major contributors such as David Hubel & Torsten Wiesel 

(Hubel & Wiesel, 1962) and János Szentágothai, Ted Jones, and Pasko Rakic (1988). It 

is worth noting that topographic columns as an organizing motif for receptive fields has 

been found not only in mammals but also in birds (Wang, Brzozowska-Prechtl, & Karten, 

2010).  

 

Mountcastle also was one of the first to note that the receptive fields of sensory cortex 

change laterally but not vertically (Mounstcastle, 1997). Areas of cortex that have the 

same receptive fields were named “columns” (also known as hyper-columns in visual 

cortex, and segregates in somatosensory cortex) and were found to be composed of 

between 60 and 80 “mini-columns” (Favorov & Kelly, 1994). A mini-column is a vertical 

cylinder stack of the six cortical layers containing approximately 80 to 200 pyramidal cell 

bodies plus other neurons and glia.  
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Figure 2 : Schematic of cortical mini-columns (solid lines) grouped into cortical modules (separated by dashed lines) 
from the Granger model showing the pyramidal neurons cell bodies; from (Rodriguez, Whitson, & Granger, 2004), 
reprinted with permission from MIT Press open access for academic use license. Note: cortical lateral connections 

not shown. 

Functional mini-columns are physiologically defined by their receptive field properties 

being similar whereas architectonic mini-columns are defined by the fact that they have 

a topographical correspondence with the layout of their connected thalamic neurons 

(Rodriguez, Whitson, & Granger, 2004). A mini-column is approximately 50 micrometres 

across (L.Feldman & Peters, 1974). The cortex has about 100 million mini-columns 

(Krueger, et al., 2008). The axons and dendrites of neurons intermingle across mini-

columns, although neurons in the same mini-column are more likely to be connected than 

those from different mini-columns. 

 

It is worthwhile to note that the cortical column is a major misnomer. “Swirling parallel 

slabs” would be a much more accurate description; taking Hubel & Weisel’s (1972) own 

description of the actual slab shape they described in their landmark “ice-cube” model of 

visual cortex. This is supported by more modern views of the swirling, non-straight-edged 

receptive field delineation patterns seen in cortex by Costa and Martin (2010). The column 

name however, once coined, has stuck powerfully in the vernacular of students and 

scientists alike until the present day. To summarize this discussion, Roy (2017) quotes 

Horton and Adams (2005) “The columnar organization hypothesis is currently the most 

widely adopted to explain the cortical processing of information”. Herein we also refer to 

these groupings of related receptive field properties as columns as well.  

 

A related set of hypotheses about how cortex develops a layered, columnar architecture 

is the ProtoMap (PM) and Radial Unit Hypothesis (RUH) which were both advanced by 

Pasko Rakic (1988) from Yale. The PM postulates that cells in an area of the developing 

cortex, referred to as the ventricular zone, contain a genetically specified map of 

molecular markers that determine the regional functional structure of cortical patterning 

as observed in the mature cortex by Brodmann (Brodmann, 1909) and the columnar 

architecture observed by Lorente de Nó (1934). The RUH states that each of the cells in 
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the protomap then migrate along routes laid out by radial glial cells and influenced by 

epigenetics to form the columnar map, after which the cells divide and populate the layers 

of the cortex in an inside out manner starting with the deep layers. Projections from the 

thalamus then innervate their specific targets, guided by highly selective topographic 

molecular maps and cortico-cortical connections that form laterally, in a process 

increasingly influenced by activity during development. This process culminates in the 

thalamo-cortical loops that the Granger model is concerned with explaining the 

functioning of. 

 

Columns are very hard to distinguish anatomically. From receptive field studies of neural 

response to stimuli the architecture of the columns has been elucidated to some extent 

although it varies from area to area of cortex. Rakic’s RUH model is shown next to one 

of Brodmann’s original stains of cortex and one of Buzaki’s drawings of the cellular 

connectome of a cortical column to put the problem of deducing function from form into 

context. 

 

  
Figure 3 : Left: Schematic of Radial Unit Hypothesis of neural migration into columns, reprinted from (Rakic, 1995) with 
permission from Elsevier; Middle: Cortex from human foetus showing basic cortical layers after RUH development 
(Brodmann, 1909, p. 20); Right: Canonical cortical column layers, cell types and connections (Buzsaki & Draguhn, 
2004), reprinted with permission from AAAS. 

The large triangular-shaped cells in the Buzsaki diagram are the pyramidal cells, the 

round cells are the stellate cells. In general, the pyramidals are excitatory cells and the 

stellate cells are inhibitory. The connections and the dynamics through the network and 

how the cortical cells are connected to the thalamus are the subject of the Granger model. 

 

‘Mini-columns’ and ‘macro’ or ‘cortical’ columns are organized by various large-scale 

features at the macro column level, along with other factors which vary vertically in the 

mini-column. As an example, in MT, Diogo et al. report that “cells with a similar direction 

of motion preference are also organized in vertical columns and cells with opposite 

direction preferences are located in adjacent columns within a single axis of motion 
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column” (Diogo, Soares, Albright, & and Gattass, 2002). These cells have been 

categorized horizontally by the direction of motion and then vertically by other factors.  

 

Figure 4: Orientation of motion columns, hyper-columns and layers in striate cortex of Cebus apella monkey (Roy, 
2017), reprinted with permission through Frontiers in Psychology Open Access License. 

Beginning with Mountcastle (1957) cortex was found to have spatially organized receptive 

fields; in his seminal work cat and monkey somatosensory cortex was found to have 

radially organized receptive fields. The Granger model theorizes that categorization is 

spatially encoded as well across columns. 

 
Physical or Functional Columns? 
Are these columns then a physical and corresponding functional organization? Despite 
the long tradition and evidence from receptive fields, the actual physical existence of 
columns as distinct physical gaps in the connections between cortical neurons is disputed 
(Horton & Adams, 2005). As Costa and Martin put it:  
 

These tissue compartments appear to divide cells with different receptive 

field properties into distinct processing streams. However, it is unclear what 

advantage, if any, is conveyed by this form of columnar segregation. 

Although the column is an attractive concept, it has failed as a unifying 

principle for understanding cortical function. Unravelling the organization of 

the cerebral cortex will require a painstaking description of the circuits, 

projections and response properties peculiar to cells in each of its various 

areas. (Costa & Martin, 2010) 

 

Costa goes on to say though that whether there is a physical delineation called a column, 

he does not dispute that there is a functional grouping called a canonical circuit and that 

that is the fundamental building block of cortical computation.  

 

For our work in this thesis this is the important point, whether the cortical column exists 

at all anatomically, or only in sensory cortex (where the breaks in lateral connectivity are 

most easily observable) or if it in fact exists everywhere, is to some extent not the point 

for us. The important point is that cortex has a repeating functional circuit that implements 

receptive selectivity in a categorized, local way with some topographical and vertical 

ordering in perceptual areas. So long as that is the case then the idea of theorizing and 
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modelling repeated topographic and vertical circuits that might implement hierarchical 

categorization is a valid pursuit. 

 

Alternatively, it is possible that cortical columns are dynamic units and not necessarily 

fixed anatomically. The cortex is quite uniform in structure and if columns are more a 

functional construct they could appear anywhere in the cortical realm. As an example, the 

network of pyramidal axons and dendrites in cortex has been shown to have random 

connection points to other neuron types, pyramidal or otherwise (Kalisman, Silberberg, & 

Markram, 2005). Although there is random points of intersection, the functional 

connectivity has been shown to exhibit lognormal distributions suggesting that synaptic 

strengths are concentrated among much fewer synapses than a purely random 

connectivity would suggest (Song, Sjostrom, Reigl, Nelson, & Chklovskii, 2005). 

 

If functional columns do exist, then perhaps they emerge on top of this random 

connectivity by plasticity forming the non-random synaptic strength distributions seen. We 

know, as discussed above, tuning curves do vary in a way that suggests functional cortical 

columnar organizing principles. Taken together this has been said to support the idea that 

the cortical column is a functional concept that emerges and is maintained dynamically 

over the matrix of the cortical layer architectonics (Markram, 2008). This is thought to 

happen, for example, by virtue of the pyramidals connecting and turning “on” the 

synapses that serve the computational needs of the circuit that is forming and turning ‘off’ 

others (Markram, 2008).  

 

This entire functional circuit is what Rodriguez, Whitson and Granger (2004) suggest 

implements hierarchical categorization and whose activity in the form sequences of 

categorical representations forms the Brain Grammar (Rodriguez, Whitson, & Granger, 

2004). This theorized circuit is the subject of this thesis. The first half of this circuit, from 

Thalamus to layer IV, layer II & III, then layer V and then layer VI and then back to the 

thalamic reticular layer is referred to by Rodriguez, Whitson and Granger as the Core 

circuit and the remaining circuit to non-specific thalamus is the Matrix circuit. The Core 

circuit is thought to perform hierarchical categorization while the Matrix circuit is thought 

to compute sequences over those categories from the Core circuit. 

 

A point then which is relevant for our model, arises in Markram’s paper in relation to the 

Granger model; the punctuation of input from the thalamic primary sensory inputs to 

cortex could explain why we see evidence of what appear to be physically separate 

cortical columns but also much evidence for these columns being dynamically formed. If 

input to cortex is sent in punctuated bursts which are also topographically patterned then 

the plasticity mechanisms would produce a functional column the size of the “overlapping 

basal axonal and dendritic arbours of the neurons at the centre of the stimulation” 

(Markram, 2008). This is relevant to our model in that punctuated inputs, topographically 

and temporally separated is what you would expect from serially cascading, hierarchically 

ordered categorization per the Granger model. While not definitive, compared to the 
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original view of the cortex as more monolithic and more feed-forward; here we see 

evidence of temporal and spatial bursting of inputs to cortex, which as we will see below, 

there are plausible mechanisms in the thalamic circuits to account for such behaviour. 

 

We discuss much more on the temporal flow of processing in thalamo-cortical circuits 

later after we review the relevant structure of the thalamus and the circuits that the 

thalamus participates in with the cortex. For the purposes of understanding the model, 

the general relationship between the thalamus and the cortical layers in terms of general 

connection flow is the most important to discuss which we do in the next section. 

 

2.2. The Thalamus 

To understand categorization in the cortex we need to first understand the functioning of 

the thalamus, the driver of many inputs to the cortical circuits in question. First, we 

examine the anatomy of the thalamus. 

 

“Faced with an anatomical fact proven beyond doubt, any physiological 

result that stands in contradiction to it, loses all its meaning...So, first 

anatomy and then physiology; but if first physiology, then not without 

anatomy.” (Brodmann, 1909) 

 

The diencephalon sits between the brain stem and the cerebrum, and processes a range 

of sensory and motor signals. The diencephalon is composed of the hypothalamus, 

subthalamus, thalamus and epithalamus. The thalamus (aka the dorsal thalamus) is 

composed of a series of nuclei together sitting atop the spinothalamic tract and 

reciprocally connected to many structures, including, the cortex, the basal ganglia, the 

cerebellum, the reticular formation, and the hippocampus. It has been implicated in a wide 

range of behaviours including, sensory relay of all sensory pathways except olfaction; 

pain sensation; the maintenance of consciousness and alertness; control of muscular 

movement; management of the sleep/wake state; personality and social behaviour 

modification; language and speech and sexual behaviours (Das, 2017). The dorsal 

thalamus influences what information reaches the cortex and it is this function that we are 

especially concerned with in the Granger model. 

 

2.2.4.  Dorsal Thalamic Anatomy 

Anatomically, the dorsal thalamus is composed of two lobes, one in each hemisphere, 

often connected by an inter-thalamic adhesion, which is not present in all species or 

individuals. The lobes are composed of a series of nuclei divided internally by vertically 

oriented, y-shaped sheaths of white-matter axonal tracts, the internal medullary laminae.  

The lobes are surrounded by the external medullary laminae which are composed of 
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thalamocortical and corticothalamic fibres which ascend from the thalamus as parts of 

the internal capsule to the cortex. Three regions in each lobe of the thalamus are formed 

by the areas, the anterior, lateral and medial regions, all segmented by the y-shaped 

internal medullary laminae’s.  

 
Figure 5: Main anatomical connections of the Thalamus (Prattl, et al., 2016) reprinted with permission from Elsevier. 

There are approximately 50 nuclei (Jones E. G., The Thalamus, 1985) in the thalamus, 

the major ones are shown in Figure 5. For a long time, it was believed that no connections 

existed between the various nuclei of the dorsal thalamus but that has since been shown 

to be incorrect (Jones E. G., The Thalamus, 1985). Within each nucleus there are many 

inhibitory interneurons most of which are connected to the various cell types of the nuclei 

with dendro-dendritic synapses. 

 

The Granger model covers the dorsal thalamic nuclei and predominately the posterior 

cortex’s pulvinar. As shown in Figure 6, these nuclei project to the posterior cortex which 

houses the “association areas” found in the posterior reaches of the temporal, occipital 

and parietal lobes. 
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Figure 6 : Dorsal thalamus and posterior cortex connectivity, the focus of the Rodriguez, Whitson, Granger model 

(Granger R. , Engines of the brain: The computational instruction set of human cognition, 2006) reprinted with 
permission from MIT Press. 

Most of the neurons in these nuclei are excitatory and utilize the neurotransmitter 

glutamate as do most of the neurons in the thalamus with the exception of the thalamic 

reticular nucleus cells (TRN) which uses GABA. The various nuclei of the thalamus are 

connected to all parts of the ipsilateral cortex and many parts of the sub-cortical structures 

as shown above. In general, all thalamic neurons receive feedback projections from the 

same area of cortex that they project to (Swenson, 2006). 

 

2.2.5.  Dorsal Thalamic Function 

The thalamus is central to the functioning of the brain. The rhythmic EEG pattern read 

from the scalp is actually generated by the synchronized waves of excitatory spikes from 

the thalamus to the cortex (Kandel, Schwartz, & Jessell, 2000). Further supporting the 

idea that the thalamus is a central hub of the entire cortical brain, recent graph theoretic 

analysis of thalamic circuit activations suggest that the thalamus is globally connected to 

all the cortical regions and has the network properties needed to integrate multi-model 

information from these dynamically connected functional networks (Hwang, 2016). 

The thalamus’ prominent position between most of the incoming sensory signals from the 

body, the cortex, the hippocampus and the basal ganglia, originally led to it be 

hypothesized as being responsible for purely routing information; subsequently it has 

been shown that the thalamus processes and relays many kinds of information as well as 

helps to regulate alertness and the sleep-wake cycle (P.Tinuper, et al., 1989). The 

thalamus has been theorized to be involved in the maintenance of arousal, selective 

attention, the production of sleep spindles, and seizure production in disease states 

(Willis, Slater, Gribkova, & Llano, 2015). 
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The four basic kinds of information are thought to be processed in the thalamus are; 

sensory, motor, emotional memory, and alertness. All incoming sensory information 

(except olfaction) is relayed to the cortex via the thalamus. A major pathway of the motor 

system passes from the cerebellum and the basal ganglia to the primary motor cortex via 

the thalamus. The thalamus is also part of the Papez circuit and helps gate emotional 

memory information passing to the limbic cortex, and gates signals controlling the 

sleep/wake cycle. The signals controlling the level of alertness and attention are also 

thought to pass from the reticular formation through the thalamus on the way to cortex. 

There have even been theories advancing the thalamus as the centre of consciousness 

(Jones E. G., 2002) given its central position in the brain between the reticular-activating 

system, which controls the state of the brain overall from alertness to sleep, and the 

rhythmic activity of the thalamo-basal-cortical loops which is theorized to be a major 

correlate of thinking in the brain. 

 

2.2.6.  Relay, Association & Non-Specific Thalamic Nuclei 

The dorsal thalamic nuclei are functionally divided into three groups; the relay nuclei, the 

association nuclei and the non-specific nuclei.  

Relay cells / Specific Nuclei. These ventral and lateral nuclei receive signals from well-

defined sensory and motor pathways such as the inferior colliculus (auditory), retina 

(visual), medial lemniscus, as well as the spinothalamic and trigemini-thalamic tracts 

(somatosensory). They also project topographically to defined regions of the cortex such 

as the temporal, visual, and primary somatosensory cortices. 

The specific nuclei include those involved in sending such primary sensory information to 

cortex, such as the ventral posterolateral (VPL), the ventral posteromedial (VPM), the 

medial geniculate (MGN), and the lateral geniculate nuclei (LGN). Other specific nuclei 

include those feeding back cerebellar signals, such as the ventral lateral (VL) nuclei and 

nuclei sending the output of the basal ganglia to cortex found in parts of the VL and the 

ventral anterior (VA) nucleus (Swenson, 2006). 

Relay cells in specific nuclei are very important and are theorized to control the structure 

of cortical receptive fields (Kandel, Schwartz, & Jessell, 2000) by determining which 

cortical neurons are activated for incoming sensory stimuli, and then, those cortical 

neurons learning via plasticity to alter their receptive fields. Cortico-thalamic afferents also 

play a role in receptive field development, in this case for the thalamic neurons. Feedback 

brought by these afferents is not very strong but has been shown to influence the 

receptive fields of thalamic neurons (Briggs & Usrey, 2008). 

Association Nuclei:  These nuclei, such as the pulvinar, the dorsomedial nucleus (DM), 

and the anterior nucleus (Swenson, 2006) connect to the prefrontal, parietal, occipital and 

temporal association cortices, each projecting to many different areas of cortex. These 

nuclei also receive the largest inputs directly from cortex. The pulvinar projects to 

secondary visual areas, relaying information from the superior colliculus and the 
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association cortex, processing and then projecting to cortical association areas in the 

parieto-temporal region. The pulvinar is thought to contribute to visual perception, eye 

movement and attention. 

Non-Specific Nuclei: The non-specific nuclei include the intralaminar nuclei and the 

reticular nucleus. The intralaminar nuclei are so-named as they are in the thalamic lamina. 

The intralaminar nuclei send diffuse projections to the cortex. Both the intralaminar and 

the TRN make multiple and strong inhibitory connections to all the specific thalamic 

nuclei. Either by direct projections or by indirect projections to specific thalamic nuclei 

which then project to cortex, the non-specific thalamic nuclei have the ability to affect the 

activity in large parts of the cortex. For this reason, their inhibitory nature and their 

participation in thalamo-cortico-cortical loops, the non-specific nuclei are theorized to be 

involved in large-scale functions like; arousal, sleep-wake cycling, and consciousness. 

Classically, unlike the specific nuclei, the intralaminar nuclei were viewed as receiving 

their largest enervations from the cortex but receiving little direct ascending sensory 

afferent inputs. Some theorists including the thalamic neuroscientist, Edward G. Jones, 

have concluded that many thalamic nuclei connect to the cortex directly through two major 

types of neurons; matrix neurons (calbindin immunoreactive cells) and core neurons 

(parvalbumin immunoreactive cells) (Jones E. G., 1998). We discuss the core and matrix 

cells in more detail below, as they are a major component of our model. 

2.2.7.   The Reticular Nucleus (TRN) 

For our model, one particular non-specific nucleus, the reticular nucleus of the dorsal 

thalamus (TRN), is of particular interest. The TRN is a sheet of neurons partially covering 

the thalamus as shown in Figure 7. The TRN regulates, filters, monitors and integrates 

the activity of the various thalamic nuclei exerting its influence on them through inhibitory 

connections.  
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Francis Crick theorized this in 1984 (Crick F. , 1984) when he proposed the “Attentional 

Spotlight Hypothesis” proposing that the TRN in particular controlled the “attentional 

spotlight that simultaneously highlights all the neural circuits called on by the object of 

attention”.  

Pinault explains; “In other words, he [Crick] submitted that during either perception, or the 

preparation and execution of any cognitive and/or motor task, the TRN sets all the 

corresponding thalamocortical (TC) circuits in motion” (Pinault, 2004). Pinault’s 2004 

review states that the TRN is concerned with all or almost all functional modalities of the 

brain with the largest outstanding question being whether olfactory processing is 

regulated by the TRN. While unclear in many species, it has been shown in the rat that 

even olfactory inputs arrive at the TRN. The TRN has been shown to have a body centric 

topography in some sections and in others it is laid out according to various senses while 

in still others it is very heterogeneous. TRN neurons have receptive fields that are larger 

and in many cases more multi-sensory than the cortical neurons that their thalamo-

cortical and cortico-thalamic afferents synapse to (Pinault, 2004). Taken together with the 

fact that the TRN connects to all of the cortex, this would appear to support the idea of 

the TRN being a control point for all cortical activity. 

Each area of the dorsal thalamus is connected to the cortex, and most cortical areas are 

connected to two or more nuclei plus projecting back to the TRN. Thalamic nuclei 

mediated by the inhibitory GABAergic neurons of the TRN have been shown to regulate 

activity in specific areas of cortex, much like a modulator, turning off and on areas of 

ipsilateral cortex selectively both raising activity and inducing rhythmic activity found in 

sleep (Lewis, et al., 2015). More recently it has been shown by computational modelling 

Figure 7: The thalamus, its nuclear groups with their its inputs and 
outputs showing the reticular nucleus (TRN) (Greenstein & Greenstein, 

2000) reprinted with permission from Thieme Verlag. 
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that the TRN and the dorsal thalamic nuclei together form not just a purely inhibitory filter 

over the output of thalamic nuclei, but rather a tuneable filter between the thalamus and 

the cortex. The circuit is tuneable in response to the frequency of activity and T-type 

calcium channel activity [ (Willis, Slater, Gribkova, & Llano, 2015), (Sherman & Guillery, 

2006)]. This would seem to further support the postulated TRN’s and dorsal thalamic 

nuclei’s role in the mechanisms of attention, just as Crick theorized.  

As shown in Figure 9, the inhibitory GABAergic TRN neurons receive inputs from both 

the excitatory, glutamaturgic thalamocortical and corticothalamic axons and then project 

back to the thalamic principal neurons. A fluorescently labelled image of these pathways 

is shown in Figure 8. In this connection profile the TRN neurons have the ability to 

moderate the principal neurons activity based on thalamic output and cortical feedback 

which is a major prerequisite of the Granger model.  

 

Figure 8: Fluorescently Labelled Thalamic Projections 
Make 2 Stops in Cortex (Wimmer, Bruno, Kock, Kuner, 

& Sakmann, 2010) reprinted under open access 
license from Cerebral Cortex. 

 

      

Figure 9; Main connections of the reticular complex (Crick 
F. , 1984) reprinted under permission from The Royal 
Society. 

 

Historically it was also considered that the TRN received inputs from all of cortex but that 

it did not connect back to the cortex but this has since been shown not to be true although 

the thalamocortical projections are typically much larger than the reciprocal 

corticothalamic projections (Deschenes, Timofeeva, Lavallee, & Dufresne, 2005). The 

newer theories suggest that TRN neurons make loops with cortical neurons as well as 

the thalamic neurons that the TRN neurons are inhibiting, possibly further supporting the 

idea of the TRN as central to overall cortical activation. Indeed, it is known that TRN nuclei 

integrate information from diverse sensory and motor thalamic circuits thereby controlling 

the selection, via inhibition, of the cortico-thalamic circuits that are activated. This too is 

a feature of the Granger model. 
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Figure 10 : TRN nuclei use integrated sensory and motor information to inhibit or activate relevant cortico-thalamic 

circuits (Pinault, 2004) reprinted with permission from Elsevier. 

2.2.8.  Thalamic Core & Matrix Cells 

Two broad classes of cells found in all thalamic nuclei are the core and matrix cells. The 

two classes of cells have very different immunoreactive properties and very different 

theorized functions.  

Thalamic core cells are Immunoreactive to the Ca++ binding proteins calbindin and 

parvalbumin. They are topographically organized both in relation to the recipients of their 

axons in cortex, such as layer 4 and lower layer 3, but as well with respect to their 

incoming sensory inputs. Whereas, matrix cells project broadly and diffusely to multiple 

neighboring cortical regions. They are found in both specific and non-specific nuclei 

(Rodriguez, Whitson, & Granger, 2004).  

Core neurons target only one area of cortex each, ending in layer IV mostly and are 

thought to support perception by processing sensory inputs and passing them on either 

amplified or curtailed to cortex. This too is consistent with the Granger model. Core cells 

also modulate the degree of activation of their corresponding cortical area, after being 

inhibited or not by the TRN and then amplified or not by attention (Piantoni, Halgren, & 

Cash, 2016). Figure 12 shows the relationship to the core and matrix cells in a prototypical 

thalamic nucleus and how they connect with the TRN. Note the difference in the cortical 

layers to which they project. 

Thalamic matrix cells are immunoreactive to parvalbumin and occur only in certain 

thalamic nuclei that give rise to restricted topographically or non-topographically 

organized projections to separate cortical regions. Matrix cells are found in all of the dorsal 

thalamic nuclei and project from there widely and diffusely to layer I mostly, but also to 

layers II and III of superficial cortex.  
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Matrix cells are thought to have several functions.  

(i) Matrix cells process signals from multiple cortical and thalamic areas and are 

theorized to bind these signals together into a single conscious percept (Jones 

E. G., 1998).  

(ii) Matrix cells are also thought to be responsible for maintaining the state of the 

cortex, enabling areas that are needed to be active, and turning off areas that 

are not needed, doing so over the whole of the cortex especially while in sleep 

(Piantoni, Halgren, & Cash, 2016).  

(iii) Matrix cells are thought to sparsify and orthogonalize their non-topographic 

inputs, learning a sparse code to represent the combinations they see in their 

inputs (Rodriguez, Whitson, & Granger, 2004).  

(iv) They are also thought to be more responsive to specific input sequences and 

patterns, and not generally reactive to inputs similar to their preferred direction 

as the core cells are thought to be (Rodriguez, Whitson, & Granger, 2004). The 

matrix cells are a significant component of the Matrix circuit for sequence 

processing in the Granger model. 

Figure 11: Thalamic Core (blue) and Matrix (red) cells (Piantoni, Halgren, & 
Cash, 2016) reprinted with permission from Hindwai Inc. under open access 

license. 
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Figure 12: Relative distributions and connections of the core (blue) and matrix (red) 
nuclei (Jones E. G., The thalamic matrix and thalamocortical synchrony, 2001) 

reprinted with permission from Cell Press. 

The distribution of core and matrix neurons in the dorsal thalamus is mixed throughout all 

nuclei, but there are more core cells in sensory relay areas of the thalamus as shown 

above. This would be reasonably expected if the core cells are primarily involved in gating, 

filtering and passing on primary sensory information, while matrix cells are involved in 

higher order functions of learning and regulating across the various information flows and 

sequences of them in the thalamic nuclei. 

 

Figure 13: Basal ganglia connections to the TRN (Jones E. G., The Thalamus, 1985) reprinted with permission from 
Springer Verlag. 

Lastly with regard to the TRN we should briefly mention that although beyond the scope 

of this paper and the underlying Rodriguez et al. work (Rodriguez, Whitson, & Granger, 

2004), the TRN receives afferents from the basal ganglia as well. While specifically 
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excluded from our model, this connection in theory could supply information, perhaps 

including reward information, to tune the hierarchical categorization mechanism that is 

the subject of our model herein. 

2.3.  Thalamo-Cortical Circuits 

Thalamo-cortical circuits are not a series of single pass systems. The system is a multi-

staged set of progressive feedback loops. Sensory input is fed-forward from periphery to 

cortex then from cortex to the motor system. All areas of cortex have the same, 

approximately six-layer, structure, and all are reciprocally connected to thalamic nuclei 

(Jones E. G., The Thalamus, 1985). 

Specifically, one of the pathways from cortex back to the thalamus is via layer 6 which is 

suspected to carry information, such as motor information, back to the thalamus. These 

layer 6 axons further branch to innervate motor areas which then feedback to higher-

order thalamus cells and then back to higher-order cortex in a series of repeating 

cascades.  

 

 
Thalamic Area 

 
Connected to: 

Nonspecific Thalamus Cortex Layer I 

Association Regions Cortex Layer II & III 

Higher Association Areas & 
Specific Thalamus 

Cortex Layer V  

Multiple Brain Regions & Specific 
Thalamus Nuclei 

Cortex Layer VI 

    Table 4: Major thalamus to cortex projections (Maass & Markram, 2004) 

 

One may speculate that these thalamo-cortico-cortical circuit cascades may be carrying 

hierarchically nested information in support of our progressive hierarchical categorization 

model, but there is no direct evidence for it as yet. Were this to be true, it might help to 

explain the general to specific, or progressive, refinement nature of much perceptive, and 

motor behaviour. Possibly in support of this, it has been found that the thalamus is 

dominated by higher-order circuits as opposed to primary input circuits. Most of the 

thalamus is devoted to cortico-thalamic-cortico circuit modulation according to Sherman 

and Guillery (2001). The main inputs and outputs of cortex and thalamus are shown 

below. The Granger model accounts for all of these major projections. 

 

 
Cortical Layer 

 
Projects To / Receives from: 

I  Projects to and receives inputs from all of cortex. Layer 
composed of mostly axons and apical dendrites, few cell bodies 
(Maass & Markram, 2004). 
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II Projects to and receives inputs from other cortical areas, 
predominately farther regions than layer III (Lamb & 
Contributors, 2017). 

IIIa  Projects to and receives inputs from other cortical areas, closer 
range than layer II (Lamb & Contributors, 2017). 

IV / IIIb Projects to and receives inputs from layers above and below in 
the local area. Receives inputs mostly from the thalamus. 

V Major output layer for cortical columns (Guillery. & Sherman, 
2011) (Douglas & Martin, 2004). Projects to   subcortical 
regions and contralateral hemispheres. Receives inputs only 
from adjacent areas (Lamb & Contributors, 2017). 

VI Projects to and receives inputs from layer IV, thalamus and 
other sub-cortical regions specializing in different modalities 
such as motor areas (Thomson, 2010). 

   Table 5: Major cortical outputs by layer.  

In summary, the thalamus was historically viewed as a feed-forward relay station which 

selectively gated signals reaching cortex. One theoretical synthesis across the sources 

above could be that the thalamus is part of a dynamic routing system where specific 

thalamic nuclei gate incoming signals from the periphery that feed forward to a 

hierarchical set of cortical areas connected by loops back through higher-order thalamic 

areas controlled by the non-specific thalamic nuclei. The non-specific thalamic nuclei also 

receive driving signals from motor and pre-motor areas as part of their pathways back to 

cortex where the signals both modulate cortical flow from one cortical area to the next 

higher cortical area, as well as mix that activity with driving input from the pre-motor and 

motor areas of cortex.  

As to how these circuits function overall, there are several broad classes of theories, as 
shown in Table 6 below, of how the cortex might be organized and function to function 
with the inputs from the thalamus. For a review see Van Essen (2006). 
 

 
Theory 

 
Description 

Multiplicity of Areas 
Theory 

 
Cortex is composed of many dozens of areas that differ based 
on architecture, connectivity, topography and function. 
 

Distributed 
Hierarchical 
Organization 

 
Anatomically defined hierarchy that includes 10 levels of visual 
processing built from feed-forward, feedback and lateral 
information flows. Suggests also that it may be better to consider 
cortex as quasi-hierarchical. 
 

Multiple Processing 
Streams 

 
A hierarchical cortex model, but with multiple processing 
streams at each level. Anatomically distinct yet intertwined 
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compartments at early levels like V1 and V2; and physically 
separate dorsal and ventral streams at higher levels. More 
recent studies have highlighted that cross-talk between streams 
is extensive at multiple levels. 
 

Dynamic routing of 
information 

 
Control of information flow is highly dynamic, not fixed by 
anatomic connections, but routed across the various 
connections guided by processing dynamics such as visual 
attention. 
 

Table 6: Categories of Cortical Organization and Function Theories (Van Essen, 2006) 

All of these theories in one way or another posit that sensory information flows from the 
periphery in a feed-forward manner but then is transformed and moves, either by 
connectivity or by activity dependent routing, through various areas performing different 
functions on the information but with many areas of feedback. While there are places 
where the theories contradict each other, there is an intersecting set of features that can 
be drawn from these classes. This as well describes the flow in the Granger model. 
 
There is certainly a multiplicity of anatomically defined areas in cortex and thalamus as 
has been known since Brodmann (Brodmann, 1909). The anatomical areas are quasi-
hierarhical as streams of processing do exist, and the same input information is often 
processed in various streams, as for example, in the dorsal and ventral paths for vision. 
The processing of information shows marked routing in many places including two of 
specifc relevance to the Granger model: in the thalamus by virtue of the topogrpahic 
inhibition of the TRC, as discussed above; and in the lateral inhibition found within cortex. 
 

2.3.1.   Thalamo-Cortical Circuit Control Flow: Driven and/or 

Modulated? 

Before discussing thalamic driving and modulating signals we need to introduce the 

general processing steps from primary sensory input in the thalamus to the cortex and 

back again keeping separate the specific and non-specific thalamic connections. While 

the full process is not yet understood, we can speculate from what is known about the 

overall timing of events after a sensory signal is received, the theoretical flow of which is 

pictured in Figure 15. The sensory signal flows from the peripheral input to the 

topographically organized core cells of the relevant specific thalamic nuclei to layer IV 

cortex that then spreads out across layers II and III and then to layers V and VI where the 

signal is fed back to thalamus but this time to the relevant non-specific nuclei’s matrix 

cells, which are not topographically organized. We will discuss this much more fully later.  
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The stages of activity have been shown to involve “driving” sensory inputs from the 

specific thalamic core cells which are “modulated” by feedback from the thalamic matrix 

cells from higher order thalamic nuclei. This happens not just through spreading activation 

of higher order or associated areas of cortex, but also through modulation and shaping of 

the initiated cortical activity (Sherman & Guillery, 2006). For our discussion of the Granger 

model this general flow is enough, but the reader should know that there are many more 

connections known than the ones discussed herein, as one example, there are more 

ascending connections to cortex than just through thalamus (Felleman & Essen, 1991).  

 

The flow of information is also shaped once it has started, driven from primary sensory 

flows and then cascading through the thalamic-cortico-cortical connections. The 

connections to and from thalamic relay cells and cortex also become differentiated by 

whether the connection is driving a particular information flow (passing the information 

from the sensory periphery in a feedforward way), or is modulating a flow once started.  

The questions of whether or not first-order sensory, topographic thalamic nuclei are 

drivers of the circuits only, and whether higher-order thalamic nuclei, previously seen as 

having a modulating role (Sherman & Guillery, 1998),are also driving the thalamo-cortical 

circuits, are, like so much of cortical theory, both open questions. Some authors, Sherman 

included (Sherman S. M., 2005), see modulatory information flow in the cortical signals 

being passed back to thalamus from layer IV as shown in Figure 15. It is interesting to 

note that the modulation mechanism found is the low-threshold Ca2+ conductance which 

also causes the cells to shift from tonic to burst mode and back. In the Granger model, 

Figure 14: Cortical layer flow from Topographic and non-Topographic Thalamus, 
created by author from (Strack, 2013). 
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these cells both drive and modulate the flow of sensory information. More recently it has 

been theorized that both the sensory and the feedback circuits act as both drivers and 

modulators, possibly driven to achieve a dynamic balance. How the balance of driving 

and modulating is controlled is not known (D’Souza & Burkhalter, 2017). 

 

 
Figure 15: Driver and modulatory connections of the thalamic relay cells (Sherman S. M., Thalamic Relays and 

Cortical Functioning, 2005) reprinted with permission from Elsevier. 

2.3.2.   Thalamo-Cortical Circuit Control Flow: Lower to Higher Cortex 

and Vice-Versa 

Guillery sees evidence that higher-order thalamic circuits are in fact driving the thalamo-

cortical circuits by adding ascending motor inputs to the signals sent back to cortex from 

higher-order thalamus  (Guillery, 2006). The information content of these motor signals is 

not known. It is theorized by Rolls that these circuits are implementing attractor networks 

with both bottom-up and top-down inputs (2016). For our investigation, the Granger model  

also suggests both bottom-up and top-down flows are both are involved. 

 
Figure 16:  Driver and modulator cortico-thalamic circuits (Prattl, et al., 2016) reprinted with permission from Elsevier. 
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The regional cascade from lower to higher areas of cortex and thalamus can clearly be 
seen in the findings from Guillery’s study (2006) and as illustrated by Sherman in Figure 
17 (2005). In general, Sherman found that the higher order thalamic nuclei received their 
modulating inputs from layer VI of cortex and lower and higher areas of cortex 
communicated with each other both through the thalamus and also directly using cortico-
cortico connections. The Granger model  and our model both contemplate both direct 
cortical and indirect cortico-thalamic-cortical, connections in accordance with this. 
 

 
Figure 17 : Thalamo-Cortical lower to higher area connections with motor efference copies (Sherman S. M., 2016) 

reprinted with permission from Macmillan Publishers Ltd. 

 
Sherman added to his model in a subsequent paper (2016) writing that the cortical areas 
uniformly convey an efference copy of the layer V motor output signals to sub-cortical 
areas whose branching axons innervate the thalamic higher-order nuclei as they pass 
through the thalamus. This step adds support for theories that see cognition as an 
outgrowth of the processing of movement such the Confabulation theory of cognition. 
Both the Granger model and Confabulation theory proposes a grammar for cognition. In 
Confabulation theory, the “grammar” is composed of a series of orchestrated movements 
of cognitive neural modules. We will discuss Confabulation theory in more detail later on. 
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Figure 18 : Cascade of multiple areas of cortex to primary and higher order thalamic nuclei. (Sherman S. M., 2005) 
reprinted with permission from Elsevier. 

Further support for the idea of dynamically formed networks forming dependant on the 
processing of the network’s inputs and internal states (via TRN inhibition and cortical 
feedback) was published recently in 2017. It has been confirmed that at least in the case 
of the dorso-medial nuclei (DMN) and the prefrontal cortex (PFC), the DMN and the TRN 
together mediate the interconnection of functional cortical connectivity (Schmitt, et al., 
2017) forming functional networks dynamically as needed. 
 
We see this as a significant finding that supports the general move toward dynamic 
functional circuit models of cognition, centred on dynamically formed cortico-thalamic-
cortical networks. The challenge remains to understand what is flowing across those 
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networks. We explore that, once we complete our survey of the relevant anatomy, in the 
section on cortical models which will include Granger’s model of the “brain’s grammar” 
(Granger R. , 2006) implemented in the Granger model. 
 

2.3.3.  Progressive Categorization via SVM’s in the TRN 

Another controversial model which points to thalamo-cortical loops as the source of 

categorization and specifically lends support to the Granger model’s focus on the TRN’s 

core role in categorization is described in a 2009 IEEE Conference paper (Jandel, 2009).  

The model suggests that thalamic nuclei, the TRN, and cortex participate in an oscillatory 

pattern classifier whereby incoming stimuli arrive at the relevant thalamic nuclei and are 

classified by the biological equivalent of a support-vector-machine (SVM) like kernel 

function computed in the dendritic trees of the TRN nuclei, using all inputs from the 

incoming stimuli. The cortex is an unstable associative memory for support vectors that 

are delivered to the TRN and thalamic nuclei by the relevant cortico-thalamic projections 

(Jandel, 2009). The burst mode of the thalamic nuclei is theorized to align the inputs to 

the cortex and the TRN so that the pattern detection can occur on all inputs presented 

simultaneously. This also is so that the combined pattern separation and matching 

abilities of the TRN and cortical networks can cycle many times over the sustained-input, 

slower thalamic nuclei cycle, all the while minimizing interference. 

 

 

Figure 19: Jandel's Support Vector Machines theory of thalamo-cortico-cortical pattern separation and matching. 
Legend: Higher order brain regions (HOBS), Cortical support vector memory (OM), TRN kernel function calculation 

circuits (CL), Thalamic input memory (RM)  (Jandel, 2009) reprinted with permission from IEEE. 

Jandel’s theory lends support for the progressive categorization function theorized in the 

Granger model implemented in the model’s thalamo-cortical-thalamic circuits. In the 

Granger model, as we will see below, progressive hierarchical categorization of inputs is 

done in an iterative fashion which would require a similar buffering of the inputs while the 

thalamo-cortical-thalamic networks compute the classification and then the thalamic 

matrix cells communicate the results to higher order areas of cortex, while the concept 
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that the support vectors are maintained in the thalamic reticular nucleus seems 

compatible with the Granger model. 

 

2.3.4.  The TRN, Thalamic Relay Bursts: An Attention & Categorization 

Mechanism? 

The Granger model asserts that the thalamo-cortical loops are gated by the TRN. The 

TRN bursting mechanism is already thought to be part of attention and sleep/wake cycle. 

Burst firing of neurons has been suggested to wake-up circuits while tonic firing has been 

offered as the ongoing information processing mode once a set of neurons are awake, 

not blocked by the thalamus. It is possible that bursting is also a mechanism by which 

currently inactive thalamo-cortical categorization loops are activated from tonic lower 

frequency firing to gamma-band firing, thus engaging the associated cortical circuits into 

a now activated thalamo-cortical loop in response to the specific stimuli as the Granger 

model postulates.  

The reticular activating system (RAS) projects inputs to the thalamus from the midbrain 

reticular formation (MRF). The RAS is thought to mediate the states of sleep, being awake 

and being highly attentive and alert by controlling the state of thalamic and cortical 

excitation (Moruzzi & Magoun, 1949). When the brain is in REM sleep or awake the EEG 

signal is formed from low-voltage, fast-bursting, desynchronized oscillating potentials.  

When the thalamic relay neurons are in tonic mode, the EEG is not synchronized but 

when they are in burst mode the EEG is synchronized. When the RAS is stimulated, the 

slower cortical rhythms are suppressed, including slow cortical waves (0.3–1 Hz), delta 

waves (1–4 Hz), and spindle wave oscillations (11–14 Hz) (Hum, Steriade, & Deschenes, 

1989), the higher frequency waves, such as gamma (20 – 40 Hz) (Steriade, Dossi, Pare, 

& Oakson, 1996), are seen to be more active but desynchronized. 

These faster oscillations are controlled by bursting of thalamic relay neurons caused 

when the TRN cells are hyperpolarized (with membrane potential in the -70 mV range) by 

strong sustained inhibition from their connected TRN cells, and then stimulated by 

incoming spikes. If the TRN cells are not hyperpolarized and their membranes are at their 

resting potential of -60 mV at the time they receive incoming spikes, their response is very 

different. They then respond with tonic firing rates of 25 Hz to 100 Hz (Crick F. , 1984). 

The burst firing sends a synchronized wave of excitatory post-synaptic potentials to all 

cortical neurons connected to the relay neurons, releasing their bursts at the same time 

(Kandel, Schwartz, & Jessell, 2000). 

 

This RAS mechanism is thought to be part of the mechanism of attention, when highly 

activated the higher frequency waves of the gamma band dominate and are thought to 

be correlated with concentrated awake thought, among other states (Burlet, Tyler, & 

Leonard, 2002). Further evidence that the TRN is directly involved in attention comes 

from studies of the axonal connectivity and synaptic architecture of the connections from 
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the pre-frontal cortex and the TRN (Zikopoulos & Barbas, 2006). Axons from the pre-

frontal cortex ostensibly associated with higher order thoughts than the primary sensory 

pathways, make connections that are more diverse and involve several kinds of 

synapses, compared to the localized, ordered and mono-synaptic connections made by 

sensory corticothalamic afferents (Zikopoulos & Barbas, 2006).  

2.3.5.  Toward Categorization 

The discussion above serves to bring together a high-level view of the overall biological 

circuit architecture that the Granger model is based on. We will return to a more detailed 

version of the dynamics in the Granger cortico-thalamic circuit model in our discussion of 

categorization models of the Rodriguez et al. (Rodriguez, Whitson, & Granger, 2004) 

paper. Before we do so, we give a high-level account of the circuits of the cortex as a 

whole, and then review the most prominent models of inter-cortical circuitry. After this we 

will have reviewed the thalamo-cortical anatomy, the major circuits the cortex participates 

in and the circuits of the cortex. We will then specifically discuss categorization and the 

Granger model’s circuits and dynamics.  

 

2.4.    Major Networks of the Brain 

The exact functioning of the circuits of the brain overall are not known. However, there 

are many studies of various circuits with varying evidence for each hypothesized 

individual circuit. One large work attempting to bring together a series of over 200 

neuroanatomical studies with the goal of determining the anatomical basis of cognition 

was done by Solari et al. (2009). The study attempts to create a canonical set of circuits 

linking the cortex and the major sub-cortical structures; including the hippocampal 

formations, the thalamus, the basal ganglia, the basal forebrain and the metencephalon, 

as well as the spinal cord and the cerebellum. Solari’s work was done under the 

supervision of Dr. Robert Hecht-Nielsen, the creator of Confabulation theory. 

We reproduce the central diagram in Figure 20 as it serves as a good orientation to the 

brain’s major networks. An interactive version of the diagram can be found at 

http://www.frontiersin.org/files/cognitiveconsilience. The results correlate well with the 

canonical model of cortex and the anatomy that the Granger model is based on. As well, 

it serves as a good orientation before we discuss our model and other models of the flow 

of processing in the neocortex in more detail. Unlike with pure structural anatomy, once 

we attempt to understand theories of the function of the brain and cortex, we venture into 

the dynamics of thought, an area with only a few seemingly cogent theories of how it all 

works and even less consensus in the research community. 

 

http://www.frontiersin.org/files/cognitiveconsilience
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Figure 20 : Major circuits of the human cortex and sub-cortical structures from (Solari S. , 2009), (Solari & Stoner, 

2011), reproduced with permission under Open Access license from Frontiers in Neuroanatomy. 

Solari performed his review and summary of all the neuroanatomical papers to provide 

an intellectual substrate on which to rest his supervisor’s Confabulation theory. An 

overarching theme of this theory is that cognitive behaviours arose from evolution’s 

repurposing of motor circuits for higher order thought. Confabulation suggests that all 

thoughts are composed of modules which are implemented as nuclei of neurons and their 

circuits in the brain. According to the theory, each module specializes in learning and 

processing one attribute of one perceived object or cognitive concept. Modules are 

composed of many groups of neurons that come to represent symbols relating to the 

attribute they are focused on. A symbol is like a basis function or a primitive of knowledge 

whether that be motor or cognitive knowledge. The neurons that represent symbols within 

the modules connect to symbols in other modules by Hebbian-learned connections. In 

Confabulation theory, to think is to ‘contract’ the network of cognitive “symbol-muscles” 

so-formed. A ‘contraction’ causes the modules with the highest support for them, the 

largest incoming excited links to it, to be activated while all others are suppressed. The 

result is winning module is said to represent the stimulus. 
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This has strong parallels to our subject model herein. This is similar to the Winner-Take-

All (WTA) algorithm, where the neuron with the most excitation ‘wins’ by crossing a 

summed activity level and then immediately causing inhibition of the competing neurons. 

WTA is the basis upon which the Granger model is built and is used therein in the same 

way, to select the most likely explanation from a set of prior-learned competing 

representations held within other thalamo-cortical circuits. Note that WTA, as with 

Confabulation, can be used across individual neurons, nuclei or whole circuits. For our 

purposes, Solari’s anatomical and functional mapping is the best high level early map to 

orient ourselves as we work toward modelling our iterative categorization circuit in an 

anatomically grounded way. 

Solari proceeds to develop the functional assignments of each circuit in his model based 

on literature reviews of recordings and functional-deficit-through-lesion studies. The 

authors segregated the findings from the works they reviewed into seven major functional 

networks. An easier to follow, less-anatomic, information-flow version of Figure 20’s 

anatomical circuit diagram is shown in Figure 21.  

We summarize, at a high level, the circuits in order to situate our circuit of interest, the 

Cortico-Thalamo-Cortical Working Memory Circuit, which is coloured Purple. This circuit 

corresponds to the Core circuit in the Granger model. What follows is a summary of 

Solari’s model (2009) to give an overview in which to situate the Granger model within 

the brain’s major networks.  

 

Figure 21: Information flow among theorized seven major networks fo the brain (Solari S. , 2009), reproduced 

with permission under Open Access license from Frontiers in Neuroanatomy. 
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2.4.1.  Corticocortical Circuit : The consolidated long-term declarative 

memory circuit (Orange) 

This circuit is thought to implement long-term memory storage in isocortex between both 

hemispheres of cortex, connected by the corpus callosum. The major connected nuclei 

are listed underneath in the order of traversal: 

a. layer 4 cortical pyramidal neurons, which form a feedforward input system to 

cortex; 

b. layer 2 pyramidals which function as a cortico-cortical feedback input system;  

c. layer 3a pyramidals function as a corticocortical feedforward output system; 

d. layer 3b functions as stable invariant perceptual representations in the cerebral 

cortex that are then used by many of the other circuits such as the short-term 

memory circuit which associates these long-term memories with short-term ones; 

e. cortical layer 5/6 pyramidal neurons are viewed as implementing the linking of 

memories via cortico-cortical connections predominately of movement and 

behaviour related information; and, 

f. interneurons; such as the Basket, Chandelier, Double Bouquet and Marinotti cells; 

‘synchronize information processing and facilitate excitatory competition through 

localized vertical and horizontal inhibitory projections’.  

 

2.4.2.  Cortico-hippocampal-cortical Circuit: The short-term 

declarative memory circuit (Green) 

The declarative memory that utilizes the parahippocampal gyrus and the hippocampus 

forms the short-term memory system. The circuit connects representations in the 

hippocampus to representations in cortex, forming an indexed association of memories 

along spatial and temporal dimensions. The parahippocampal gyrus’ layers 2/3 and 5/6 

interestingly form associations between the short-term contents of this system and the 

long-term representations in layer 3b’s association networks. 

 

2.4.3.  Cortico-basal ganglia-thalamocortical circuit: the action and 

behaviour learning circuit (Blue) 

Actions and behaviours are learned via this network which connects the basal ganglia, 

the thalamus and cortex. The primary cortical inflows and outflows of to this circuit arrive 

and leave via cortical layer 5. Specific thalamus ‘drives the convergent and re-entrant 

selection of the cortical layer 3b and cortical layer 6t perceptual representations in cortico-

thalamic oscillations. The interlaminar thalamus excites and inhibits the output of the 

lower layers of cortex to select the right thalamo-cortico-cortical circuits for behavioural 

output. The circuit then flows to the nuclei comprising the basal ganglia include: 
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i. the sub-thalamic nucleus stops actions already commenced in the 

intralaminar thalamus; 

ii. the globus pallidus internal segment and the substantia nigra pars reticulata 

perform precise action triggering in the intralaminar thalamus and ventral 

thalamus via disinhibition; 

iii. the substantia nigra pars compacta, which computes a differential 

dopamine signal (a signal of the unexpected part of any reward sensed) 

directing the striatum to start and stop learning action sequences; 

iv. the globus pallidus external segment which seems to direct the negative 

learning and stopping of action sequences under the direction of cortex 

layer 5 afferents; 

v. the Striatum, which is thought to compute dopamine-based learning signals. 

Further support for the idea that these striatal-cortical loops learn task to 

reward associations also comes from Granger and his co-author  

(Chandrashekar & Granger, 2012) who show evidence for the existence of 

support vector machine like computations occurring in cortico-striatal loops. 

For more information see the Cortico-Pontine Circuit description below. 

2.4.4.  Cortico-pontine circuit: Cortically learned behaviour output 

and/or skill learning circuit (Black) 

This circuit involves the flow of behavioural cognitive process (in non-motor areas’ layer 

5 cortex) and movement process (in motor areas’ layer 5 cortex) information.  

a. This circuit begins in the basal forebrain which sends its cholinergic projections to 

layer 3b of cortex which then sends afferents to layer 5p of cortex.  

b. Layer 5p then sends afferents to: 

i. the subtahalmic nucleus, thought to be involved in; preparing desired output 

actions by its interactions with the intralaminar thalamus, and/or   stopping 

actions already begun (via raising inhibition in the intralaminar thalamus); 

ii. the striatum patch, which receives a dopamine-based learning signal via 

layer 5p to reinforce the start and stop action mappings that the striatum’s 

matrix D1 and D2 receptor cells learn; and lastly; 

iii. the pons which sends the cortical layer 5p output to the cerebellum which 

refines and stabilizes it before sending to the motor areas or (according to 

the author’s theory that cognitive processes arose from the same machinery 

as muscular movements) back to cortex and/or sub-cortical areas as refined 

cognitive behaviours. 

 

2.4.5.  Thalamo-cortical projections circuit: The cognitive control 

circuit (Red) 

This circuit controls the flow of information to and from the cortex and the basal ganglia, 

possibly to mediate goal-directed cognition. It incorporates; 



38 

• Thalamic reticular nucleus, which gates the flow of information through the 

thalamo-cortico-cortical-striatal networks, selecting the right flow of information for 

the current cognitive state. 

• As before, the specific thalamus, which drives the convergent and re-entrant 

selection of the cortical layer 3b and cortical layer 6t perceptual representations in 

cortico-thalamic oscillations. 

• Thalamic projections to layer 1 of cortex appear to select the areas of cortex 

(columns or micro-columns perhaps) that are needed to process the current 

cognitive state. 

• As above, the globus pallidus internal segment and the substantia nigra pars 

reticulata perform precise action triggering in the intralaminar thalamus and ventral 

thalamus via disinhibition. 

• As above, the globus pallidus external segment seems to direct the negative 

learning and stopping of action sequences under the direction of cortex layer 5 

afferents. 

• The pons integrates cortical layer 5p output to the cerebellum. 

• The cerebellum appears to stabilize sequences for both movements and thoughts 

• The deep cerebellar nuclei then transmit the cerebellar output to the ventral 

thalamus where specific thalamic circuits and layer 1 projecting circuits transmit 

the combined signals to the cortex. 

 

2.4.6.  Cortico-claustral-cortico circuit: The cortical information flow 

circuit (Yellow) 

Crick & Koch, as cited by Solari, credit the claustrum with the integration of conscious 

perceptions (2005) as evidenced by the wide connections that the claustrum makes to all 

of the cortex, and predominately to the inhibitory chandelier interneurons. The chandelier 

cells therefore appear to ‘synchronize information processing and facilitate excitatory 

competition through localized vertical and horizontal inhibitory projections enabling 

cortical information processing’ (Solari & Stoner, 2011, p. 156). The layer 6m neurons 

coordinate with layer 5s cortical neurons to integrate actions suggestions and transmit 

some form of processed information about them to the claustrum. The claustrum’s output 

appears to be the inhibition layer 4 cortical inhibitory chandelier interneurons, possibly 

filtering down the choice of available circuits that are relevant to the planned actions. 

 

2.4.7.  Cortico-Thalamo-Cortical: The working memory circuit (Purple) 

Finally, we come to our circuit of interest. The “Cortico-Thalamo-Cortical, Working 

Memory Circuit”, which implements working memory in the thalamo-cortico-cortical loops 

mediated by TRN activity. This circuit is consistent with the Granger model, which is a 

dynamical model of the functioning of this circuit. As above, the thalamic reticular nucleus 
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gates the flow of information through the thalamo-cortico-cortical-striatal networks, 

selecting the right flow of information for the current cognitive state. As before, specific 

thalamus ‘drives the convergent and re-entrant selection of the cortical layer 3b and 

cortical layer 6t perceptual representations in cortico-thalamic oscillations’ (Solari & 

Stoner, 2011). Layer 3b functions as stable invariant perceptual representations in the 

cerebral cortex that are then used by many of the other circuits such as the short-term 

memory circuit which associates these long-term memories with short-term ones.  

One observation not present in the Granger model is Solari’s view that ‘cortical layer 6t 

appears to function in conjunction with cortical layer 3b and specific thalamus to facilitate 

cortico-thalamocortical oscillations’. The Granger model does not make predictions for 

the role of oscillations. 

2.5. Cortical Models 

We now review several of the prominent models of cortical circuitry. 

2.5.1.  Common Traits Inspired Generalized Models 

Studies of many areas of cortex and thalamus have found significantly similar 

architectonics among thalamo-cortical areas concerned as summarized below 

(Rodriguez, Whitson, & Granger, 2004). Based on these similarities across most of the 

thalamic-cortical range, many theorists have proposed various general cortical-thalamic 

architectonic and computational models. 

 

Figure 22: Architectonic and physiological similarities across many regions of thalamo-cortical areas (Rodriguez, 
Whitson, & Granger, 2004), reproduced with permission from MIT Press. 

The commonality of these traits has inspired the search for a canonical cortical model.  
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2.5.2.  The Canonical Cortical Model: The Starting Point for the Granger 

model  

One of the more recent, yet classically inspired models of cortical functional architecture 

comes from Costa and Martin (Costa & Martin, 2010) who, although disputing the 

existence of the physical cortical column, still point to the classic Douglas and Martin 

canonical circuit (1991) model as the best candidate for defining the canonical cortical 

functional circuit. Costa and Martin then modify it to generalize it even more as shown 

below in Figure 23 (Costa & Martin, 2010). They argue that their “canonical microcircuit 

respects the known connectivity of the neocortex, and it is flexible enough to change 

transiently the architecture of its network to perform the required computations”.  

 

  
 

Figure 23: Costa & Martin’s (right (2010) reproduced with permission from Frontiers in Neuroanatomy under Open 
Access license) generalization of the classic Douglas and Martin (left) canonical cortical microcircuit (Douglas & 

Martin, 1991) from (Ulinski, Jones, & Peters, 1999) reproduced with permission from Springer. 

In this circuit, we see the classic circuit composed of these stages; 

 

(1)  thalamus feeding topographic sensory information to layer 3b and 4, commonly 

thought to only be layer 4 but mostly layer 3b in fact (Jones & Burton, 1976); 

and recently shown to also be fed into to layer 5; 

(2)  and then the connected pyramidals in layers II and III are activated, which in 

turn, 

(3)  activates layer V pyramidals;  

(4) which then drive sub-cortical structures and non-specific thalamic cells which 

then feedback to the layer II & III pyramidals in the originating column;  

(5)  and as well project to layer IV of higher cortical areas and then, 
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(6)  back-projections from those higher cortical areas in layers II & III feedback to 

the originating column’s layer II and III pyramidals; which then, 

(7)  activate connected layer VI cells that project back to thalamus. 

 

This model is the starting point for the Granger model. The Granger model adds a few 

important connections to the above. Rodriguez, Whitson and Granger (2004) cite the 

physiological evidence for these connections from the following studies (Conley & 

Diamond, 1994; Bourassa & Deschenes, 1995; Deschenes, Veinante, & Zhang, 1998; 

Rouiller & Welker, 1991). 

 

(1) the projections from layer V back to thalamus go to the matrix cells; and secondly, 

(2) this projection to the core cells passes through the TRN whereas the projection to 

the matrix cells does not, and finally, 

(3) the projection from the layer VI cells go to the thalamic matrix cells. 

 

These last few additions are key components upon which the Granger model ’s iterative 

hierarchical categorization mechanism is reliant.  

 

2.6. Dynamic Cortical Computation with Time Models 

We have seen various authors’ theories of the columnar and/or functional canonical 

structure of the cortex which attempt to account for the horizontal and, in many areas of 

sensory and motor cortex, topographical features of the receptive fields found in cortex. 

But what of the layers and how does the computation evolve over time? What theories 

are there about how the layers of cortex function and how do those relate to our 

destination herein to uncover the hierarchical categorization mechanisms of the thalamo-

cortico-cortical loops found in cortex?  

In general, it is fair but unfortunate to say, that really no one yet knows why the cortex 

appears to be organized into columns (or interleaved slabs for that matter) and layers. 

The functional significance is theoretical still (Hawkins, Ahmad, & Cui, 2017). The 

Granger model is largely a model about how sequential hierarchical categorization and 

object identification occurs through the interaction of the cortical layers and the thalamus. 

We will review some of the more prominent and relevant models in this section and 

comment on areas that significantly support the Granger model.  

Three are many theories of how cortex functions. All to date are based on theoretical 

grounds and not on any form of direct observation other than multi-cell recordings. We 

have not yet been able to record from enough neurons in all the related areas of the 

thalamus, the cortex, the hippocampus and the basal-ganglia simultaneously in order to 

develop a complete data-driven picture of the changes of state in all areas that the cortex. 

Therefore, no fully evidence-grounded theory of cortical operation yet exists. While this 

can be disheartening, the theories advanced so far are instructive, and we will review a 

few of the more well-known ones in trying to situate our core hierarchical categorization 

circuit model. The following summary of the available models was not able to be located 
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in the literature. We believe that this summary is of value in painting the landscape of 

where the literature has been and where our work is within the cortical computational 

theory that the Granger model is part of. 

 

2.6.1.  Hebbian Spike Timing Dependant Plasticity (STDP) Generated 

Cell Assemblies: How the Network is Formed 

One of the original theories of neural organization is Hebb’s famous plasticity model, later 

referred to as his ‘fire-together, wire-together’ (Löwel & Singer, 1992)  theory.  

In Hebb’s words;  

‘When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A's 

efficiency, as one of the cells firing B, is increased’ (Hebb, 1949).  

Hebb’s theory has become the neural wiring foundation over which much of modern 

neuroscience’s theories of cortical function and cortico-thalamic function rest. Many 

believe it gives the basic mechanism which networks come to represent the statistics of 

the world. The complex distributed functional representations of the world in cortex have 

not so far been able to be explained relying purely on the local Hebbian learning rule 

however. There is much more to be discovered as we attempt to connect the dots from 

neurons with synapses forged from temporal coincidence to functioning models of how 

thalmo-cortical loops learn complex hierarchically-organized,  categorical representations 

the world. 

How, on top of this network of neurons wired by simulataneous firing, does cognition 

operate? This requires theories that explain both the function of the signals, the role of 

the layers, and the dynamics of the whole, as well as characterizations of how the sum 

total generates behaviours. We list the models in a rough order below based on how 

much of the needed theory they address, the simpler ones to the more all encompassing. 

2.6.2.  Calvin’s Inbox/Outbox Office Model: High Level Layer 

Functionality 

Calvin (1995) provides one of the simplest ways of looking at the functions of the cortical 

layers inspired by Peters and Yilmaz’s layered model (1993). This model captures a 

surprising amount of the consensus of the canonical models from Douglas and Martin’s 

(1991) to subsequent models like that proposed by Rolls (2016). The basic idea is that 

layer IV is the “inbox”, layers II & III are the “inter-office communications” and layers V & 

IV are the “outbox” sending cortical outputs to the sub-cortical structures and the body. 

While this is nowhere detailed enough, it is a useful general orientation when starring into 

the complexity ahead. 
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2.6.3.  Abele’s Synfire Chains: Putting Limits on Dynamics in Random 

Networks 

Abele proposed that neurons are organized in chains of pools of neurons, such that the 

neurons in one chain send feed forward excitations to the next pool of neurons and so on 

(Abeles, 1982).  

 

 

Abeles argued that networks of neurons that converge and diverge in randomly 

connected networks using integrate-and-fire neurons cannot transmit information reliably 

and repeatably using an asynchronous spiking arrangement without large local inhibition 

and even then, the activity will spread beyond the local inhibitory network. He reasoned 

that this activation, if for no other reason than the timing of inhibition and excitation across 

a diverse network, cannot be controlled exactly or contained, and hence the network will 

saturate or be driven to full inhibition (Abeles, 1991). He also showed that asynchronous 

excitation through a randomly connected network results in spiking that is larger than the 

total sum of its inputs at each converging neuron over time, guaranteeing that the network 

will always go to full saturation if there is no inhibitory mechanism. He further commented 

that since the inhibition cannot contain the saturating excitatory forces, unless it moves 

to full inhibition, there must be something else going on to maintain the network’s activity 

between saturation and full inhibition. He postulated that these dynamics were basic 

properties of all complex neural networks. The solution he came to for the dynamic control 

was that the neurons could fire synchronously or asynchronously, but that only the 

synchronous mode was stable in the face of these limitations. He therefore defined synfire 

chains as the case where one population fires synchronously and then one time-step later 

the next group of neurons fires.  

 

He proposed additional constraints to ensure stability. First, the synchronous firing needs 

to be truly synchronous or at least squelched during the non-integrate-and-fire windows. 

So tight windows of where a cell will take input are required and then the cell should not 

take input until the next window. Second, the cells connections need to be strong enough 

Figure 24: Synfire chains. Note neurons propagating axons in a feed-forward 
direction. (Scholarpedia, 2017) reproduced with permission from 
Scholarpedia under the Creative Commons license. 
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to ensure synchronous firing for those cells that should fire. Lastly, the network on each 

synchronous volley must be in the right starting condition (Abeles, 1991). 

 

It is interesting at this point to speculate, especially in light of the later models of cortical 

function that have come along, on the consequences of this view.  

 

Temporally Limited Functional Circuits Manage Saturation: Perhaps Abeles is both right 

and wrong regarding the need for synchronous firing across the whole of any randomly 

connected network like the cortex. Perhaps you can have asynchronous firing in 

functionally delimited networks such as those formed by basal-ganglia-thalamo-cortico-

cortical networks (BGTCC Networks) where the thalamic specific cells are controlled by 

the reticular nuclei’s inhibitory cells. The claustrum’s wide integration across cortex may 

provide more functional control, as may the strong chandelier and other inhibitory 

interneuron connectivity in the cortex, all of which may be combined with strong oscillatory 

windows where spiking can occur. This may functionally activate the circuits with exactly 

the conditions Abeles claims are fundamental to mitigate saturation and full inhibition, 

allowing the circuits to operate reliably between these extremes. In this view the brain 

creates temporally contained circuits wherein asynchronous (or close to synchronous) 

firing conditions can occur in those selected circuits, the results of which are captured in 

the recurrent resonance of the BGTCC Networks, which is then provided at the next time-

step to the next incarnation of individually active BGTCC Networks.  

 

Burst Mode Helps Synchronize Inputs: It also interesting to recall the burst firing mode 

found in thalamic nuclei and speculate that synchronized burst mode could be used at 

the initiation of dynamic circuit formation to both synchronize, reset and perhaps align the 

firing of the then dynamically selected networks. This is similar to the discussion above 

that the burst mode “awakens” the right circuits. 

 

Nested Rhythms Manage Learning: Lastly, brain rhythms could also play a large part also 

in temporally aligning inputs. Here we speculate that another benefit of oscillatory rhythms 

at the higher levels of cortex is to create a temporal context to control learning. The alpha 

rhythm, found in upper cortex, has been shown in some structures to interact with faster 

rhythms, entraining and amplitude-limiting them. This may provide a context within which 

some cortico-thalamic circuits can learn while others are inhibited from learning. This may 

help solve the learning-stability problem at the heart of the yet to be uncovered 

mechanisms in cortex (see section below on Stephen Grossberg’s ART model for a fuller 

account). The formation of learned hierarchical categorizations in cortical thalamic 

networks as in the Granger model would be aided by such a mechanism as we shall 

discuss later.  
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2.6.4.  Friston’s Free Energy Model:  

Friston’s Free Energy Model (Fiston, 2010) states that any self-organizing system 

attempts to minimize its free energy in order to resist the push to disorder. This is how 

self-organizing systems resist the push to increased entropy. For predictive systems 

entropy is equivalent to surprise, in the sense that given the distribution of expected states 

of a self-organizing system, a state which is unexpected is an increase in the system’s 

entropy. Formally, surprise is equal to the negative log-probability of the states, so states 

that are improbable have large surprise. 

 

Friston developed his Free Energy Model starting with the Principle of Efficient Coding 

(Barlow, 1961) which states that the brain optimizes the Shannon mutual information 

(Shannon, 1948) between an incoming sensory signal and the brain’s representation of 

the signal. This was then generalized and formalized under the Infomax theory (Linsker, 

1990) which develops this into a general learning algorithm that optimizes a function 

transforming the sensory input signals into the internal representation held in the 

corresponding neural network, such that the transformation function maximizes the 

mutual information while minimizing redundancy and complexity in the encoding. Friston 

then extends the InfoMax principle adding to it the minimization of surprise, computed via 

gradient descent, making it a more comprehensive continuous learning model for use in 

neural networks. Friston’s extension of the Infomax model is formulated as a gradient 

descent optimization of the parameters for the generative predictive model over the 

paired sensory input vector and cortical state representation vectors. 

 

Applying this to a cortical model, Friston’s model attempts to minimize the difference 

between the predictions made by cortex and the actual sensory data of the world through 

positing a specific set of neurons in the brain that track the prediction error and that the 

cortex self-organizes to minimize this error using his free energy formula (see (Fiston, 

2010)). Feedback in his model is purely inhibitory in that the top-down prediction is 

subtracted from the bottom-up input to generate the error signal. While this last point has 

been used as a fault in the model given the long-range feedback projections from cortex 

are largely excitatory, the excitatory cortico-thalamic projections are in fact used to excite 

inhibitory TRN neurons, making the effect inhibitory at an information processing level. 

 

This prediction error then arises in the model as the difference between the top down and 

bottom up activities of the cortical columns. This is plausible given our previous discussion 

of layer I’s spreading of activation from the bottom-up cortical columns initially activated 

by specific thalamic afferents to their layer IV pyramidal neurons, after their neurons are 

activated by direct sensory inputs to columns, which have been linked to the sensory 

ones through the nonspecific thalamic networks. This could be one form of anatomical 

correlate of Friston’s proposed top-down signals. 

 

Friston’s model therefore is in agreement with the Granger model in three major ways:  
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1. The coding of the differences between each successive category are via the 

interaction of the cortical pyramidals and the thalamic nonspecific cells.  

2. Friston’s inhibitory subtraction of the inputs from the predictions is the same as the 

Granger model which subtracts a first round of general representations from the 

incoming signal by activating the TRN inhibitory suppression over parts of the 

specific thalamic incoming signal and then re-processes the residual specific 

thalamus signals through the cortex again to generate the next level in the 

hierarchical matching process. 

3. An extension of Friston’s Infomax theory, Coherent Infomax, is even closer to the 

Granger model in that Coherent Infomax maximizes the mutual information 

between the sensory inputs. The contextual inputs are represented in the path 

history and the current state of the neural network up to the current time. The 

implementation of the resulting context, path and efficiency sensitive optimization 

function in a learning rule for artificial neural models has been correlated to 

neurophysiological readings on real synapses lending support for the idea that real 

neurons do optimize their input response and information encoding in context 

sensitive ways that include the path history (Phillips, 2012). The Granger model 

also uses an encoding maximization, and context and path sensitive 

implementation of the transformation function from inputs to hierarchical 

representations.  
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Figure 25 : Friston's free-energy model situated among the other predictive / optimization algorithms of sensory 
encoding (Fiston, 2010) reproduced with permission from Springer Nature. 

There are many such predictive/optimization models for encoding and predicting sensory 

inputs to neural representations. Friston’s Figure 25 shows many of them. We will not 

discuss the others suffice to say that the details are in Friston’s papers and that the 

captions under each give the basic idea of what is being optimized and/or predicted for 

each. They all try to generate efficient encodings that maximize the learning of the 

probability distribution (whether conditional or joint) from sensory inputs to neural 

representations and predictions thereof. 

 

2.6.5.  Grossberg’s Adaptive Resonance Models 

Steven Grossberg’s wide ranging Adaptive Resonance Theory (ART) is at its heart a set 

of neural models that attempt to explain how humans can learn stably over lifetimes and 

fuse their learning at multiple levels into a sense of the world, self, and consciousness. 

The model has been developing for many years. We only scratch the surface and call out 

the areas where it is in agreement or not with the Granger model.  
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The initial ART model itself is a cognitive and neural model of how the brain ‘attends, 

categorizes, recognizes, and predicts objects and events in a changing world’ 

(Grossberg, Adaptive Resonance Theory, 2014, p. 1). The model attempts to explain the 

fundamental stability/plasticity dilemma, as to how the brain can remain plastic and 

continue to learn while maintaining stability. The original model was then extended to the 

LAMINART model which added support for the multiple cortical layers and then again 

extended to the SMART model which added the support for spiking and showing how 

multiple cortical areas interact with specific and non-specific thalamic nuclei to implement 

a solution to the stability / plasticity dilemma. 

 

The core proposal is that top-down predictions in the thalamo-cortical system focus 

attention on salient cues, filtering extraneous ones out, while attention creates self-

normalizing biased-competition amongst the activated neural circuits. When a good 

match between inputs and predictions occurs, a synchronous resonant state is created 

that enables adaptive learning of the bottom-up categorized inputs and the associated 

top-down predictions. This improves the context sensitive match between the inputs and 

the predictions for the next time they are called upon. The focusing of learning in context-

sensitive ways avoids the contamination of the inputs across to other circuits to which the 

inputs are not relevant or are out of the appropriate context. When combined with 

forgetting within the right contexts, the model claims to be the most widely applicable 

model to a range of cognitive behavioural phenomena. 

 

The SMART model is shown in Figure 26. The model is somewhat different than the 

Granger model. The SMART model’s flow is as follows from (Grossberg, 2008); 

 

1. Bottom-up input arrives at first-order thalamic matrix cells. 

2. First order thalamic matrix cells provide nonspecific excitatory priming to layer 1 

(blue dashed line) which turn on the corresponding layer 5 cells that then respond 

to layer 2 & 3 inputs. 

3. Layer 5 then activates the pulvinar in second order thalamus. 

4. Layer 4 of first order cortex now receives inputs from both (i) a direct LGN input 

and (ii) a layer 6 modulatory on-centre/off-surround input that contrast-normalizes 

the layer 4 activity pattern via the recurrent [layer 4, to 2/3, to layer 5, to layer 6, to 

layer 4] feedback loop. The contrast normalization circuit is a key proposition that 

enables all learning to be done over time on a normalized basis allowing for better 

pattern recognition and for incremental learning on the normalized representation 

resulting in less noise. 

5. The cortico-cortico pathways from V1 layer 2/3 to V2 layer 6 and layer 4 supports 

the divisive contrast normalization process. 

6. The cortico-thalamic pathway from V2 layer 5 to the pulvinar then projects to V2 

layers 6 and 4. The layer 6 to 4 pathway here in V2 also provides divisive 

normalization.  
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7. Cortico-cortical feedback from the now-activated V2 layer 6 projects to V1 layer 1 

where it activates the layer 5 apical dendrites. The layer 5 cells activate the layer 

6 to 4 pathway. This delivers a top-down expectation to the LGN. 

8. The thalamic TRN cells are linked by gap junctions which synchronize activations 

across the two thalamocortical circuits that are activated while the bottom-up 

stimuli are being processed. 

9. The nonspecific thalamic nuclei are receiving convergent bottom-up excitatory 

input from specific thalamic nuclei and TRN inhibition. The nonspecific thalamic 

nuclei project their resulting activity to layer 1 where they regulate mismatch-

activated reset and hypothesis testing.  

10. The specific thalamus in V1 matches feedback from the higher V2 area by 

comparing the (i) cortico-cortical feedback from layer 6 of the higher cortical area 

V2 which terminates on layer 1 of the lower cortical area v1 and (ii) cortico-thalamic 

feedback from layer 6 which projects to specific thalamus and the TRN. 

 

 

Figure 26: Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action. 

(Grossberg, 2008) reproduced with permission from Elsevier. 

 

The SMART model is a well-developed, large and complex model, which has been 

matched to many anatomical and functional studies. The SMART model and the Granger 

model have several commonalities:  
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i. they both utilize a cortico-thalamic-cortical loop structure with multiple feedback 

paths; and 

ii. they share specific thalamic input which is progressively matched and netted out 

to focus processing on the residual input as the iterations of the feedback loop 

progress; and 

iii. they agree that spreading activation of related cortical areas via layer 1; and  

iv. they propose a series of higher order nonspecific thalamic loops that relate the 

inputs to higher order processing.  

 

The general flow appears to concur with the Granger model and SMART offers many 

attractive extensions beyond Granger but it less explicit in the direct mechanics of how 

hierarchical temporal categorization results from the circuit as the Granger model is. 

 

2.6.6.  Jeff Hawkins’ Cortical Layer Model 

Jeff Hawkins advanced his Hierarchical Temporal Memory (HTM) theory in his book “On 

Intelligence” (Hawkins & Blakeslee, 2004). The goal of HTM was to produce an object 

recognition system which enables classification of visual objects over time. The more 

recent commercial goals are to predict temporal signals. The core neuroscientific 

advance that Hawkins’ models are working on making is to uncover how the cortex 

implements predictive learning of temporally varying signals. The neocortex’s anatomy 

and dynamics have been compared favourably to the functions implemented in the 

model, if not as much as the anatomical reality (George & Hawkins, 2009).  

Hawkins’ overall premise is that at its root the neocortex uses a hierarchical sequence 

memory for inferring and then storing causes of events in the world as received via the 

sensory inputs to the brain. Algorithms that attempt to emulate the cortex must create a 

hierarchical, spatio-temporal model of the sequences in the world and their relationships. 

Time is crucial to this process. This focus on time is a shift from many of the efforts at 

modelling cortical algorithms where most focus more (as of the date of the HTM’s 

creation) on the feedforward structure of the networks, with neurons largely being 

integrate-and-fire and not containing much in the way of sequence memories, thus 

resembling more batch-mode processing. 

One of the key elements of HTM, especially the newer versions (Hawkins, Ahmad, & Cui, 

2017), is that the model proposes that the pyramidal neurons of the cortex use their 

proximal dendrites to predict when they should become activated (depolarized). Once 

activated, they can fire and learn based on whether they recognize any one of many 

sequences that signal the presence of their learned preferred direction vector in their 

inputs. The Granger model utilizes purely thalamic activation of cortical pyramidals to 

implement this context selection mechanism, but the functional goal is similar. 

HTM builds this model of the world by pooling or categorizing both spatial and temporal 

aspects of the input it receives. The initial incarnations of HTM were based on Bayesian 

belief propagation principles whereas the more recent versions of the model use 
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interacting vectors representing cortical columns and layers, with vectors for each of the 

various components of cortical neurons (proximal dendrites, distal dendrites, soma 

integration models and axons). All of these vectors interact according to a set of heuristics 

modelling the activation of neurons to constrain the learning and prediction contexts 

(solving the learning-stability trade-off, similar in concept to how Grossberg approaches 

the problem, and in theory how the cortex solves it).  

For our purposes, we are not going to reproduce the math of Bayesian belief networks or 

the implementation in George and Hawkins original paper instead, we are going to focus 

on what the HTM model (both the original base model and the more current model applied 

to 3D memory) say about the functions computed in the cortical layers and then relate 

that to the Granger model. In the original model (George & Hawkins, 2009) the following 

functions are theorized for the various cortical layers: 

 

Figure 27 : HTM original cortical Bayesian Belief model. See text for cortical layer 
descriptions. (George & Hawkins, 2009) reproduced with permission from PLOS 
Computational Biology under their Open Access license. 

1. Layer 1 a broadcast layer for feedback and timing information. 

 

2. Layer 2/3 pyramidal cells store the sequence memories, pooled over the spatio-

temporal structure of the sequences of inputs and incorporating the feedback 

received into the memories. The layer has pyramidal cells that; 

a. calculate the feed-forward Markov chain sequence of states; 

b. project the Markov chain information to higher level cortical areas; and 

c. compute sequences based on feedback where the top-down feedback 

constrains the assignment of events into the sequences already in cortex.  

3. Layer 4 is: 
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d. the primary input layer (recall what we said though above in the anatomy 

section, that it is technically layer 3b that is the input layer); and also,  

e. the place where the computation of the feed-forward probability of each 

sequence over the set of all coincident sequences occurs. 

 

4. Layer 5 computes the belief over all coincident patterns, so given a set of 

coincident patterns, layer 5 determines which of the encoded beliefs is the one the 

system takes as the explanatory one to activate. In order to do this layer 5 

implements the calculation of duration which is a major part of the model. The 

whole of HTM’s rest upon the assumption that the cortex is storing sequences, and 

that means that the elements of a sequence are not the only things being stored, 

but that the timing between the elements is somehow stored. Hawkins and George 

propose that this happens all across cortex using different methods, but that a 

governing point of storage for the durations for sequence recognition, storage and 

recall is in layer 5.  

 

Hawkins and George believe that the neurons themselves cannot account for 

arbitrary delays on the scale needed to encode all sensory events. As such they 

find evidence for the neural circuit implementation of delays in the interaction of 

the non-specific thalamo-cortical projections interacting with their assumption that 

layer 1 implements a background timing signal to coordinate all cortical 

calculations, rather like a general system clock and an instance specific offset off 

of the system clock to time each element of a sequences commencement. The 

second source of delay they point to is due to the recurrent connections from layer-

5 through the matrix thalamus to the apical dendrites of layer 2/3 and layer 5.  

 

One interesting point to note about layer 5 is that it is possible that layer 5 is the 

source of timing for sequence memory in the cortex. The argument is only 

theoretical, but because this will be relevant to our discussion of the Granger model 

we will mention it here. There are two kinds of pyramidal cells in layer 5; intrinsic 

bursting (IB) and regular spiking (RS). IB neurons get dendritic feedback from layer 

1 predominately while RS neurons get feedback from layer 4. RS cells send their 

outputs to IB cells largely. IB cells send their outputs to subcortical areas including 

to non-specific thalamus and to motor areas. The authors postulate that the RS 

cells learn sequence associations and that the IB cells learn the timing between 

the sequence associations where the IB cells then send the resulting bursts to non-

specific thalamus which then fires a cascade of bursts to cortex which activate the 

associated circuits in the sequence in the learned order. This is unproven but 

correlates well with the Granger model’s role for nonspecific thalamus 

implementing the sequence linking each stage of the hierarchical categorization 

process. 
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5. Layer 6 receives inputs from layer 5, including the belief predictions about the next 

symbols from the layer RS cells, and computes the feedback messages from areas 

higher in the logical hierarchy to the lower areas. Layer 6 is considered here, as 

with all the models, as the primary source of cortico-cortical feedback. Connections 

from a lower (child) logical column to a given column’s layer 6 neurons means that 

the child column’s Markov chain is an element in the higher-level node’s coincident 

pattern. The authors also point out that some layer 6 neurons are implicated in 

attention and that this would be direct result of their model as well. Selective 

activation of the layer 6 cells in the Granger model could also create a focusing 

effect supporting attention, although that is not claimed in the model.  

Just recently, Hawkins et al. have updated the HTM Model and added several new 

features, the most striking of which is that they have proposed that cortical layer 6 

encodes not just the belief of what is next in the RS cells and the timing of that 

belief in the IB cells but that it also encodes the location in space where the 

sequence of sensory data is coming from in an allocentric way. There is no such 

proposal in the Granger model.  

 

2.6.7.  Randall C. O’Reilly’s LeabraTi Continuous Time Neural Model for 

Sequential Action Learning 

 
Randall O’Reilly’s (2014)  revision to his 1996 PhD Thesis’ Leabra model (O'Reilly R. C., 

1996), Leabra TI, continuous time neural model for sequential action, adds temporal 

integration (TI) to Leabra and postulates that the core function of cortex is learning by 

Figure 28 : HTM Updated Multilayer Cortical Layer Model (Byrne, 2015) 

reproduced with permission from arxiv.org open access. 
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computing the difference between expectations and actual outcomes. Expectations are 

processed (minus phase) first and then outcomes (plus phase) are processed and the 

differences are learned across all of cortex. This form of learning they name ‘predictive 

learning’ and describe it more fully as predictive, auto-encoder, error-driven, temporal 

learning. It is based on temporal difference learning between from the original Boltzman 

machine formulation (Ackley, Hinton, & Sejnowski, 1985) and learns off the differences 

from the minus to the plus phase. The Leabra TI model then attempts to explain how the 

thalamo-cortical systems perform the representation of this temporal context and how 

that supports the predictive learning processes. 

This is similar to recurrent networks with a driving rhythm to coordinate time with a 

learning step between oscillations. It is different than the models above where the learning 

is done between the top-down and bottom-up flow of information. Importantly the Granger 

model has both forms of learning, temporal and top-down/bottom-up spatial, which we 

take to be circumstantial support for its greater biological plausibility.  

 

Figure 29 : Randall O'Reilly's Continuous time neural model for sequential action (Kachergis, Wyatte, O'Reilly, Kleijn, 

& Hommel, 2014) reproduced with permission from the Royal Society.  

The basic idea is that the 10 Hz alpha rhythm, prominent in posterior cortex, creates a 

series of windows within which the previous oscillation’s context (including a prediction of 

the next oscillation’s context) are compared to the current oscillation’s inputs and 

processing state. Error-driven learning is then applied to the difference and the cortex’s 

predictive circuits are updated so that they make better predictions going forward. 

The recurrent loop of context and prediction representation is our now familiar (as in the 

Granger model) thalamo-cortical loop with layer 5b being the generator of the intrinsic 

alpha frequency which then projects its outputs to layer 6 regular spiking neurons which 

then send their outputs to the thalamus, which finally sends its outputs back to the input 
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layers and 6. This recurrent loop sustains the context throughout the processing in cortex. 

In more detail, the model postulates that the cortex operates in the following cycle of 

perception and learning from O’Reilly et al.’s 2014 paper (O’Reilly, Wyatte, & Rohrlich, 

2014): 

 

Figure 30 : An abstraction of what the Leabra TI model learns through time. Note the updated expectations 
in V1 over time. (O'Reilly R. , 2016) reproduced from arXiv.org open access. 

 

1. Every 100 ms cortex integrates its prior activities that were captured to the current 

point across the deep layers of all of cortex generating a set of predictions that are 

integrated across all of cortex. 

2. An alpha burst wave then propagates from the periphery inward across cortex 

driving the plus-phase of error-driven learning in comparison to the prior prediction 

which serves as the minus-phase. The alpha waves propagation is controlled by 

the layer 6b bursting dynamics and as it passes over the deep layers of cortex it 

updates the deep layers predictions for use in the next predictive phase. This 

enables the following predictions to integrate all prior context. 

3. This integration of prior context to the current state of upper cortical layers and to 

the predictions made in the lower cortical layers creates a spatio-temporal 

representation of the learned predictions within the context of all cortical columns 

giving a systematic representational and predictive structure of the events in the 

world. 

O’Reilly’s model is shown in Figure 30. Note the expectation in V1 as it updated at each 

time step to a better prediction of the motion of the bar relative to the cylinder. This 

prediction is hypothesized to be learned in the layer 5b bursting neurons which is different 

to, but not contravening of, the Granger model, where the primary source of sequence 

learning, storage and hence prediction, is within the thalamic matrix cells. 
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2.6.8.  Edmund Roll’s Multiple Layered Attractors 

We see that many models support the idea of both a flow of hierarchical categorical 

representations and their learned predictions thereof in thalamo-cortical loops. Such 

dynamics in large connected spiking neural networks. shaped by the various forms of 

inhibition discussed, and requires attractor states in order to maintain stable 

representations even for the short tens of millisecond scale processing times seen in 

cortex. One large body of work that gives a strong account of how these attractor states 

may be created by the anatomy and functioning of the cortex is given in (Rolls, 2016).  

Rolls covers virtually all that is known about the cortex biologically. It is an amazing work. 

There is far too much knowledge for us to delve into here, but we wish to point out his 

overarching theory about the function of the cortical layers. He theorizes that the cortex 

is composed of three major computing motifs as follows: 

1. Layer IV is the inflow of sensory and cortico-cortical input to each area. 

2. Layer I is the back-projection layer from higher cortical areas to lower areas as well 

as the area of spreading activation from the amygdala and the hippocampal 

system. 

3. Layers II & III are association cortex that implements a discrete, slow-long, auto-

associative, hierarchical-categorization attractor network map across all the 

columns. 

4. Layer V stores the stored dynamics of the concepts in the layers II & III attractor 

map. 

5. Layers V and VI implement a continuous attractor map together. 

6. Layer VI bridges those maps to its motor input and output memories. 

7. The thalamus participates in this system by gating sensory input in the topographic 

nuclei and implementing intelligent routing and selection of sequences of action in 

the non-specific nuclei and their activity circuits formed dynamically with layer V. 

This is both consistent with several of the models discussed above, such as O’Reilly’s ( 

if you posit that Rolls’ layer 5 attractor maps are O’Reilly’s layer 5b expectation learning 

networks). The Rolls model is also consistent with the Granger model exactly in terms of 

the above general functions. Rolls does not give his thoughts on the exact contents of the 

layer 2/2 or layer 5/6 attractor maps though. For an engaging read, and the most direct 

route to the core of his functional model, see Chapter 18 in (Rolls, 2016).  

2.6.9.  Deep Learning for Categorization 

It is now important to mention deep learning here both to position the Granger model 

properly as well as to ensure that there is no confusion when we state that we are in 

search of a more biologically plausible categorization algorithm, that we are not saying 

that we are in search of simply categorization in of itself. 

Incremental error-driven learning has proven very useful at learning in many algorithms 

designed to learn the structure of the world (O’Reilly, Wyatte, & Rohrlich, 2014). Starting 

from the original backpropagation algorithm (Rummelhart, Hinton, & Williams, 1986), to 
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the autoencoder model, to the later support vector machines (Cortes & Vapnik, 1995)  

and more recently deep learning (Krizhevsky, Sutskever, & Hinton, 2012). Currently 

convolutional, feedforward, sparse-representation, backpropagation networks with 

batched learning are the best performing networks for categorization. These networks 

are not, however, recurrent nor are they able to learn temporally continuous input like 

biologic networks are (though they do use discrete time slicing as an approximation in the 

case of LSTMs). 

Currently, deep learning more than suffices for many categorization tasks, but the 

Granger model serves a different purpose: it is a proposal of how the earliest stages of 

cortical dynamics over time implement categorization as a foundational dynamic and 

learning process to support full cognition and consciousness. It attempts to explain 

temporal sequence learning in a way that integrates with other functions of brains such 

as dynamic spatio-temporal prediction. The Granger model is a set of postulates that 

have strong biological support and are part of a system that suggests mechanisms for 

performing of these advanced functions. 

2.6.10. Thalamo-Cortical Resonant Functional Circuits 

Communicating Via Nested Oscillations? 

“The mechanism for the emergence of correlation, synchronization, or even 

nearly zero-lag synchronization among two or more cortical areas which do 

not share the same input is one of the main enigmas in neuroscience. It has 

been argued that nonlocal synchronization is a marker of binding activities 

in different cortical areas into one perceptual entity”  

(Olshausen, 2013) 

We know that biological categorization involves multiple sensory perceptions. We also 

know that the brain has many nuclei of neurons and those many nuclei are further divided 

into layers and columns. Yet we experience one percept of things in the world. We know 

that, at some level, the activities of these various neurons and areas must be bound 

somehow together. We now review several mechanisms of binding neural activities at 

various levels to elucidate possible ways in which this coherence of percept might 

correlate with coherence of neural activity. 

As we have discussed above, in the section on synfire chains, if we accept the premise 

the networks of asynchronously firing integrate-and-fire neurons would move toward 

global saturation or a paucity of activity (or at the least they cannot reliably reproduce 

activity patterns due to propagating inconsistent activity offsets), then networks of 

neurons that fire in an aligned manner may require some form of inhibitory isolation from 

the rest of the connected network for each of the various dynamically formed interacting 

circuits. [ We say they “may” require this because from Spaun (Eliasmith, et al., 2013) we 

know that it is in fact possible to do binding without such hypothesized inhibitory isolation 

methods. Which is biologically correct? We do not know yet.] They may also require some 

form of temporal control to implement the alignment between these dynamically formed 
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circuits to reliably propagate and process information. Under this view then, in order to 

coordinate the outputs of these integrated functional subnetworks, the brain would need 

mechanisms for temporal alignment and spatial segregation to control which circuits are 

active at any time. 

Within thalamo-cortical circuits there are several well-known frequency bands of activity: 

delta range at 1 to 4 Hz; the theta range at 4 to 12 Hz; and the gamma range at 30 to 40 

Hz or higher. Resonance among the thalamo-cortical column circuits is often pointed to 

as being the basis for distributed neural populations to synchronize into a functional circuit 

across both topological and rhythmic ranges. Llinas et al. model the mouse thalamo-

cortical circuits arising from the specific thalamic nuclei, which provide the sensory 

content that is bound to representations of internal context and relations from the non-

specific circuits’ outputs.  

He posits that recurrent, resonant gamma-range activity in specific and non-specific 

thalamo-cortico-basal-gangliar-cortical circuits connected to the ventral and central 

thalamus is the mechanism behind cognitive binding (Llinas, Leznik, & Urbano, 2002).  

In theory, this binding combined with integrations (such as the summation of activities 

within higher-order, winner-take-all circuits in higher-order cortical areas) could create a 

recurring temporal window for the faster circuits to be summed over to implement a two-

level processing. The Granger model has exactly such a structure where the incoming 

activity from the specific thalamus enters cortex to layer 4 and propagates feedforward 

upward to layers 2 and 3, while the layer 4 signal also travels downward where 

interactions with layer 5/6 and non-specific thalamus result in inhibitory feedback from the 

thalamus and therefore feedback subtraction of the recognized parts of the inputs. While 

Table 7: Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical 
inputs: A voltage-dependent dye-imaging study in mouse brain slices (Llinas, Leznik, & Urbano, 2002) 

reproduced with permission of PNAS under open access policy for academic use. 
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there is no claim within the Granger paper that the feedforward path operates at the alpha 

frequency nor that the feedback path operates at the gamma frequency, it is worth further 

study to assess the possibilities as a means of understanding the model and the biology 

better. The Llinas’ model, mentioned above, has the same lower feedback pathways in 

visual cortex oscillating at the gamma range as we reported above. 

Llinas states that thalamo-cortical resonance is the ‘basic coinage of cognition’ (Llinas, 

Leznik, & Urbano, 2002) supporting global cognitive binding. This is broadly in agreement 

with the Granger model in that the overall layer models are the same and the incoming 

sensory information arises from the specific circuits, while the nonspecific circuits learn 

the flow between the cortical circuits representing the next categories in the learned 

hierarchy. 

As to mechanisms for resonating thalamo-cortical circuits to coordinate information 

exchange with each other beyond the ones directly connected, there is a growing body 

of evidence that the coupling of activities may be coordinated on several levels by the 

interaction of the multiple neural oscillations at varying frequencies. The mechanisms of 

the actual oscillations are still largely unknown, but the prevailing view is that the neural 

circuits in-vivo by virtue of their activity within their excitatory / inhibitory connectivity 

(Bosman, Lansink, & Pennartz, 2014) generate rhythmic neural activities as they do in 

artificial circuits. The brain rhythms most commonly thought of in this kind of description 

are the field fluctuations measured at the scalp, which arise from the combination of 

neural spiking, ionic flows as well as below-threshold fluctuations in the intra- and inter- 

cellular currents, which then sum. Here though we are referring more specifically to the 

actual neural spiking of connected networks of neurons in various parts of the brain. 

Activity oscillating at different frequencies in different circuits has been shown to interact 

in various ways. One type of interaction is when slower oscillating activity constrains the 

amplitude of faster oscillating circuits, in what is called phase amplitude coupling (PAC), 

which is a form of the general class of theorized cross frequency coupling (CFC) 

mechanisms. As an example of studies that narrowed the coordination via oscillation 

down to a specific set of responsible cells, Dann et al. found in primates that fronto-

parietal functional networks were coordinated by a small group of frontal neurons 

oscillating at in the beta range (Dann, Michaels, & Schaffelhofer, 2016). 

Higher frequency activity, like the gamma band at 40 Hz approximately, has been shown 

to be a more local activity frequency in the lower cortical layers 4, 5 and 6 of cortex. It has 

also been shown that lower frequency activity, such as the alpha frequency at 

approximately 10 Hz, entrains larger areas of cortex and is found predominately in the 

upper cortical layers 1, 2 & 3. (Canolty & Knight, 2010). Gamma has been shown in visual 

cortex to arise in layer 4 and propagate to the lower cortical layers, and is, associated 

with feedback processing. In the same study, alpha has been shown to arise in layer 4 

and propagate upward to the higher layers, while being associated with feedforward 

processing (Kerkoerlea, Selfa, Dagninoa, Gariel-Mathisa, & Poorta, 2014).  

There is also evidence for oscillatory information communication across layers. Laminar 

studies have shown that oscillation frequencies are compartmentalized within specific 
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layers (Bosman & Aboitiz, 2015), and this is theorized to be evidence that rhythmic 

synchronization of spiking activity enables efficient inter-areal dynamic information 

transfer among areas of the brain (Fries, 2005). Compartmentalized oscillations within 

layers may also contribute to segregation of feedforward and feedback processing 

(Bosman, Lansink, & Pennartz, 2014).  

PAC has been theorized to enable the coordination of information in time as the 

alternating phase of the lower frequency oscillation provides a window to organize the 

dynamics of the faster oscillating circuit, giving a spatio-temporal organization to the 

integration of the information from both circuits (Canolty & Knight, 2010). Studies on 

simulated networks of attractors with nested gamma oscillations within theta (2 to 5 Hz) 

have even shown that the nesting of the oscillations can drive the attractor networks to 

encode and retrieve precisely timed spatio-temporal firing patterns, implementing spatio-

temporal memory (Hermann, Lundqvist, & Lansner, 2013). 

While the Granger model does not make frequency predictions, it is interesting to offer 

the possible integrating theory that as the categorization activity flows upward from 

specific thalamus to layer 4 as in the Granger model, it may do so by eliciting alpha 

frequency activity in layers I, II and III, which then propagates downward the activities 

within the layers 5 and 6 attractor networks. The interaction of these frequencies may 

also be a form of matching of categorization to the dynamic predictions stored in layer 5 

(as discussed above in Hawkins latest theories). Possibly, various combinations of 

predictions are thereby filtered through and the one matching best to the bottom-up 

sensory inputs and the top-down alpha frequency is selected, resulting in a set of 

resonating and therefore bound circuits and representations. The Granger model, while 

not explicitly supporting such a theory, is not in contravention of it. 

 

2.6.11. Possible Neurobiological Coordination and Communication 

in the Granger model 

In theory, taken together this synchrony to form dynamic cortico-thalamic circuits and 

PAC to communicate between the higher order representations in layers 2/3 and the 

supposed gamma-mediated representations in layers 5/6, would seem to be a plausible 

set of mechanisms to participate in the neurobiological implementation of the Granger 

Core and Matrix circuits. This theoretical biological implementation of the model could 

form the target hierarchical categorization and sequence learning model. When also 

combined with the theorized spreading activation of cortical areas through layer I, it would 

seem to lend support to Granger’s view that the brain computes sequences of categories 

forming a brain grammar composed of the activity over time in multiple thalamo-cortico-

cortical functional circuits. The layer II and III attractors would implement the higher order 

concepts-memory through learning, pattern completion and prediction of categories. The 

hierarchical connections from cortical area to area would implement the hierarchical 

relationships amongst the learned categories, and the integration of multi-sensory 

information into the definitions of those categories.  
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A recently published modelling study of simulated populations of gamma oscillating 

excitatory and inhibitory interconnected neurons (cortical column analogue) driven by two 

alpha-oscillating simulated neurons (thalamic pulvinar analogue) show that the phase 

difference between the two alpha driver populations modulates the synchrony of the 

cortical column analogue populations (Quax, Jensen, & Tiesinga, 2017). This study is a 

model, and not evidence in-vivo, but evidence of similar effects in humans exists and 

lends support to the concept of phase controlled activity synchrony and information 

exchange. A 2014 study of human cortico-thalamic coherence showed direct evidence of 

thalamic theta controlling activity in cortex and controlling thalmo-cortical theta-beta 

phase-amplitude coupling (Malekmohammadi, Elias, & Pouratian, 2015). 

 

 

Figure 31: Alpha-phase modulated gamma synchrony model. (A) network model where E= excitatory population, I = 
inhibitory population; B - graph showing gamma synchrony modulated buy the phase difference between the two alpha 
populations rhythms (Quax, Jensen, & Tiesinga, 2017), reproduced with permission from PLOS Computational Biology 
under open access license. 

These models are at least suggestive of thalamo-cortical binding within a sequential 

process, which evolves over several cycles driven by the circuit design, and possibly 

mediated by alpha/gamma nesting, to bind an incoming percept between the cortical 

column representations and thalamic core cell representations. While not confirmatory, 

these are the same mechanisms that the Granger model relies on: an incoming sensory 

flow; a multi-stage cortical processing step; feedback to the thalamic non-specific nuclei; 

and spreading activation of related cortical areas over a timescale involving several 

sequential loops of processing.  

The Granger model adds something significant to these models: the suggestion that this 

process is happening at ever increasingly specific frames of reference, progressively, 

hierarchically categorizing its inputs against already learned patterns. We have discussed 

many theories and their commonalities as to how hierarchical, categorical representations 

could be implemented in the brain. We now need to have a theory as to how seriality 

could emerge in neural networks at various time scales. 
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2.6.12. Dynamic Functional Cortico-Thalamic-Cortical Networks 

and Consciousness 

Lastly, we mention that some authors go further and lay the whole of consciousness, not 

simply cognition, at the feet of an integrated model of thalamo-cortico-cortical functional 

circuits. Edward G. Jones (2002) attributes conscious events to the functioning of these 

cortico-thalamic-cortical networks.   

 

“Interactions of focused corticothalamic axons arising from layer VI cortical cells 

and diffuse corticothalamic axons arising from layer V cortical cells, with the 

specifically projecting core relay cells and diffusely projecting matrix cells of the 

dorsal thalamus, form a substrate for synchronization of widespread populations 

of cortical and thalamic cells during high–frequency oscillations that underlie 

discrete conscious events” (Jones E. G., Thalamic circuitry and thalamocortical 

synchrony, 2002). 

 

Many authors have proposed that synchronous activity among cortical areas is the source 

of cognitive binding, while others conclude thalamo-cortical resonance is the minimum 

required level of coherence. For a summary of the various authors views see (Llinas, 

Leznik, & Urbano, 2002).  A 2006 paper that has received significant citations (over 500) 

and caused significant debate is Lamme’s “Towards a true neural stance on 

consciousness.” (Lamme, 2006). Lamme makes a sweeping argument that the study of 

consciousness needs to focus on the neuroscience components far more than the 

personal experience of consciousness that has been the subject of much of the research 

on consciousness for far too long. He reviews many studies, such as lesion deficit studies, 

and concludes that taken together they strongly suggest that consciousness can only 

occur, and is likely due to, the recurrent processing along the ventral visual stream to 

frontal cortex and back again. For our purposes here, a proper discussion is far beyond 

our scope, but it is relevant to point out that all of the areas pointed to in Lamme’s theory 

pass through the thalamo-cortical loops that are the subject of the Granger model. The 

thalamo-cortical loops resonance that has been discussed above, combined with the 

longer inter-area and inter-layer binding by oscillations theories offers a possible 

architecture for further study, to host Lamme’s recurrent processing along the visual 

stream in concert with the cortical columnar computations within the areas that he points 

to. Interconnecting Lamme’s overall argument for consciousness with Granger’s 

machinery for computing the grammar of thought is tempting. As with all reaching 

statements without proof, there is value in offering a theory for study, but nothing of 

certainty can be said about it until further evidence emerges. We find great value, if for 

nothing other than our own proto-theorizations, in the process of trying to see how top-

down theories might connect with Granger’s more bottom-up circuit mechanics. 

  



63 

3. Categorization 

As mentioned in the introduction, Granger proposes that the brain computes with a 

recursive grammar composed of sequences of categories that are themselves generated 

from two recurrent circuit motifs, the core and the Matrix circuits. The neural correlates of 

these are found in the many thalamo-cortico-cortical loops in the brain. Having reviewed 

the anatomy of the cortex, the thalamus and the thalamo-cortical loops, and also reviewed 

some of the more prominent theories on how the cortex process information (possibly 

support the Granger model’s temporal grammar formed from the dynamics of thalmo-

cortical processing) we now turn our attention to the core function of such a grammar as 

proposed by Granger: hierarchical categorization. We begin by reviewing the algorithms 

used for categorization, then discussing the Granger model in detail, and finish describing 

our spiking neural implementation of the Granger model’s Core circuit. Categorization is: 

the mental operation by which the brain classifies objects and events. This 

operation is the basis for the construction of our knowledge of the world. It 

is the most basic phenomenon of cognition, and consequently the most 

fundamental problem of cognitive science. (Cohen & Lefebvre, 2005) 

Clustering or unsupervised nonparametric categorization is the process of grouping 

unlabelled data into collections based on similarity such that the instances in each 

collection are more like each other than they are to the members of any other collection. 

Biological categorization systems naturally evolve under two optimization criteria imposed 

by the costs and structure of the biological world; (i) categorization mechanisms evolve 

to provide as much information as possible for the least biological effort, and (ii) the 

maximum information is achieved if the structure of the categories created matches the 

structure of the world and the sensory data obtained from it (Rosch & Lloyd, 1978). 

 

3.1. An Historical Overview of Categorization Methods 

Categorization dates back to the Greek classical period where rigid categories were 

manually assigned. Conceptual clustering came along later where clusters are assigned 

based on rules that can assign different levels of application to different categories. 

Modern classification either relies on fuzzy set theory, or prototype theory. In fuzzy set 

theory objects are assigned based on mathematical membership functions allowing for 

complex partial belonging, in prototype theory, a given exemplar is supplied, which 

potential members of the given class are compared to, and then assigned to the category 

with the highest congruence between the instance and the exemplar.  

The Granger model is similar to a k-means clustering that builds up a set of category 

exemplars over time. The category exemplars are created by a closest match to the 

strongest stimulating features that the neural circuits representing them have been 
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assigned. This assignment happens hierarchically through neural plasticity brought about 

by a competitive winner-take-all activation process. This allows the model to create 

categories through best-matching and competition, without prior exemplars, even starting 

from random states for all categories. The Granger model works this way.  

It must be noted that the idea that exemplars are learned at all is a subject of debate, a 

recent article suggests that human categorization stems from innate exemplars (Branan, 

2010).  

3.2. The Implementation of Categorization in the Brain 

There are many variations and combinations of these and other methods, at many levels 

of performance and biological plausibility discussed in the literature. The brain’s ability to 

make categories of objects and concepts has always been a core area of study in 

cognitive science and computational neuroscience. The brain gives animals a distinct 

advantage using categorization because it creates compactness of representations, 

allows translation of learning from one instance to the next, and, generality of learning. 

Organisms only see a fraction of the possible instances of stimuli, but must identity, 

predict, and learn to both react to, and influence, the full spectrum of instances of objects, 

environmental features, and other creatures. Categorizing stimuli and concepts facilitates 

these functions (Plebe, 2011).  

The physical implementation of categorization in cortex is a subject of much research. 

The environment, all things in it, and their likely next actions must be identified from 

dispersed and disjoint sensors. Modelling the continuum of reality is in some ways an act 

of continuous categorization. There are several areas of the brain that have been 

implicated in specific forms of categorization for various purposes. Some examples are:  

i. a well-studied area of cortex, the ventral temporal cortex (VTC), implements part 

of visual categorization; 

ii. the striatum has been implicated in the categorization of the components of 

objects, and theorized to work in concert with the prefrontal cortex in relation to 

task execution (Antzoulatos & Miller, 2011). 

Because much of neuroscience is consumed with the brain’s processes for turning 

sensory input into an internal semantic representation, much of neuroscience is about 

categorization. Our focus here is on how the incoming stimuli are categorized by neural 

dynamics and how those dynamics are implemented in the cortical columns and thalamic 

nuclei. While the Granger model does not speak to the specific layout of the neurons 

across cortex that implement categorization, it does theorize that categories are 

distributed spatially across cortex, for sensory representations, mirroring the spatial 

arrangement of the core cells of the thalamus. The model proposed by Huth et al. agrees 

at this most general level. 
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3.3. Spatio-Temporal Categorization in the Granger model 

Does such a topographic, spatial organization extend to the representations of complex, 

higher order categories such that the Granger model ’s topographic and layer-based 

category encoding could find potential support there as well? 

Spatial organization of categorical representations in cortex has been found in several 

areas. As an example, a review from 2017 gathers evidence that the categorical receptive 

fields of the VTC are spatially arranged. The pattern is organized by convergent clustering 

and divergent topological ordering as well as super-position into a nested spatial 

hierarchy across the cortical expanse. In other parts of cortex, such as V1 and the 

entorhinal cortex, columns stack different receptive fields, where in VTC they differ across 

the cortical sheet. 

The idea that the brain stores a set of significant exemplars is in line with the design 

concepts from the Granger model. It still interesting to attempt to grasp the full extent of 

the problem in mapping the massive dimensions of the real world into the storage system 

of the brain. It becomes ever clearer how much the brain must rely on categorization as 

a means of compression for storage, processing, comprehension, prediction, interaction 

and measurement of the world and its dynamics. 

The receptive fields, down to the resolution possible with a voxel, were estimated to be 

storing between 35 and 50 dimensions of the stimulus space (Grill-Spector & Weiner, 

2014). This likely means that few of the actual instances of the possible real-world 

exemplars can be stored simply because although there are many neurons in the brain, 

the permutations of perspectives, lighting, deformations, transformations and types of real 

world stimuli is larger. The full dimensions of this stimulus space are unknown. Likely this 

space would be composed of all manner of sensed properties, plus derived ones, varying 

across multiple time scales. It is reasonable to conclude that the cortex stores not the full 

breadth of its experience but rather a selected, reduced set of meaningful exemplars.  

fMRI experiments of human subjects categorizing images have been used to train ResNet 

networks to predict cortical activations, which were then validated by fMRI scans. From 

such trained ResNets, the structure of the cortical category storage was inferred. The 

results suggest that the cortical category maps are distributed, over-complete, property-

based representations filed away into nested hierarchical categorization maps (Wen, Shi, 

Chen, & Liu, 2017). In so far as the Granger model is concerned, the distribution of 

receptive fields is modelled across the artificial cortical sheet in using a similar 

topographic layout which seems very biologically plausible given the anatomical and 

simulation evidence. 

Four functions are possibly sufficient to create categories in a self-organizing system: (i) 

coincidence detection of stimuli; (ii) coding that coincidence for future retrieval with just a 

partial set of the stimuli; (iii) the ability to both learn the associations and refine them over 

time as well as to increase the aversion of mutually exclusive associations; and finally (iv) 

a mechanism for scoring how well a given stimulus matches the already learned 
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categories by predicting which categories the stimulus will elicit and then refining the 

predictions over time (Plebe, 2011). This combination of self-reinforcement combined 

with constrained competitive compensation scored by predictive accuracy may be 

enough to give rise to the cortical maps seen above. The Granger model is consistent 

with this mechanism. 

3.4. Cortical Categorization Model Algorithms 

Categorization models began in the psychological and cognitive sciences with conceptual 

category models divorced from cortical and neural mechanisms that implement them  

(Plebe, 2011). Plebe (2011) gives a excellent review of the evolution of cortical 

categorization algorithms. The rest of this section on cortical categorization algorithms 

follows his summary closely. For our purposes, this will allow us to review the history of 

categorization algorithms quickly but with sufficient depth so that we may then move on 

to discuss cortical dynamics and the temporal processing of categorization. We then 

situate the Granger model’s hierachical, temporal, progressive categorization model 

within the context of the above discussion on thalamo-cortico-cortical circuits and 

categorization algorithms. 

3.4.1.  Von der Malsberg’s Visual Circuits Model 

Von der Malsberg’s visual circuits model (Plebe, 2011) is defined as 

  
𝜕𝑦𝑖

𝜕𝑡
= −𝛼𝑦𝑖 + 𝑘𝑖

⃗⃗  ⃗ ∙ 𝑓(𝑦𝑖⃗⃗⃗  ) + 𝑤𝑖⃗⃗⃗⃗ ∙ 𝑓(𝑧𝑖⃗⃗  ) + 𝑥𝑖 (1) 

  
𝜕𝑤𝑖,𝑗

𝜕𝑡
= 𝜂𝑓(𝑦𝑖)(𝑓(𝑧𝑗) − 𝑤𝑖,𝑗 ∑ 𝑓(𝑧𝑙)𝑙𝜖𝑧𝑖

) 

 (2) 

where yi = the neuron activity in layer IV, Zi = the neuron activity in non-layer IV connected 

to neuron yi, wi,j = the connection strength between zj and xi,  𝑘𝑖
⃗⃗  ⃗ = the gaussian kernel 

function modulates activities near i, 𝑤𝑖⃗⃗⃗⃗  = the vector of all connections of neurons 

connecting to i, 𝑦𝑖⃗⃗⃗   , 𝑧𝑖⃗⃗   = the activations of neurons that connect to i, 𝑓 = the sigmoid non-

linearity, and 𝜂 = the learning rate. 

Von der Malsberg introduced the first model of how visual cortex neural circuits might 

self-organize. von der Malsberg’s system of differential equations implements Hebb’s 

learning principle between neurons as the mechanism of self-organization. 

The basic idea is that layer IV pyramidal neurons’ activities are sigmoidal, like neural 

spiking dynamics and saturation and the neurons in a cortical layer are locally excitatory 

and then laterally inhibitory beyond the immediate vicinity, falling off in a 2-dimensional 

Gaussian shape. The weights are then adjusted based on these activity dynamics using 

a Hebbian mechanism in the lower equation to learn these dynamics over time. 

The relevance for our discussion is that this was among the first models to try to capture 

self-organizing category behaviour (in visual cortex V1). Also, it recognized that a 
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combination of local excitation and distal competition was required to do so and that these 

forces interacted with each other producing topographically organized receptive fields. 

3.4.2.  Kohonen Topographic Self-Organized Maps (SOMs) 

Kohonen (1982)  popularized the concept of topographical self-organization, making it 

simpler and more explicit in his famous Self-Organizing Maps (SOM) model. The model 

starts with M nodes that are analogues for neurons in a cortical sheet. The neurons have 

preferred direction vectors and connection weights to all the other neurons. 

Kohonen’s self-organizing map equations model (Kohonen, 1982)  is defined as 

  𝑤 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑖𝜀{1,…,𝑀}{‖𝑣 − 𝑥𝑖⃗⃗  ⃗‖} (3) 

  △ 𝑥𝑖⃗⃗  ⃗ =  𝜂𝑒
−

‖𝑟⃗⃗ 𝑤−𝑟𝑖⃗⃗⃗⃗ ‖2

2𝜎2 (𝑣 − 𝑥𝑖⃗⃗  ⃗) (4) 

 

Where 𝑣  = the input vector, M = the number of neurons in the SOM, w = the winning 

neuron at each training iteration, 𝜂 = the learning rate, 𝑟𝑖⃗⃗  = a two-dimensional coordinate 

location in the SOM for neuron i using 0:1 as the range for both dimensions, 𝑥𝑖⃗⃗  ⃗ = the 

preferred direction vector of neuron i, and 𝜎 = the amplitude of the neighborhood used 

when updating. 

An input vector is computed at each time step and the preferred direction vectors then 

the weights of all neurons are updated according to the equations shown. The result is a 

map of the input space topographically organized with the continuum of preferred 

direction vectors in the neurons. The top equation selects the winning neuron by finding 

the neuron that has the least absolute difference between its’ preferred direction vector 

and the current input vector. The lower equation then updates the preferred direction 

vectors of all neurons based on how close topographically they are to the winning neuron.  

SOM’s implement an instance of the Winner-Take-All (WTA) mechanism that is very 

popular in many models trying to capture the overall effect of lateral inhibition in the cortex. 

The downsides of SOM, as with van de Malsburg’s model, are that the WTA mechanism 

at this high-level abstracts away all the effects of the non-uniform nature of the lateral 

inhibition in cortex (Plebe, 2011). In SOM the shape of the neighbourhood inhibition 

function can be chosen, but it is uniform. In cortex, each and every inhibitory and 

excitatory connection is created or pruned and tuned across layers, not just in a two-

dimensional plane. 
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3.4.3.  Laterally Interconnected Synergetically Self-Organizing Map 

(LISSOM) 

To add more realistic lateral connection topologies, the Laterally Interconnected 

Synergetically Self-Organizing Map (LISSOM) was developed (Sirosh & Mikkulainen, 

1997). It added lateral inhibitory and excitatory connections to each neuron in addition to 

the input vector (Plebe, 2011).  

 

where 𝑉𝑖
→

 = the input vector, rE = the circular radius of excitatory neurons lateral 

connections, 𝛾 = connection strength scalars, rH =  the circular radius of inhibitory neurons 

lateral connections, 𝑋𝑖
→  = neuron i’s preferred direction vector, A = matrix of neural 

activities, H = matrix of inhibitory connection weights, E = matrix of excitatory connection 

weights,  = the lateral excitatory connections vector, = Lateral inhibitory 

connection vector, = activation of neuron xi at timestep k. 

In LISSOM the weights are updated by a series of Hebbian equations (not shown, see 

(Plebe, 2011) for details). The model has been used by Plebe to implement a series of 

systems that are able to emulate early word learning and real-time object recognition 

using uni- and multi-modal sensory inputs. One of LISSOM’s contributions is that it 

explicitly models lateral inhibitory and excitatory connections contributing to its biological 

plausibility.  

 

LISSOM does not resolve what the activity of a single neuron comes to represent (Plebe, 

2011). Does the cortical stack represent layers of neural networks the implement 

hierarchical maps resulting in activities of single neurons in the top most layers 

representing specific things in the real world? These conceptual neurons have been 

called “grandmother neurons”, alluding to the existence of a single neuron, high in the 

logical cortical stack, that responds only when one sees their grandmother. 

 

Hinton (Hinton, McLleland, & Rumelhart, 1986) and Churchland (Churchland, A 

Neurocomputational perspective: The Nature of Mind and the Structure of Science, 1989) 

have proposed that neural activities across many cortical columns represent meaning, a 

concept that has become known as any of the following: sparse distributed 

representations (Rinkus, 1995), distributed coding, population coding, vector coding and 

state space coding. Many papers have shown evidence of population coding in cortex 

(Plebe, 2011). 

(5) 
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The central idea in population coding is that neurons that fire at the same time collectively 

represent the meaning of a higher-level concept, and that each individual neuron does 

not in and of itself represent a real-world concept. In this regard, all forms of population 

coding share similarities with the NEF, which the computational model of this thesis is 

built with. Natively, the NEF is not topographic but our modelling work takes NEF vectors 

and treats them as topographic neural ensembles representing categories. While still a 

long way from the cortex, incorporates more of the factors we see in biology. 

 

3.4.4.  Toward Dynamic Categorization Models 

None of the models account for the hierarchical, spatio-temporal categorization that the 

Granger model proposes. On the other end of the spectrum, biophysical models of neural 

networks are progressing but as yet do not encapsulate categorization algorithms. 

In our model built with Nengo using the NEF methods, we will use spiking dynamics, 

recurrent connections, WTA mechanisms and recurrent explaning-away to propose how 

spiking neural networks can implement hierarchical categorization.  
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4. The Granger Model 

Granger argues that brains compute with grammars that encode time structured relations. 
The structure of this grammar is an extensive hierarchical tree of sequences of 
categories, of sequences of categories, and so on (Granger R. , 2011). For a visual 
example of the categorization of the image of a flower see Figure 34. 
 
Similar theories have been advanced that the brain has a symbolic basis to its 
computation. Some argue more for a series if programs built of symbols (Ballard D. H., 
2015), Eliasmith argues that semantics are computed using a set of semantic pointers 
that are manipulated directly at the higher cognitive levels, and expanded to the fuller 
meaning when needed (Eliasmith, 2013). Eliasmith’s model is not inconsistent with an 
implementation in biology via a combination of; Granger’s model of the emergence of 
categories in cortical layers II and III (holding perhaps Eliasmith’s higher order concepts), 
or with Rolls and Hawkins theories that the lower layers encode the dynamics and 
specifics of such higher-layer attractor-based concepts. 
 

4.1. Two High-Level Abstraction Circuits: Core & Matrix in 

Posterior Cortex 

The Granger model posits that there are two distinct interoperating circuits that implement 
the cognitive behaviour of categorization. These circuits are both thought to be formed 
from neurons in posterior cortex and their associated thalamic circuits. Granger refers to 
these two circuits as the Core circuit and the Matrix circuit. The Core circuit is responsible 
for categorizing inputs from the thalamus. The Matrix circuit learns the sequential flow of 
the categories. The Core and Matrix circuit models use several features of cortical 
functional anatomy such as: different time courses for excitatory and inhibitory neurons, 
and different axonal arborisations for the pyramidal neurons versus the interneurons. 
These core-circuit and matrix-circuit patterns hold for the primary sensory areas found in 
posterior cortex, such as the VPM/VPL, LGd., MGv, Pom, LP/Pul, and for the MGm 
projections to layer I of somatosensory, visual, and auditory cortices. They are also 
evident in a wide array of thalamic nuclei, intralaminar and non-intralaminar thalamic 
nuclei.  
 
Neither the Core nor the Matrix circuit model covers the myriad of inhibitory neurons in 
the cortex beyond a few significant ones. Hawkins’ latest model (Hawkins, Ahmad, & Cui, 
2017), mentioned previously, goes into more detail, especially regarding layer 5 and 
seems compatible with the Granger model. The Granger model focuses on explaining 
categorization in the posterior cortex and not the anterior cortex, whose circuits connect 
to the ventral thalamic nuclei and involve the striatal complex. We should mention that 
Chandrashekar and Granger have published more recent work showing a modified 
version of the categorization circuit in those areas (Chandrashekar & Granger, 2012), 
which is beyond the scope of this thesis. 
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4.2. Processing Flow 

The overall flow in the Granger model is that sensory information flows from the periphery 
to the core cells then to the middle layers of cortex, to superficial layers and then to deep 
layers. The topographic Core circuit organizes stored memories into similarity-based 
hierarchies using hierarchical clustering. The non-topographic and diffuse, Matrix circuit 
uses a hash-like storage system to store time-varying sequences chains. See Figure 32 
below for a schematic of both circuits. 
 
The Core circuit extends from the topographic peripheral sensory inputs of the thalamic 
core cells to topographically-organized layer IV and then apically to layers II & III and to 
layers V & VI with reciprocal topographic feedback from layer VI to the originating core 
cells in thalamus.  
 
In the Matrix circuit, the TRN overlays the thalamic nuclei and their matrix cells which 
project non-topographically to layer I after receiving their strongest driving projections 
from cortical layer V, but without the TRN intervening in the circuit.  
 

Figure 32: Granger model's Core and Matrix circuits. Neural circuit on left, matrix simulation model on right. (Rodriguez, 
Whitson, & Granger, 2004), reproduced with permission from MIT Press open access for academic use license. 

4.3. A Sparse, Spatial, Temporal Code 

The Granger model postulates that all cortex is involved in widespread synchronous 
activity where thalamo-cortical circuits encode information on the basis of sparse, fast-
gamma neural activities that are punctuated by rhythmic excitation rising from the 
thalamus, targeting largely the longer-acting inhibitory cells of the cortex. Granger also 
theorizes that the pattern of changing excitation from the lower layers of cortex and the 
thalamus contains information relevant to the categories learned by the cells of the higher 
cortical layers. 
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The Rodriguez et al paper (Rodriguez, Whitson, & Granger, 2004) further offers that there 
may be a flow to the information sent. The first volley of activity, in a rhythmic bursting 
mode, contains information about the stimulus, making initial identification easier. The 
activity that follows, sent in tonic mode, is thought to contain further information about the 
stimulus. This progressive flow of information is the core of the hierarchical 
categorization. The major claim of the model is that the same circuity implements a 
process over time of information transfer, categorizing the stimuli into a series of 
hierarchical percepts. 
 

4.4. Time Resolution 

In the Granger model, the sparse, spatial code that the cortex uses operates at the 
maximum speed of the excitatory-post-synaptic-potentials (EPSP’s), which is in the range 
of 10 to 15 milliseconds, limiting the precision of thalamo-cortical computation to this 
resolution. Granger offers that it is likely that the sums and differences between the 
various circuits spiking at gamma range in the lower cortex are integrated and compared 
by the circuits, and that possibly alpha activity may also contain information. For our 
implementation of the Granger model, the simulation runs with a granularity of no less 
than 10 ms, the shortest time constant we have employed. 
 

4.5. Memory Storage 

In the Rodriguez et al. paper, the authors suggest that, in the superficial (Layers II & III) 
and deep layers of cortex (layers 5 & 6), NMDA-based long-term potentiation (LTP) is the 
mechanism that stores the memory resulting from the hierarchical categorization process. 
They suggest that there are likely other processes at work, but the one that has the time 
course, the capacity, and the duration to support the functions they describe is NMDA-
mediated LTP. In layer IV of cortex and in the thalamus, they point to the overwhelming 
volume of glutamatergic synapses and the presence of NMDA-limiting gene expressions 
to conclude that the glutamatergic synapses are the focus of learning that occurs in those 
areas. The Granger model does not address the possibility that the resonance in the 
thalamo-cortical columns bound to frontal cortex may be a form of short term memory as 
well, as is theorized in some of the models discussed previously. 
  

 
Figure 33: Relative percentage pie-chart of the neurotransmitters in layer IV cortex and thalamic nuclei. Numbers are 
pico-moles per microgram, (Rodriguez, Whitson, & Granger, 2004) reproduced with permission from MIT Press open 
access for academic use license. 
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4.6. Simplified Circuit Wiring 

The Granger model makes a series of nested feedback loops as shown in Figure 32. To 
simulate the circuit, Rodriguez et al. made a series of simplifying assumptions about the 
wiring of these loops, while attempting to preserve the sequential, hierarchical 
categorization behaviour of them. The most significant set of assumptions is the complete 
preservation of topographic ordering through the whole of the Core circuit. This is a large 
simplification over the biology, but one necessary for model tractability. It is theorized that 
a major part of the axonal projections on these paths are in fact direct, as the model 
makes them to be, but not all.  
 

4.7. Computing a Hierarchical Cluster in the Granger model 

The cortical columns in layers II & III compete to learn stimulus patterns to represent. The 
strongest parts of the stimuli are responded to first. For any ongoing stimulus event, the 
strength of the incoming signal has been filtered by top-down expectations arising from 
previous activity. Therefore, the most salient aspects of the incoming stimuli are not only 
those that have the highest contrast (or some other property), they are the ones that are 
predicted from the past stimuli. Circuits representing stimuli that were predicted from the 
previous stimuli will have the higher activities and if the current stimuli match the 
prediction, those predictive circuits will be the most active, and most likely to be 
strengthened by Hebbian learning. 
 
The largest, most useful categorical features will therefore be the ones sent through first 
by the thalamus to the cortex. This initial volley arrives from specific thalamus to layer IV 
and then layer II & III, which then activates the “winning” cortical columns in associated 
layer II & III pyramidal cells. These pyramidals then activate their corresponding layer VI 
and layer V pyramidals. The layer VI pyramidals topographically signal the specific circuits 
of the thalamus, for which the TRN inhibits the original incoming cells, causing a 
subtraction of the parts of the incoming signal that was recognized. While this is 
happening, the ‘winning’ layer II & III pyramidals activate their corresponding layer V 
pyramidals, which in turn activate their connected thalamus non-specific cells, and 
together they compute a predication of the sensory stimuli to next arrive. This prediction 
is then fed to higher order cortical columns via the nonspecific thalamus. See the left-
hand side of Figure 32. 
 
In Figure 34, the authors diagram the logical flow of categories over time as the input 
stimulus is classified. In their analogy they construct a hierarchical classifier for images 
of flowers where the number of petals, the colour of the petals (dark or light edges), the 
petal size and/or the petal orientation, determines the major and minor categories. The 
categories recognized are on the right. On the left the states of the cortical and thalamic 
layers are shown as the incoming stimulus is processed and changed. The stimulus is 
processed such that the combined activities over time represent the sequence of 
categories and then the sub-categories in the superficial layers of cortex. The deep layers 
learn the sequences of categorical representations (the activities of the superficial layer 
neurons as discussed above). The deep layers use these learned category sequences 
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(Granger’s brain grammar) to predict the category sequences in future, thereby aiding 
future recognitions via top-down feedback. 

 
Figure 34: Diagram of the sequential functioning of the core (Ct) and matrix (Mt) thalamic circuits of the Granger 

model. Superficial cortex (S), middle cortex (M), deep cortex (D) and TRN (Nrt)). See model description in text for 
details. Time steps; t=1, t=2, t=3. (a) t=1, stimuli flows topographically from Ct to M to S; (b)S to D then topographic 

inhibition in Nrt to Ct, (c) response to this point is the same for stimuli in same cluster, (d) t=2 remaining core cells not 
inhibited win the WRT process and repeat process, (e) deep layers now learn the sequence of superficial layer 

responses, (f) second superficial layer response represents the sub-cluster, (g), (h) and (i) repeat the process of d,e, 
and f. From (Rodriguez, Whitson, & Granger, 2004), reproduced with permission from MIT Press open access for 

academic use license. 

This topographic and temporal activity flow of columns being activated based on the most 
salient components of the inputs can be used to sub-categorize the sensory inflow, and 
are the neural correlates of the process of iterative, hierarchical categorization in the 
Granger model. 
 

4.8. What does the feedback to Layers II & III of the 

originating column do?  

One of the interesting high-level problems that remains is that while we might have a good 
theory for the feed-forward output of layer V and VI, we don’t have a good theory of the 
functional value of the feedback to layers II & III from nonspecific thalamus related to the 
column that originated the sensory input. 
 
One possible explanation comes from again considering the Granger, Rolls and Hawkins 
models. Granger theorizes layer V to contain the core storage of the progressive 
categorization sequences, Hawkins theorizes that layer V is the source of the predictions 
of the next stimuli to be received, which is similar to Rolls’ theory that layer V contains a 
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competitive attractor map of the ‘physics’ of the things represented in cortex. The models 
are all quite similar at this level of abstraction.  
 
The layer V projection to nonspecific thalamus, that then projects to higher-order cortex, 
is consistent with each of the theories with slight variations. The projection to higher-order 
cortex also feeds back to layers II & III and layer V of the originating columns. The feed-
forward aspect is likely activating the next columns in the prediction, and deactivating 
those that are not consistent with the sensory inputs received. The feedback to the 
originating columns could be a signal reinforcing the accuracy of the prediction. Or, if the 
computation in layer V and non-specific thalamus were to yield only predictions that failed 
to be sustained (given that as Rolls theorizes these layers are maps of attractors) then 
we must see the activity for each of these scenarios as happening not just in the Granger 
model’s feed-forward and feed-back flows, but also through a series of lateral winner-
take-all competitions within each completive attractor map layer. This process would be 
happening both in the attractor map that Roll’s theorizes in layers II and III and the one 
operating in layers V and VI.  
 
This may be the purpose to the feedback from nonspecific thalamus to the originating 
column’s layers II & III. The feedback would be present to continue to activate the 
column’s inputs, which we know tapers off after the initial bursts, as discussed previously. 
So, if the prediction was activated and then it was not suppressed in the attractor map in 
layer V, the original column continues to receive activity to sustain its participation in the 
ongoing categorization and percept. If not, then the column’s activity falls and another 
column, whose prediction better explains the sensory inflow, is activated and participates 
in the creation of the new categorization and percept. 
 

4.9. Core Loop Algorithm Implementation   

The algorithm to compute the model using matrices is shown for both circuits here. For 
the Core circuit computes a series of categorizations of its input and over time trains the 
weights in simulated layer I, II, III to build an iterative hierarchical set of feature detectors 
therein for the categorization of the input. 
 

i. The maximum dot-product of the input activity vector (X) and the layer I 
synaptic weight matrix (W) determines the winning layer II/III cortical column 
set C for the current X. Multiple cortical columns may win if the they all have 
the same dot-product with X.  

ii. The set C is the category for this iteration of the hierarchical categorization of 
this instance of X. 

iii. The winning weight vectors all have a portion of the difference between their 
current state and the input vector X added to them to move them closer to X, 
the rate they move is called the learning rate (k). 
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iv. The portion of the input now ‘explained away’ is the new adjusted W after 
learning. The mean of this categorized portion of X is now subtracted from X, 
leaving only the ‘uncategorized’ portion of X. 

 
v. The now uncategorized X is fed back into the process to be ‘sub-categorized’. 

At each iteration of the outer loop a new sub-category is generated in the 
changing values of C.  

vi. Once X is depleted by repeated subtraction, there is no more input to process 
from this X and another input arrives or the circuit goes quiet. 

   

4.10. Matrix Loop Algorithm Implementation   

The matrix loop learns the sequences of categories generated by the core loop combined 
with other thalamic inputs and can reinstate them from partial stimuli information. It is a 
high capacity sequence storage and recall system (Rodriguez, Whitson, & Granger, 
2004). Recall from our discussion about matrix cells in the thalamus that they are thought 
to sparsify and orthogonalize their inputs, so a matrix loops’ responsibility in the Granger 
model is to learn this sparse, orthogonal code. The Granger model proposes that this is 
done via a hierarchically deepened hash code. This loop is different from the core loop in 
that it produces very specific responses for similar outputs, it is trying to store a very 
accurate code of sequences of categories, including learning their transition dynamics. 
This is a different and larger representational space than that learned by the core circuit, 
but one that requires more precise storage and recall.  

 

Figure 35: Granger model Core loop. Adapted from (Rodriguez, Whitson, & Granger, 2004)  reproduced 
with permission from MIT Press open access for academic use license. 
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The Granger matrix circuit performs its function in three basic steps across the connected 
thalamo-cortical circuits (note the circuit diagram only shows one instance of the circuit) 
to generate this hash code, as follows: 
 

i. Feedforward input is sent from the layer II / III cells to layer V. 
ii. A hash is performed (using layer V and the matrix nuclei of the thalamus) of the 

feedforward inputs combined with the result of the last time-step’s hash function 
output. 

iii. The output of the matrix thalamus cells is fed back to layers I, II, III and V via the 
thalamo-cortical fibers. 

 
To perform the actual hash, the Granger model uses a space efficient hash algorithm 
similar to the Bloom filter commonly used in spelling correction systems, where a series 
of hash function outputs map onto a fast lookup table. In our view, the Granger model’s 
Matrix circuit implementation of this algorithm is likely not very biologically accurate given 
that the reality of a spatio-temporal neural implementation is much more likely to be 
implemented as a neural network with dynamically learned associations. However, the 
overall contribution of illuminating the higher level biologically plausible steps in the 
thalamo-cortical system for learning real-time sequences are more the point of the work, 
and this matrix algorithm remains an area of further study. We do not model the matrix 
loop, only the core loop in this work. 
 
The inter-operation of the core and matrix loops in the Granger model produces a data-
store within cortex and thalamus of sequences of stimulus categories. For more details 
on this circuit and the physiological basis for it, beyond the summary below see 
(Rodriguez, Whitson, & Granger, 2004). Our implementation focuses only on the first part 
of the Granger model, the Core Circuit. 

 

Figure 36: Granger model Matrix Loop. Adapted from (Rodriguez, Whitson, & Granger, 2004) reproduced with permission 

from MIT Press open access for academic use license. 
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5. The Neural Engineering Framework 

(NEF) 
 

5.1. Representational Space versus Neural Activity Space 

How do stimuli (such as light levels, colour frequencies of light, sound frequencies, 
pressure levels, etc …) become translated from the outside world into electrical and 
chemical states in brain so they can be computed with? Brains use sensors that respond 
to the properties of the world. Neurons that monitor these sensors (or monitor sensory-
neurons) generate spikes at various rates and times to encode these values from the 
world within their networks.  
 
The NEF is a set of mathematical methods for translating real-world values to spiking 
activities of the neurons representing them. The NEF allows us to build complex circuits 
that simulate these processes in the brain. The NEF was designed to enable neural 
models that are; biologically-plausible, large-scale, recurrent and realistic using spiking 
neuron models. The NEF is a synthesis of theories of neural coding, neural computation, 
dynamical systems and control theory (Eliasmith, 2007). 
 
In the NEF, the space of values the neurons are representing in their spiking activities is 
called the representational space. The values in this space are human-readable: they are 
values in a stimulus space, such as the intensity of various frequencies of light for vision. 
In the NEF and its implementation in Nengo, representational space values are vectors 
of a user-specified length. In our implementation of the Granger model, the 
representational space values are the values of the intensity of each of the pixels for the 
images of the digits we are trying to categorize. 
 
Neural activity space refers to the activities of the neurons that result once a 
representational space stimulus, a vector, is input to an NEF ensemble of neurons. In the 
NEF, these activities are represented as a vector of neural firing activities with one 
element per neuron in the ensemble, where each element is a 1 if the neuron has fired 
and a 0 otherwise. These are computed in the NEF at variable time scales, as specified 
by the time constants specified for the chosen neuron model.  
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5.2. Mapping Between NEF Spaces  

The NEF maps representational space to activity space using decoders and encoders. 
Encoders are weight matrices that incoming representational space vectors are multiplied 
with to yield the corresponding neural inputs. Encoders are dimensioned by the number 
of neurons in the ensemble and the number of dimensions that are being represented by 
the neurons. In Figure 37, the basic mathematics of the NEF are shown from stimulus to 
neural ensemble responses. We will now walk through the framework in order of its major 
flow from encoding to decoding. 

 
The NEF proposes three basic principles of biological neural computation: representation, 
transformation and dynamics. 
 

5.3. Representation 

Referring to the representation step (PI) in Figure 37, representation of stimuli and internal 

states in the activity of neurons is accomplished in the NEF by mathematically mapping 

from representational or stimulus space to neural space and back again. The dot product 

of the stimulus vector with the given neuron’s preferred direction vector (x) is fed through 

the neural non-linearity. The neural non-linearity is a property of the chosen neuron 

model. In the NEF this nonlinearity is referred to as the G(x) function.  The default neural 

model used in the NEF is the LIF model as shown in Figure 39, although many spiking 

neuron models can be used.  

Figure 37: The mathematics of the Neural Engineering Framework (NEF). Adapted from (Eliasmith & 
Anderson, Neural engineering: Computation, Representation, and Dynamics in Neurobiological 
Systems., 2003). 



80 

The LIF model produces the canonical spike. If the sum of the currents arriving at the 

neuron’s inputs (the equivalent of its dendrites) crosses the neuron’s set spike threshold, 

a spike is generated. This causes it to respond increasingly as the input current increases. 

The way in which the LIF neuron responds when it is stimulated with a constant current 

is by constant spiking. First the LIF neuron integrates the current, then rests during its 

refractory period and then it spikes again. This results in spiking at a rate determined by 

its’ response curve function’s properties. The NEF represents neural spiking as a series 

of delta functions at the spike times generated by the chosen neuron model. 

The preferred direction vector (PDV) or encoder of a neuron is the point in 

representational space that the neuron responds maximally to. A neuron’s response 

curve is driven by the dot product between the input and its PDV, which is called its tuning 

curve. In the NEF when a group of neurons are created that together represent values in 

Figure 38: Randomly chosen tuning curves for an ensemble of neurons in the NEF. 
Generated with Nengo. x = the dot-product between the stimulus value in representational 
space and the neuron’s PDV or encoder. 

Figure 39 : (Left) Standard LIF neuron model from (Eliasmith & Anderson, 2003). The neuron model is the non-
linearity that the NEF G(x) function models. When the input current exceeds Vth the neuron spikes. After a refractory 
period, it begins to integrate its inputs again. (Right) Biological spiking neuron model (Charand, 2005). The LIF 
model does not incorporate 2,3,4 or 5. 
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representational space they are collectively called an “ensemble”. In the NEF, the tuning 

curves for each of the neurons in the ensemble are chosen randomly, as shown in Figure 

38.  

5.3.5.  NEF Encoding  

At any point in time, the vector of activities of all the neurons in an ensemble in response 

to a stimulus represent values in representational space. The process of going from a 

representational space stimulus to neural activities is referred to as encoding. By then 

taking weighted combinations of the activities of the ensemble’s neurons to a given 

stimulus the representational space value encoded can be recovered from the neural 

activities. This is much like a set of basis functions being used to represent a signal.  

In Figure 38 each line plot is one neuron’s tuning curve. At a specific x value (imagine a 

vertical line at x=0.2 intersecting each curve at some firing rate value) each neuron will 

fire at a given rate producing a vector of firing rates which collectively represent the value 

x, this is referred to as a nonlinear encoding x. Nonlinear because the tuning curves are 

not linear in x, and the spiking outputs are not linear in time. In the NEF, encoding of a 

stimulus into a neural spike train is formally defined as:  

    i( ( ))n i

x b as

i i i n

n

a t et x t JG  •     (6) 

where nt , t  = time ( nt < t ), n = the index to the time interval (divided into n intervals), i  = 

the index into the neuron population, ( )nx t  = x is the stimulus vector indexed by time tn, 

ie  or  = the encoders (the PDV’s) for neuron i, ( ( ))i ne x t• = the dot-product between ie  

Figure 40: Stimulus sin(x) signal over time (top graph) and the firing of each of the 10 
neurons (one row per neuron, middle graph) that are encoding the sin(x) signal as it 
changes these are the neural activities with represent sin(x) in the neural ensemble. The 
bottom graph shows the decoding of the neural activities to reconstruct the estimate of 

sin(x). Generated with Nengo. 
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and ( )x t for neuron I,  x

i

n

na t t  or   = the spiking activity of the neuron i from time nt  

to time t (divided into n time slices), in response to stimulus x,  iG = the neural 

nonlinearity function, i  = a scalar constant that converts units in of the stimulus x to 

neural current units, ib asJ  = a constant input current that models the background firing 

rate found in most neurons. 

5.3.6.  NEF Decoding 

To reverse, or decode, this representation in spikes back to the domain of the input signal, 

x, we need to multiply the firing rates vector (aka the activities vector) by an appropriately 

chosen matrix that will reverse the encoding process. In the NEF the decoders, d, is 

computed by solving for the vector that gives the best least-squares approximation of the 

stimulus signal x.   

  
 ˆ( ) ( )x

in n

i

i

n

t ta tx td 
 (7) 

where the symbols have the same meanings as in NEF encoding equation above, except 

the following: ˆ( )nx t  = the estimate of ( )nx t  reconstructed from the neural activities, and d  

or   = the decoders for the ensemble of neurons (derived as explained below).  

The result of the computation of the encoders and decoders is a mapping of a stimulus in 
representational space to neural activities in a reversible way. 

5.4. Transformation 

Referring now to Figure 37, the decoders are found by solving Equation 7 with the system 

of equations below for d using least-squares minimization over the error between f(x) and 

x̂ . For the ensemble to hold the representation of x, as opposed to a function of x, we 

set f(x) = x. If we wish to have the ensemble represent transformations of x, we substitute 

x with f(x), the desired function of x, and then solve for the decoders. The decoders will 

then implement the desired transformation when they are applied to the ensembles’ 

activities at decoding. The equations for solving for transformational decoders in the NEF 

(Eliasmith & Anderson, 2003) are: 

  
( ) 1f xd     (8) 

  

x x

i

x

ij ja a 
 (9)

 

( )x

x

j ja f x 
 (10) 

In the NEF and Nengo, when communicating between ensembles using decoded 

connections (as opposed to a full connection weight matrix, which passes the currents 

directly), the decoder is applied to the activities of the source ensemble and then the 
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encoder is applied for the receiving ensemble. This has the effect of implementing the 

standard neural connection weight matrix across the connection. If needed, a full weight 

matrix that computes the same transformation between all pairs of neurons in the two 

ensembles can be computed from the decoders and encoders by multiplying the 

decoders from the source ensemble by the encoders from the receiving ensemble as 

follows: 

  ij i jw d e
 (11) 

For example, the identity function encoding and then decoding shown in Figure 40 is 

implemented in Nengo in this way. Nengo contains the NEF algorithms such that the 

decoders are automatically computed that represent the identity function in the ensemble 

of neurons. When the population is fed an input signal, sin(t), it generates in its decoded 

output, an estimate of sin(t). 

5.5. Dynamics 

Solving for a decoder that implements the desired transformation function does not allow 

that transformation function itself to change as a function of simulation time, and so cannot 

implement dynamics like those found in neural systems (Eliasmith & Anderson, 2003). In 

order to implement dynamics in the NEF, modern control theory is used as the foundation 

of Principle III. Modern control theory describes how a dynamic output is generated by a 

system being driven by an input that changes over time.   

The standard characterization of time-invariant, linear systems used in control theory is 

shown in Figure 41. The output of the system and the change in its input is described by 

the following system of differential equations (Eliasmith & Anderson, 2003): 

  ( ) ( ) ( )x t Ax t Bu t   (12) 

  ( ) ( ) ( )y t Cx t Du t   (13) 

where u(t) = the input signal, A  = the time invariant, recurrent (feedback) control matrix; 
B = the time invariant, input transform control matrix, C = the time invariant, output 

Figure 41 : Standard time-invariant, linear system block diagram (Eliasmith & 
Anderson, Neural engineering: Computation, Representation, and Dynamics in 

Neurobiological Systems., 2003), reproduced with permission from MIT Press. 
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transform control matrix, D  = the time-invariant, input feed-forward transform control 
matrix, ( )x t = the change in the input signal, and ( )y t = the output signal from the system 

after all transforms and feedback have been applied. 

In neural systems, (Eliasmith & Anderson, 2003) point out that these control blocks are 

connected in series, modelling the layers of the neural networks, such that the system 

can be simplified by condensing D into the output transform, C, from the previous 

ensemble and by then combining the resulting C into the input transform of the following 

ensemble, leaving one input transform B’ and one recurrent transform A’ in the simplified 

version of the model shown in Figure 42.  

Below, in the simplified version of the model, A' and B' are matrices that allow the intrinsic 

dynamics of the neurons, captured by h(s), to be used to compute the same dynamics as 

a standard control system. The control equations simplify to Equation 14 shown below: 

  ( ) ( ) ( )x t A x t B u t    (14) 

5.6. Integrated NEF Dynamical Neural Population Model 

Taking into account dynamics, the NEF modifies the expression for computing the 

encoding of x into activities by incorporating the control model into the encoding. Here we 

substitute x(t) for the output of our simplified control model in Figure 42 resulting in the 

dynamics form of the NEF encoding equation (Eliasmith & Anderson, Neural engineering: 

Computation, Representation, and Dynamics in Neurobiological Systems., 2003): 

  
    i( ( ) ( ) ( ) )x b a

n

s

i i i

n

i it e h t A x t B u t Ja t G     •    
 (15) 

where ( )ih t  = the synaptic dynamics function, 
/1

( ) th t e 



  and   is the neuron’s synaptic 

time constant. 

Figure 42 The NEF neural time invariant control system block diagram (Eliasmith & Anderson, 
2003), reproduced with permission from MIT Press. 
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The decoders for this dynamic form of the NEF encoding are solved for in the usual way 

by minimizing the squared error between the originating signal and the estimate produced 

by our now revised encoding. 

 

Figure 43 shows the generic neural populations model used in the NEF built from the 

equations above. Using standard control conventions per (Eliasmith & Anderson, 2003), 

boxes are transformation functions, circles are multiplications, and intersecting lines are 

summations. The input population here is   and the output population is  .  

Spike trains arrive from the left from population   to a series of neurons in population   

(the two rows of arrows starting from the left). The spike trains are transformed by the 

post-synaptic current, then the control matrices’ combined effects are computed by the 

matrix M (both input and dynamic/feedback control, if any, are combined into M in this 

diagram), the resulting current is then decoded by the decoders, d, which were computed 

to implement the transformation function F. The signal is then passed through the 

encoders, e, for the neuron  . All of this happens in the zone from the axons of  and 

the dendrites of  . The resulting encoded signal generates the somatic current, the J() 

function, which adds the J bias current to it. The somatic current then drives the neuron’s 

nonlinear response function G[] which generates the output spike trains from . Note that 

the box labelled “synaptic weights” delineates the three components that the weights are 

composed of; the transformation matrix M, the encoders  , the transformation function 

F and the encoders  . 

 

Figure 43: Neural Engineering overview (Eliasmith, 2013, p. 228). Note: symbols are different in the diagram 
above than in the text herein, see alternate symbols defined in tables for the NEF equations above for their 
meanings, reproduced with permission from MIT Press..  
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Having covered the basic three NEF principles; representation, transformation and 

dynamics, we now give a high-level overview of their implementation in software to 

understand how we built the NEF version of the Granger model. 

5.7. Nengo NEF Entities 

Nengo (Bekolay, et al., 2013) is a neural simulation package that implements the NEF. 

Nengo implements the NEF components as a series of classes. The reference 

implementation of Nengo is built with Python, where these Nengo objects are Python 

classes. For a more complete list and description please see the Nengo documentation 

at http://nengo.ca/documentation. Note that there are many other NEF objects in Nengo, 

for a comprehensive treatment of how to develop neural models with Nengo please see 

the website (www.nengo.ca) and Dr. Eliasmith’s books (Eliasmith & Anderson, 2003; 

Eliasmith, et al., 2013). The Python class prototypes are shown below to illustrate the 

syntax as an introduction only. For a quick primer on the parameters in these class 

headers see: 

https://pythonhosted.org/nengo/frontend_api.html#nengo-objects . 

The Nengo code in  Figure 44 shows simple example of using a Nengo node, an 

ensemble and a connection to illustrate NEF encoding and decoding of the identity 

function, with sin(t) as the input. For examples of using NEF ensemble arrays and all the 

other Nengo objects please see https://pythonhosted.org/nengo/examples.html . 

 

5.7.1.  NEF Nodes: 

Class nengo.Node (output=Default, size_in=Default, size_out=Default,  

                               label=Default, seed=Default) 

 

Nodes are sources of inputs or destinations of output in a model. They can take a function 

and take its input to be then communicated across a connection from the node to an NEF 

Figure 44 : Nengo code for the sin(t) encode, decode example in Figure 40. 

http://nengo.ca/documentation
http://www.nengo.ca/
https://pythonhosted.org/nengo/frontend_api.html#nengo-objects
https://pythonhosted.org/nengo/examples.html
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ensemble or NEF ensemble array (defined below). They can also be used as an output, 

capturing simulation results.  

5.7.2.  NEF Neurons:  

Neurons are software implementations of various artificial neural models used as the 

basic unit of neural circuit simulation in the NEF. The default model used is an 

implementation of the leaky integrate-and-fire (LIF) model. Many other types can be used 

as detailed in the Nengo documentation. NEF LIF Neurons respond to a subset of a 

particular range of stimuli values (e.g.: -1 to 1, or -10 to 10, 0.4 to 1….).  

5.7.3.  NEF Ensembles of neurons:  

Class nengo.Ensemble     ( n_neurons, dimensions, radius=Default, 

 encoders=Default, intercepts=Default, 

max_rates=Default, eval_points=Default, 

n_eval_points=Default, neuron_type=Default, 

gain=Default, bias=Default, noise=Default, 

normalize_encoders=Default, label=Default, 

seed=Default) 

 

Ensembles are collections of NEF neurons of some designated quantity (e.g.: 100, 200, 

10,000…). An ensemble of neurons can represent a vector of values (in representational 

space – see definition herein). For a given representational error level, the number of 

neurons needed to represent representational spaces with large ranges of values and/or 

large dimensional vectors increases.  

5.7.4.  NEF Ensemble Arrays 

Class_nengo.networks.EnsembleArray (n_neurons, n_ensembles,  

  ens_dimensions=1, neuron_nodes=False, label=None,  

  seed=None, add_to_container=None, **ens_kwargs) 

 

NEF ensemble arrays are arrays of ensembles. As an example, they are used when large 

numbers of ensembles are needed where each ensemble is used to represent separately 

the elements of the array. The difference between representing a vector in an ensemble 

array versus using one multi-dimensional ensemble is that in while the array keeps the 

dimensions separate, one per ensemble (as one way to implement it), the single multi-

dimensional ensemble’s encoders and decoders capture the interactions among the array 

elements. When transformations are used from connections in the single multi-

dimensional ensemble implementation, these interactions can affect how the 

transformations are applied versus the purely separate dimensions of the ensemble array 

version. Depending on the desired results, this can be everything from essential to 

undesirable. In the case of learning connections between ensembles, the decoders 

learned from multi-dimensional ensemble inputs across a learning connection (see 
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below) will capture the interactions between the dimensions being represented, whereas 

using array of ensembles, without special additional efforts, will not. 

5.7.5.  NEF Connections 

Class.nengo.Connection (  pre,  post,  synapse=Default,  function=Default,   

transform=Default, solver=Default, 

learning_rule_type=Default, 

eval_points=Default, 

scale_eval_points=Default, label=Default, 

seed=Default, modulatory=Unconfigurable) 

 

Connections are information links from a source ensemble, ensemble array or a node to 

a receiving ensemble, ensemble array or node. They run between these objects 

communicating information from one entity to another. There are two kinds, decoded 

connections and neuron-type connections. Decoded connections apply the decoders 

before passing on the information, whereas the neuron-type connections pass individual 

neural activity directly from the source entity to the receiving one. Connections can have 

transformation matrices specified when they are constructed, in which case the 

transformation matrix is used to solve for the decoders needed to implement them on the 

source ensemble.  

5.7.6.  NEF Learning Connections 

Class nengo.connection.LearningRule (connection, learning_rule_type) 

 

Learning can also operate across these same transformation connections to minimize 

some error signal. There are two types of NEF learning rules we use in our model. 

Voja and hPES learning. The symbols have the following meanings in the learning 

formulas below. 

 

Symbol Meaning 

i Input neuron. 

j Output neuron. 

k Summation counter, cycles across all input neurons to 
neuron i. 

x  State vector encoded by the neurons. 

ijw  The change in the weights from input neuron i to output 
neuron j. 

  Learning rate. 

ai Neural activity of neuron i. 

e NEF neural encoders. 
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n Time period. 

E Error signal. The difference between the supervised 
learning example vector (the target representation) and 
the current vector the neural activities are encoding. 

j  The scaling factor for neuron j. A constant tuning gain 
specific to each neuron. 

x y  The dot-product between the vectors x and y. 

[ / ]jE a c  The expected value of the neural activity (
ja ) of neuron 

j over all possible input patterns, divided by a chosen 
scaling constant c. 

 

1) Voja Learning:  Donald O. Hebb’s theory of synaptic plasticity (Hebb, 1949) 

states, loosely, that neurons that fire together wire together. Oja’s Rule is the single 

neuron case of Sanger’s Rule. Voja is the vector case of Oja’s Rule (Voelker, 

Crawford, & Eliasmith, 2014) which was implemented using the NEF in Nengo to learn 

encoders. 

 

a) Hebb’s Rule:  Hebb’s Rule sets the weight between an input neuron and an output 

neuron to be the product of their activities. This is the original form of unsupervised 

learning. A very simple formulation of the concept is shown below. The problem is 

that the weights can grow unbounded creating stability problems for a large 

network of neurons learning with such a rule, especially if the activity is recurrent. 

Hebb’s learning rule equation is: 

  
ij i jw a a   (16) 

b) Oja’s Rule: Oja’s Rule attempts to remedy this problem by normalizing the weights 

to the zero to one range. The weight update is now computed based on the product 

of the output from neuron i to neuron j, but neuron i’s output has been reduced by 

the weighted output of neuron j. Oja’s learning rule equation is (Oja, 1982): 

   ij j i j ijw a a a w    (17) 

c) Voja’s Rule: The NEF implementation of Voja’s Rule uses activities to drive the 

change in weights. In the NEF, it is encoders we update to change the weights 

between neural ensembles. The encoder update rule in vector form is shown 

below. Here we change the encoders by the product of the activities of the input 

neuron i and the difference between the output neuron’s vector and the existing 

encoders. For the full derivation of Voja’s Rule and the NEF implementation see 

(Voelker, Crawford, & Eliasmith, 2014). The NEF Voja learning rule equation is 

(Applied Brain Research Inc., 2017): 

   i i ie a x e    (18) 
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In all the cases above, the main idea is that when neurons are simultaneously 

active by virtue of both responding strongly to the current state of the network, their 

connection grows stronger. Neurons learning under any of these rules move their 

internal preferred direction vectors closer to their inputs.  

 

2) hPES Learning:  When neural systems are to be trained starting with examples of 

what is to be learned to guide the learned weights, error-driven or supervised learning 

can be used. In Nengo, one particular form of an error-driven learning rule is the 

Homeostatic Prescribed Error Sensitivity (hPES) (Bekolay, Kolbeck, & Eliasmith, 

2013) learning rule. The hPES rule is a novel spiking learning rule derived in part from 

the Bienenstock, Cooper, Munro (BCM) (Bienenstock, Cooper, & Munro, 1982) 

learning rule. The hPES rule is shown below. Here the change in the weights is 

computed as the dot-product between the neuron’s PDV, scaled by the neuron’s gain 

and learning rate, and the error between the neuron’s PDV and the supervised 

learning vector we are trying to minimize scaled by the neuron’s activities. The hPES 

learning rule equation is (Eliasmith, 2013): 

  
1 2[ ( [ / ])]ij j i j j j jw a e E a a E a c       (19) 

hPES is a very powerful learning rule and the authors assert that it improves on 

previous methods of learning such as backpropagation, self-organizing maps and 

deep-learning by implementing separate training and inference phases, reduces the 

need for many layers with supervised and unsupervised learning and offers a spiking 

implementation. This is offered by hPES using synaptically local information, making 

it a more biologically plausible learning rule. The derivation of hPES is found in the 

authors paper (Bekolay, Kolbeck, & Eliasmith, 2013). For a concise explanation of the 

hPES rule see Appendix D.4 in (Eliasmith, et al., 2013). 

 

For more information on neural learning in Nengo see the documentation on learning 

connections at 

https://pythonhosted.org/nengo/examples/learn_communication_channel.html.  

 

5.7.7.  NEF Networks: Product, Basal Ganglia & Thalamus Networks 

In Nengo, a basic organizing model is the NEF Network. NEF Networks are derived from 
the Nengo.Networks base class. Networks are objects that wrapper networks of NEF 
objects such as ensembles, nodes, and connections. They make reuse and functional 
separation easier, and can be used in analogous ways to biological neural nuclei or layers 
as a higher order organizing principle in large neural systems.  
 

https://pythonhosted.org/nengo/examples/learn_communication_channel.html
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We make use of several of Nengo’s pre-built networks in our implementation of the 
Granger model, such as the Product, Basal Ganglia, and Thalamus networks. The 
Product network computes the dot-product between its inputs. The Basal Ganglia network 
takes in a number of dimensions on its input connection (often composed of a dimension 
from each input NEF object it has been connected to) and its output connection has the 
same number of dimensions with only the one corresponding to the most active (largest 
valued) input line being approximately 1, while the other dimensions are zero (equal to 
no neural activity). The Thalamus is an analogy for the biological anterior thalamus’ 
function of cleaning up the action selected by the output of the basal ganglia, by enabling 
the corresponding thalamo-cortical circuits, thereby inverting the basal ganglia’s inhibitory 
output to an excitatory output, and cleaning it up by thresholding its output.  

In Nengo, the Thalamus network, forces the one ‘winning’ dimension from the 
BasalGanglia class to a strong 1, or high activity, while suppressing the other dimensions’ 
outputs to zero, or no activity. Figure 45 shows the output of the basal ganglia circuit, 
which in the Granger model is fed the dot-products of each of the feature detectors across 
its dimensions, outputting a series of signals with the strongest signal (the highest valued 
one) representing the “winner” (most active) while the other signals are reduced to values 
below zero. The thalamus then takes this signal from the basal ganglia and outputs the 
“winner” with a value closest to one and the other signals are effectively suppressed to 
no neural activity, which shows as a value of zero. These two networks are used to 
implement a winner-take-all effect in the Granger model, simulating the effect of cortical 
inhibition and excitation, and the attractor dynamics of the layer I, II and III, of cortex. 
 
For more information on the pre-built networks Nengo offers see: 
https://pythonhosted.org/nengo/networks.html. 
 

5.7.8.   Collecting Experimental Data: NEF Probes  
 

class nengo.Probe ( target, attr=None, sample_every=Default, synapse=Default,  
 solver=Default, label=Default, seed=Default) 

 
The NEF probe object can be used to monitor the value of almost all elements within a 
Nengo simulation such as spike data, represented values, and neuron voltages. The data 
is recorded within the probe class and then can be read out after the simulation is over. 
In our model, we graph the results and create PDF files of them, as well as store the 
results from the probes into CSV files for later analysis.  
 

Figure 45: Signals from the Basal Ganglia and Thalamus in the NEG Granger model 

https://pythonhosted.org/nengo/networks.html
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We have now seen how the NEF model’s neural populations at an activity, 
representational, learning, and computational level, implementing both non-dynamic and 
dynamical systems using various neural response models, all in a biologically plausible 
way. For examples of NEF models of biological systems see (Eliasmith & Anderson, 
2003).  
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6. The NEF Granger Core circuit 
 
So far, we have covered;  
 

• The anatomical background of the cortex and the thalamus 

• Many theories of the functioning of the thalamus and cortex and their 
interconnected circuits 

• A review of categorization algorithms and implementations of them  

• The details of the Granger model of the categorization function of the thalamo-
cortical circuits 

• The NEF methods for modelling neural populations 

• The Nengo classes that implement the NEF 
 

We are now, finally, in a position to turn our attention to the of building an NEF 

implementation of the Granger Core circuit. We set out to extend the Granger model’s 

core loop implementation in a more biological plausible way by adding more biologically 

realistic features through implementing it as a Nengo recurrent spiking neural network. 

For this we developed an NEF model of the Core circuit. This is a novel implementation 

as far as we know. There has not been a spiking neural model of the Granger model yet 

developed. We did not implement the Matrix circuit due to time constraints, however we 

present a design for it.  

6.1. NEF Implementation of the Granger Core Circuit Flow 

For an overview of the flow of the circuit showing the major NEF objects and their 

relationship in the processing order, see Figure 46.  

Figure 46: NEF Hierarchical Categorizer Core Circuit Conceptual Flow Orientation diagram. Green lines are 
neural connections, multi-coloured neural activity plots are shown next to the ensembles, dark neural spike-
raster plots are shown within the ensemble boxes. 
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Before we attempt to describe the circuit flow in our model, we need to clarify the 

behaviour of recurrent circuits such as ours. While following the steps below, it is 

important to look carefully at the diagrams and take all of the step-wise breakdown of flow 

in these recurrent, dynamic neural models as a guide for how the circuit starts out.  The 

activity will flow around the circuit such that the previous inputs influence activity that then 

merges with the next inputs, and changes both the next inputs as well as the activities in 

response to the next stimuli. When the circuit has many loops of varying latencies, this 

also means that later inputs affect the circuits’ processing of previous inputs. A recurrent 

circuit will respond to the same input differently based on what happens before, and after 

that same input. 

The major steps in our NEF implementation of the Granger model are as follows; 

i. Stimulus: Images are read in and converted to vectors and input to the network. 

 

ii. Response: The vectors are presented in series to the NEF implementation of the 

Granger circuit composed of a series of feature detectors (FDs), each having a 

learned feature pattern that it is uniquely specialized in responding to. These 

feature detectors are the analog for the cortical column cells in the brain and the 

categorizer circuit in the Granger model. The feature detectors react to the 

incoming stimulus by spiking: the closer the match, the higher the spiking rate.  

 

iii. Competition & Categorization: The most active feature detector is the one 

whose learned pattern matches the input the best. This feature detector will be 

selected by a winner-take-all (WTA) process implemented in the cortex by lateral 

inhibition and attractor dynamics. This winning feature detector is the category or 

sub-category of the stimulus, depending on the level of recurrent processing we 

are currently at. (See below for the recurrence step that brings us back here 

eventually). 

 

iv. Learning: The winning feature detector is allowed to learn, which moves its 

learned pattern closer to the inputs by a small amount controlled by a learning rate 

setting (see Appendix -Simulation Parameters for the learning rate settings).  

 

v. Explained Stimulus: The portion of the input that was “recognized” by the winning 

feature detector plus the incremental learning shall be referred to as the 

“explained” stimulus. It is called that because it is now known to the Core circuit, 

given that there were neurons that coded for it, and their preferred direction vectors 

were updated to move closer to the current stimulus during the current 

categorization step. 

 

vi. Inhibition: The feature detectors other than the one that won via the WTA process, 

are all inhibited from firing and learning so that losing feature detectors do not 

changes their PDVs. 
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vii. Subtraction: One of the Granger Core circuits’ major mechanisms to implement 

sequential, hierarchical categorization is that the explained portion of the stimulus 

is subtracted by the inhibitory mechanisms in the reticular nuclei (explained in 

section 2.2.7 above), which were activated by the cortico-thalamic feedback 

originating from layer V of cortex. 

 

viii.  Sub-Categorize: The feature detector that wins is the categorization result. So 

over time as the feature detectors compete, win, learn, then subtract the explained 

parts of the stimulus, and finally categorize the stimulus remaining, the un-

explained components of the stimulus cause another feature detector to win. The 

entire sequence of winning feature detectors is the hierarchical categorization of 

the original stimulus. This process proceeds iteratively, until the inputs stimulus 

has been subtracted to nothing or there is another input which begins the process 

again. This is the major function of the Granger model, to produce a set of 

cascading, sequential categorizations of a stimulus by categorizing the stimulus, 

then subtracting what was identified and then re-categorizing the remaining 

stimulus. 

 

ix. Sequential Inputs: Note that the inputs appear in a stream. The sequential inputs 

are thus changing, and the recurrence in the circuit means that the feature 

detectors are always detecting in an environment of inputs that are part new 

stimuli, from the specific thalamic cells per our discussion above in section 2.3, 

and also part recurrent activity from the previous input. The next input could be the 

same image when the inputs are static, or a completely new image, or a moving 

image transiting across the visual field. Regardless, the recurrent circuits are 

always capturing some of this flow, even in the Granger Core circuit. The Granger 

Matrix circuit explicitly deals with the learning and recall of these sequences 

directly but as mentioned above that is outside the scope of our work.  
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6.1. MNIST Test Categorization Data 

We used a modified version of the Lecun version of the MNIST data set (Lecun, Cortes, 

& Burges, 2017) of handwritten digits as our categorization dataset. We took the Lecun 

version, which is mass centered on a larger background than the original MNIST dataset.  

The MNIST dataset comprises 50,000 training images and 10,000 test images. Due to 

the processing time for such a large neural model as this, we only used small, randomly 

chosen sets of test images to run our model on. For reasons also of performance, the 

original MNIST images, which are twenty-eight (28) pixels square, are reduced to 10 

pixels by 10 pixels in dimension to allow the NEF network to run in a reasonable time on 

the available PC with one GPU used for this work.  

The full-size images can be run by increasing the number of neurons substantially (from 

4,000 per image to upwards of 40,000 or more) used in representing the images and in 

the feature detectors, but the associated runtimes increase substantially so smaller 

images and less of them were used. The original goal of building up to processing the 

whole set of MNIST images at the original resolution was not possible given the time 

compute and research time available  

Looking at the MNIST digits, it is apparent that there are many different features within 

each digit’s images as well as between all digits. The MNIST images are fed into the 

categorization model and, by competitive interaction of the circuit (see following 

descriptions), like the other self-categorizing algorithms discussed in Chapter 3, the 

network determines the features that the data will be categorized on. 

6.2. NEF Implementation Components of the Model 

The overall NEF Core circuit that implements this flow is pictured in Figure 48. Starting 

on the left and working across the flow of the circuit, the nodes, neural ensembles, 

ensemble arrays and connections are as follows. 

Figure 47: Sample of MNIST digits (Meng, Appiah, Hunter, & Dickinson, 2011), 
reproduced with permission from the IEEE under open access for academic use 
license. 
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6.2.1.  Image Input Node X  

The reduced size MNIST images are taken and converted to a vector of either grayscale 

(values for each pixel from 0 for white to 1 for black), or pure black and white (either 0 or 

1). The resulting vector is passed to a Nengo node object named ImageX of 100 (10 

pixels x 10 pixels) dimensions as the input part of the network. This is analogous to raw 

sensory input. There is a major drawback of the Granger model, and this implementation 

here as well: the model attempts to understand the upper visual system’s categorization 

operation, but uses raw direct image stimulus as input. It is a necessary but unfortunate 

simplification. For more discussion of this please see Section 6.3. 
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Figure 48: NEF model of the Granger Core circuit 
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6.2.2.  The Choo Accumulating Memory Network (AMN) 

We now need a way to represent the stimulus in neurons in way that can mimic the ability 

of the thalamic core cells to stimulate the cortex with the image but then, when the 

thalamo-cortical feedback comes back from layer V, remove the parts of the stimulus that 

are explained away by the cortex. For this we need to move the representation from an 

input vector into an NEF neural representation. For that we will use the Nengo network 

shown in Figure 49. 

This network is a very slightly modified version of the one originally developed by Dr.  

Feng-Xuan Choo (Choo X. , 2016) specifically for this modelling work based on a small 

part of his extensive work in modelling working memory (Choo F.-X. , 2010a) and (Choo 

F.-X. , 2010b).  

Refer to Figure 49 for the following discussion of the operation of the AMN network.  

i. Inputs:  

There are 3 inputs to the AMN;  

a. The Thalamic Core Cell Stimulus:  The original stimulus is constantly fed from 

the ImageX node into the output node of the AMN. The entire network will then 

create a subtraction signal which will be removed from this input to create the 

desired output of the AMN which is a progressive subtraction from the original 

image as the cortex explains away the input signal. 

 

b. The Cortical Layer V Explained Stimulus:  The input_s signal is the cortical layer 

V analogue, sending the output of the feature detectors from cortex back to the 

thalamic core cells. 

 

c. A Reset Signal:  An image reset signal is fed into the AMN to clear the integrators 

between images. This is required in our model due to our implementation, but it is 

unknown if there is a similar function in the biology, although some suggest that 

the burst mode (as discussed above) may be the signal of a new input and as such 

may cause a similar clearing effect. 

 

ii. Input Change Detection: 

The network needs to detect a change in the signal from the layer V cortical cells to know 

when to subtract the explained part of the stimulus. We simulate that here by taking the 

derivative of the incoming input_s signal and using that value to be the gate signal to the 

Accumulator sub-network of the AMN. 
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iii. Two Input Gated Memories:  

There are two input-gated memories (IGMs) in the AMN. They are sequentially connected 

on the input side but recurrently connected on the gating signal.  The dynamics of this 

sub-network can be summarized as follows: 

a. The input from the layer V cortical analogue, input_s, flows to the second IGM 

where it is integrated in the first memory network of this IGM.  

b. When the gating signal triggers, signalling a change in the input from the layer V 

cortical cells, it flows into the second memory component of the first IGM.  

c. The second IGM network receives the output of the first IGM, essentially a copy of 

the explained stimulus signal from the cortical layer V cells.  

d. This second IGM then accumulates these difference signals over time and feeds 

that difference signal to the output node to be subtracted from the original image 

signal, held in the thalamic core cells.  

 

iv. Output:  

This results in the output node holding at any time (the AMN’s primary outputs) the as-

yet-unexplained part of the original stimulus being fed into cortex all the time, thus 

simulating the output of the thalamic core cells to cortex layer 4. This entire circuit is used 

to model the effects of the thalamic core and RTN cells and their modulation by the 

cortical layer V cortico-thalamic feedback connections. 

For more details on this type of architecture and working memory in general, please see 

Dr.  Choo’s work (Choo F.-X. , 2010a; Choo F.-X. , 2010b) . 

v. Dynamics and Timing: 

Figure 50 shows the graphs that result from Nengo probes on each of the input and output 

connections in a one-dimensional run of the AMN model. In our model, we will use the 

full 100 dimensions of our stimulus images. The AMN works with any number of 

dimensions. The upper graph shows the incoming signal rising and then being held 

constant. The explained part of the signal from layer V cortex feature detectors then 

arrives and once it stops changing the AMN then subtracts it from the original stimulus. 

Note the time delay on this due to the neural time constants. The output is then the result 

of this subtraction. The lower graph shows the operation of the change detection network, 

showing the change detection signal rising when the incoming cortical layer V signal 

changes and then falling back to no activity once it stops changing. 
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Figure 49: Nengo screenshot of Accumulating Memory circuit (Choo X. , 2016) adapted for use in simulating the subtraction of input by the RTN and thalamic core cells driven by layer V 
cortico-thalamic feedback. 
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6.2.3.  CorticalSheet and CorticalColumn Classes 

The CorticalSheet object holds a collection of objects and is described next. The sheet 

class is a container class for the cortical column objects. The cortical column class is a 

container class that is an analogue for a cortical macro-column, an instance of the set of 

layers of cortex that perform recognition in the Granger model on a specific feature set. 

This is an analogue for the upper layers attractor network theorized to be in layers I 

through IV. See Figure 51, which shows the nested, hierarchical relationship of the sheet, 

column and feature detector classes. 

 

Figure 50: Dynamics of the incremental memory circuit. 
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Figure 51: Nengo screenshot of NEF cortical sheet hierarchical categorizing Core circuit showing multiple feature detectors in a competitive array. 
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The actual categories that the feature detectors learn is determined by the competitive 

interaction between the various feature detector instances. The NEF neural ensembles 

learn the interactions between the dimensions of the stimulus images, just as cortical 

columns neurons learn the inter-relationships of their stimuli and at the same time that 

the columns compete for their own feature attributes to specialize in. This is how the 

structure of the inputs is learned. 

6.2.4.  Feature Detector Ensemble 

Feature detectors are analogs to the cortical mini-column. The feature detector class 

represents a combination of the layer I, II, III and IV properties that implement this 

attractor network for a given feature in a specific orientation. The feature detectors are 

composed of inter-connected NEF ensembles of neurons. Each feature detector has a 

pattern that it learns to recognize, which starts initially from a random pattern determined 

by the assignment of random tuning curves to the neurons in the NEF ensemble at the 

core of the feature detector. 

In section 6.1 we detailed the process flow for the whole model. Here we discuss the 

process flow within each feature detector itself. Refer to Figure 48 and Figure 52 in the 

discussion that follows.  

i. Stimulus:  The stimulus comes from the Image_X instance of the Choo 

Accumulating Memory Network detailed in Section 6.2.2.. Note that in the code, 

the stimulus is actually stored in a separate NEF ensemble within the feature 

detector class instance, as the NEF decoding of the stimulus is specific to each 

feature detector and the decoders are learned on each feature detector class 

instance. This emulates the individual cortical mini-columns’ unique learning, and 

competitive preferred direction vector interactions. The main Image_X 

accumulating memory network stores the stimulus, as in the core cells of the 

thalamus. As such there is only one instance of this as it represents the stimulus 

as yet unexplained by all of cortex. As discussed in section 6.1, the explained part 

of this stimulus, as collectively learned by all feature detectors is subtracted from 

this stimulus progressively. 

 

ii. Learning Features: The Image_X ensemble inside the feature detector is 

connected to the feature detector’s feature ensemble (in the code this is the 

ifd_FD_ens ensemble). This ensemble stores the current learned stimulus 

features this feature detector has specialized to detect. Learning is accomplished 

with a combination of Voja and hPES learning. Learning in the model is therefore 

both supervised and unsupervised learning as detailed in (Bekolay, Kolbeck, & 

Eliasmith, 2013). The encoders on the local Image_X ensemble start as random 

encoders. The Voja learning connection then learns the encoders on the local copy 

of the Image_X vector, specializing this feature detector in recognizing those 

features that it has learned by virtue of its winning previous competitions, and the 

Voja learning rule being allowed to learn a bit more of the image being input. The 
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result is that, over time, each feature detector develops a unique set of specialized 

encoders. The local Image_X copy of the stimulus, or rather the special encoded 

version of the stimulus image for each feature detector, then drives a PES learning 

connection in each feature detector to this feature detector’s reconstruction of the 

image from its learned features. This learned reconstruction is driven to attempt to 

replicate the original input stimulus image.  

 

iii. Spatial Feature-Detector Learning: Cortex’s many layers are organized in 

spatio-temporal maps. Within those maps the cortical mini-columns stimulate each 

other via their connections. The effect is to implement generally local mutual 

excitation and distal inhibition, all combined with strong network dynamic inhibition 

from the thalamus. The balance of these effects with layers of spatially arranged 

maps, which preserve the spatial order of the stimuli in lower levels and a 

representational ordering at higher levels (such as seen in the visual system’s 

preferred direction vectors shown above in Figure 4), means that computation is 

very much spatial and temporal. Our model contains no direct implementation of 

the spatial nature at the intra-mini-column level. However, within each feature 

detector, local spatial correlations are learned by the hPES and VOJA connections 

over each feature detector’s own preferred stimulus.  

 

iv. Competing for Features:  Feature detectors cannot learn unless they first ‘win’ 

the ability to learn. Both the PES and Voja learning rules are only allowed to learn 

in any given feature detector when the feature detector has won the competition 

among all the feature detectors by having the closest match to the input stimulus, 

measured by the dot-product between the stimulus image and the winning feature 

detector’s PDV (stored in its ifd_FD_ens ensemble, see Figure 48). The error 

signal to the hPES learning rule is computed in the X_minus_FDi ensemble as the 

difference between the feature detector’s PDV (in the ifd_FD_ens ensemble) and 

the original image. This winner-take-all (WTA) competition is implemented via the 

Nengo neural Product network, which computes the dot-product between the 

feature detector’s PDV and the original Image_X stimulus. Once all the neural 

populations compute their feature detector’s PDV and the product ensembles 

compute the dot-products, the WTA competition is implemented by an instance of 

the Nengo basal ganglia class which, as discussed above, only passes on the 

signal from the most active of its inputs.  

 

Lateral inhibition is also supported in the model whereby the feature detectors all 

laterally inhibit each other such that the more active a feature detector network is, 

the more it exerts an inhibitory force on the activities of all other feature detectors.  

 

In our model, the combination of the basal ganglia network and the cortical lateral 

feature detector inhibition implements the WTA mechanism theorized to be found 

in the attractor networks in layers I, II and III of cortex by the Granger model.  
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The Nengo Basal Ganglia network has the right functionality to model our cortical 

WTA analog functionality. Note, however that it is not being used in our model as 

a biological basal ganglia analog. The Nengo Thalamus network, smooths out the 

outputs of the basal ganglia network, and inverts it so that the winners are the most 

active feature detectors (the ones with the closest match of their PDV’s to the 

image) and the ’losing’ feature detectors show no activity. This ‘winning’ and 

‘losing’ signal drives the recurrent inhibition to the Voja and hPES learning rules, 

ensuring that only the winning cortical mini-column(s) (our feature detectors) learn 

and specialize on the current input. 

 

v. Implementing Explaining Away in our Model: As the network processes its 

inputs, there are two accumulators that are required to implement the desired 

behaviour. We require a neural working memory of the parts of the image that were 

explained away by the current winning feature detectors, and an accumulation of 

all current and previously explained parts of the image.  

 

The former working memory is captured in the XminusFDi ensemble, while the 

later is accumulated in the FDi_DeltaX ensemble. The XminusFDi ensemble forms 

the error signal for the hPES learning connection from the image to the feature 

detectors while the FDi_DeltaX ensemble feeds the DeltaX accumulator which is 

subtracted from the accumulating memory in the ImageX instance discussed 

above. 

 

 

vi. Sequential, Hierarchical Categorization Cortical States: The sequence of 

states that the network goes through with the dynamically formed winning feature 

Figure 52: Nengo screenshot of one cortical feature detector. 
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detector networks being activated and then deactivated, forms the progressive, 

hierarchical categorization over time of the input stimulus to the network. The 

learning occurring in the feature detector networks models the adaptive nature of 

the cortical circuits. In theory, in the cortex, the forward and backward connections 

that occur from and to the winning feature detector circuits potentiate the 

predictions of the next stimuli. These connections also constrain the interpretation 

of the current stimuli. In this way the progressive, sequential, and hierarchical 

categorization of this circuit could allow for network activities to represent the 

predictions of the future states of the general classes of the current stimuli. The 

connections could also constrain the recognition of the sequence of stimuli to 

resolve conflicting interpretations and aid in recognition and processing of stimuli. 

It is a compelling theory and one which Granger has written on subsequently to 

the original paper our modelling work was based on (Granger, Kilborn, Rodriguez, 

& Cabanne, 2017).  

6.3. Shortcomings of the Model 

There are many shortcomings of the model to be mentioned over and above those already 

discussed in the text preceding this section.  

i. Contextual Flow of the Model:  Biologically, the upper layers of the visual system, 

which the Granger model is working to understand the functioning of, take in highly 

processed representations. They are several layers into the visual system. The 

Granger model, and our model, jump right in to the middle of that circuit without 

having built up the rest of the visual system, and tries to study the plausibility of 

the functioning of the theorized categorization behaviour of that circuit. However, 

if the ultimate desire is to begin to understand the interaction of the thalamo-

cortico-cortical circuits, then such models are a useful exercise, despite its limits 

of translation back to the biology, especially given the theorized importance of both 

categorization and of thalamo-cortical coordination to everything from perception 

to consciousness. 

 

ii. Lack of Invariance: As mentioned above, the model is only a partial model of the 

image processing in the brain, while being fed images as test data, it tries to 

represent higher order circuit dynamics, which in the brain would be receiving 

already processed activities from the entire lower areas of the visual system, 

including both the upper and lower pathways. One of the things that the visual 

system does, before the Granger model circuits, is create invariance to the 

translation, rotation, deformation, and occlusion of the stimulus objects. This 

missing capability is a very serious limitation of our model’s biological plausibility. 

It is however a limitation of the Granger model as well. 

 

iii. Lack of Spatio-Temporal Learning:  As discussed above, feature detectors 

model spatial learning reasonably well, but spatial characteristics are not learned 
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between mini-columns in the connectivity directed way that cortex is likely performs 

it. The temporal nature of the computation comes from the differing time constants 

across the interacting layers and columns. The difference between the strength, 

duration, and distance of inhibition versus excitation in cortex is a major design 

feature we have mentioned above. Our model does not account for this.  

 

iv. Lack of Spreading Activation & Prediction:  Our model also does not implement 

any form of spreading prediction or activation, nor do we model the effects of 

prediction, long-range inhibition, or the interaction of the multi-attractor layers, 

layers V and VI implementing a theorized top-down and bottom-up computation 

within the brain’s thalamo-cortical circuits. 

 

v. Failures of Biological Plausibility of the Model: No artificial neuron model is a 

replacement for the real biological circuits. That said, in generating our model, we 

tried to model biologically plausible circuits at the chosen level of abstraction. In 

some areas we achieve reasonable plausibility, in other areas the way in which the 

functions are achieved by the biology are unknown, or our tools do not easily allow 

us to model the biology, or simply our skills at modelling failed to generate a 

plausible model. This increases the risk to the biological plausibility of any and all 

observations made from such a highly recurrent, large and interconnected model 

such as ours.  

 

In two particular places, we have used network components that we know are not 

like the biological structures whose functionality we are attempting to model, but 

to complete the model we have tried to use these components to achieve the same 

functionality in order to study a functioning model. 

 

First, to simulate the winner-take-all (WTA) functionality amongst the thalamo-

cortical circuits the Granger model uses, as discussed above, we have used the 

Nengo Basal Ganglia Network (as discussed in Section 5.7.7). This NEF network 

was designed to model the WTA mechanism for action selection in the biological 

basal ganglia. Here it performs a reasonable functional analog for the 

computational role we require to select the winning feature detector, but it is not 

biologically plausible as implemented. 

 

Second, as discussed above, in the Granger model, the core cells in the thalamus 

continue to provide stimulus after and during stimulus presentment to cortex. 

Portions of this information flow are then inhibited by the TRN cells. We have 

modelled this stimulus memory with subtraction using the Choo Memory Network, 

as documented above, but it does not directly model the TRN or the core cells in 

a biologically plausible way. It does however, hold the stimulus and subtract the 

stimulus in accordance with the feedback from the feature detectors, allowing our 

overall model to function. 
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7. Simulations and Results 
The model was run on single MNIST images to validate that the feature detectors were 

learning, that the image was being progressively explained away and that the model 

produced a group of sequential categorizations from the input images. Batches of 1 to 

1,000 MNIST images were run in the development of the model. The many parameters 

of the model were varied both together and in isolation to determine their effects on the 

model’s performance.  

Results for one image and 1,000 image runs are discussed below as examples of how 

the model performs. We discuss the variation in classifications seen from the result of the 

1,000 image runs to assess to what extent a small dataset produces any learning of 

features, and in what sequences. 

 

7.1. Single Image Simulation Example 

7.1.5.   Image Processing Overview Chart 

The simulation code produces a series of time plots for each image processed, the main 

one being that shown in Figure 54 below. Note that these plots of a single image run are 

created on a run of the NEF Granger model using an artificially high learning rate to allow 

the plots to show conceptually what is happening quickly for the purposes of this 

explanation. There are a few adverse artefacts of this that we mention. 

The top two graphs show the output of the basal ganglia and the thalamus (for explanation 

of the dynamics see Figure 45). The next two graphs (graphs #3 and #4) from the top 

show a cleaned up and an inverted copy of the thalamic output respectively. These 

signals are used to drive the learning switch and data collection functions of the model. 

Once a feature detector “wins”, it is allowed to learn for a configurable time, typically 20 

ms. 

The bottom two plots, image_X and delta_X, show the dimensions of the image ensemble 

and the delta ensemble. The Image_X plot records the current amount of input still to be 

explained-away or categorized in the accumulating memory network. The delta_X plot 

shows the explained away features for the current hierarchical categorization level, 

resetting after each categorization level is completed. The transitions in the signals are 

driven primarily by the stabilizing of the output from the basal ganglia network (WTA 

analogue), which drives the model to subtract the accumulated explained features and 

begin categorizing again. This emulates the cortico-thalamic feedback pathway in the 

Granger model from layer V of cortex to the thalamic RTN cells, which restrict the thalamic 

core cells as explained previously. 
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The images on the bottom row of Figure 45 show, starting from the left, the end states of: 

(1) the node inputting the original modified MNIST image to the model, (2) the value of 

the accumulating memory left after the learning has explained away some of the image, 

(3) the value of the core of the feature detectors have learned so far, and lastly (4) a 

check image which is the result of simply adding the explained parts of the model to the 

remainder unexplained as yet. Note that it would take many runs to cause the feature 

detectors to learn all of the input stimuli due to the overall learning of features and the 

effects of the slow learning rates used, typically in the ranges of 1x 10-3 (for testing as 

herein) to 1 x 10-6 for simulation runs. 

7.1.6. Decoded Circuit Component Time Series Plots 

The probe data for the source and decoded images are also plotted on time series plots 

as shown in the following figures. These are all decoded values. The ensembles store 

the actual neural activities that we can apply the NEF decoders to and generate the 

representational equivalent of the activities, but with some noise.  

7.1.6.1. Input Node 
Figure 53 shows the input to the model from the node, which is a clean representation of 

the actual pixel values from the modified MNIST image.  

  

Figure 53:  Node input image stimulus reconstructed from node activity output. 
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Figure 54: Summary image categorization neural activities plot. 



112 

 

7.1.6.2. Delta X 
Figure 55 shows the accumulating explained components of the image, in total, across 

all feature detectors. It resembles the image quickly due the high learning rate in this 

demonstration run, and then is cleared when the next level of categorization begins, that 

is once the first level winning signal from the basal ganglia has stopped changing (as 

discussed above). The explained away portion then builds up again at the next level but 

in a weaker representation, as it is categorizing the remaining stimuli in the image on the 

second level categorization because the accumulating memory has subtracted away the 

previously explained stimuli.  

7.1.6.3. Feature Detector Learned Features 
The explained away portion is the sum of the feature detectors, learned features. Figure 

56 shows the decoded representation of the winning feature detector over time. Again, 

due to the artificially high learning rate, the feature detector rapidly learns a good portion 

of the image, but then with only a few feature detectors in this test run, this detector wins 

on the next level pass over the inputs while the subtracting away is occurring. It then 

seems to unlearn its preferred stimulus, only to learn it solidly again at the end of the now 

stable presentation of the remaining stimulus to be categorized.  

7.1.6.4. Image Accumulating Memory 
Figure 57 shows the decoded representation from the accumulating memory network 

which, as we have discussed, models the core thalamic stimulus cells and their interaction 

with the inhibitory overlaying RTN cells. As expected the image builds up initially under 

strong stimulus from the Image_X node, and then fades as portions of the image are 

explained away. But, the small test size error noted in Section 7.1.6.3 above causes the 

value of Delta_X to fall and then rise again. So, the progression of the explained features 

rises, falls and then rises again. This is an aberrant effect of the small one image test run. 

Figure 55: DeltaX. 

Figure 56: Feature detector learning over time. 
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7.1.6.5. Model Check Image: Unexplained + Explained Features Check 
A check probe records the sum of the remaining to be categorized stimuli in the 

accumulating memory network (Image_X) and the already explained features in the 

Delta_X network. The result should always resemble the original input signal plus some 

noise. As seen in Figure 58, it largely does with slight variations in intensity.  

This is evidence that our model is behaving reasonably. It does also shows that the way 

the model works, using a time duration of primary stimulus presentation without sensing 

when the primary stimulus is fully inhibited, causes incorrect responses as the primary 

stimulus continues to elicit feature detector selection and therefore learning that biases 

the feature detectors’ learned patterns.  

7.2. Feature Detector Evolution Over Time 

Let us consider one feature detector’s evolution from a random starting state to the end 

of the simulation, by which time it has learned a significant portion of the stimulus. Again, 

this is a high-learning-rate, single-image case we are using for illustration purposes. In 

Figure 59 plots 1 and 2, we see the winning versus losing feature detectors signals again. 

This feature detector is the winning one. The dot-product of this feature detector is the 

highest of all and therefore it is the winner in our simulated cortical-WTA process (until 

the explaining away process reduces the input image in one step after this winning feature 

detector is allowed to learn the stimulus at our artificially high demonstration rate).  

Figure 58: Image plus Delta-X check 

Figure 57 : Image explaining away over time in circuit. Reconstructed from neural activity in Layer II & III analogues. 
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We see the effects of the noise inherent in the neural simulation, as well as the effects of 

the learning over time that occurs in the feature detector’s internal representation in plot 

7 of Figure 59. The check image at the bottom show the addition of now learned features 

and the residual stimulus signal which has fallen to a uniform nearly all white block as 

shown in the plot 4 of Figure 59.  

 

7.3. Inhibitory Signals Controlling Feature Detector 

Learning 

Figure 60 shows a plot of the inhibitory signals that control learning and the subtraction 

of explained features in the simulation. Many of these signals do not result from neural 

dynamics, rather they are control signals generated by the procedural logic that feeds the 

Granger cortical circuit components of our model. A broader more biologically plausible 

simulation would implement these signals directly using neural dynamics as we have 

done in the rest of the model. We will present them and discuss them here to make our 

review of the model complete.  

In this example, the first thing that happens is that the image reset signal, generated by 

the image change logic, goes high. The new stimulus flows to the feature detectors and 

they compete as discussed above. The winning feature detector then receives a high 

signal on its corresponding basal ganglia dimension, this allows it to learn for a brief period 

of time and then flow its explained features signal into the accumulating memory. This 

happens as this signal causes the accumulating memory change-detect signal to go high. 

This allows the output of the feature detector to begin to accumulate as the explained-

away features of the stimulus. After a delay, the learning inhibition then turns on again 

stopping this feature detector from learning more features. 

Figure 59: Feature Detector 1 Activity Plot. 
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 Figure 60 :  Competitive explain-away and learning inhibition / disinhibition signals resulting from stabilizing dynamics of the simulated cortical Winner-Take-All circuit (implemented 

using the Nengo basal-ganglia network). 
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7.4. Activity Dependant Explaining Away 

The learning and inhibition signals of the previous section are locked into a feedback loop 

with the evolution of the feature detectors’ category representations. Figure 61 shows the 

multi-dimensional signal flows inside the accumulating memory circuit that sums the 

explained features as learned and then output by the winning feature detectors over time. 

The model then subtracts this summed explained-features representation from the 

remaining stimulus image to form an analogue for the behaviour of the thalamic core 

cells. In the biology, this subtraction is implemented by progressive inhibition of the 

thalamic core cells by the RTN cells under the direction of the feedback from layer V of 

cortex in the Granger model, as we discussed previously. 

In this circuit, the winning feature detectors output the explained away features is shown 

in the top graph in Figure 61. This signal is monitored by the accumulating memory’s 

change detect ensemble based on its derivative, that change detection triggers the 

accumulator gate to open, releasing its inhibitory grip on the accumulator. The second 

graph from the bottom shows the progressively growing signals from all the explained 

away features that are added by the accumulating memory. The last graph shows how 

the signal from the accumulating memory is then subtracted from the original image 

representation, that is the output of the accumulating memory. 

 

7.5. Feature Detector Competition 

As shown in chart A of Figure 62, the feature detector output is compared to the current 

remaining image stimulus, and the dot-product is computed neutrally. All the resulting dot 

Figure 61: Accumulating explaining away circuit neural activity, simulating the effect of the Core circuit's thalamic 
reticular neurons inhibiting the explained portion of the inputs. 
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products are then fed as the basis of the WTA process to the basal ganglia model as in 

chart B.  

This sequence of the feature detectors that won for each image becomes the hierarchical 

categorisation for each image. 

 

7.6. Multiple Image Simulations 

Once the full model was run on single images, comprising approximately 500,000 to over 

1,000,000 neurons, we ran the model on multiple images, testing the models’ ability to 

produce feature detectors that learn complex features generated from multiple images. 

We found only partial success. Computational limits were the largest problem. The 

model’s current design proved too cumbersome for current simulation resources. Each 

image took approximately four (4) minutes on the available GPU servers. This meant that 

a full MNIST run of 50,000 training images and 10,000 test images would have taken over 

150 days to complete.  

In addition, the model was limited by available memory to 30 feature detectors. In order 

to have a robust simulation we would have needed to many more feature detectors, 

perhaps hundreds. Given these limitations we opted to study smaller runs of 50 to 1,000 

MNIST images. The results show some signs of robust feature detector competition, 

learning, and resulting explaining away, which are the core features of the Granger model. 

Given the low number of training samples possible on such small runs, to some extent it 

is surprising there is any consistency in the runs. Given the insufficient training runs that 

we were limited to, and the inconsistent results, we present these results for inspection 

only. 

Figure 63 shows the result of a 50-image run. The images are shown along with the 

sequence of the identification numbers of the winning feature detectors for that image. 

Figure 62 :  Feature detector dot-product over time, simulating layer IV competitive WTA based on neural 
comparison of receptive fields to input stimulus from thalamus. 
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In looking through the probe data on the runs, and trying to trace what was causing this 

trial-to-trial instability, several significant limitations of the architecture of our model came 

to light. We believe the core problem lies with the computational limits of scaling the model 

to have a more biologically accurate number of columns and spatial arrangement of the 

feature detectors. This combined with the fact that the dot-product mechanism we are 

Figure 63: 50 MNIST image run results, showing the sequence of feature detectors that classify the image. The 
sequence of feature detectors is shown by the feature detector identification numbers in the string of digits separated 
by dashes beside each image. (Note: single or double dash seperators are equivalent). 
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using for comparison between the feature detectors when using 100-dimension vectors 

all with values in the 0 to 1 range and all computed across neurons is too noisy with too 

small variations to be a reliable measure to base the WTA mechanism on. The learning 

is then applied across multiple feature detectors for the same image. We conjecture that 

Figure 64: Results for images of 1’s out of a 1,000 MNIST image training run, showing categorization of the 
images by matching feature detector. 
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the spatial competition arrangement, combined with lateral inhibition in real cortex allows 

multiple winning cortical pyramidal cells, all of which are in the same or related macro-

columns. This would result in an over-complete, competitive representational space, 

which would make the system less reliant on exact repeatability against any one preferred 

direction vector. Our model has too few pyramidal neurons (aka feature detectors), and 

they are not redundant. The result of each image classification therefore rests solely on 

the exact winning sequence. In some ways, this effectively removes the population coding 

and redundant nature of biological neural networks that likely makes them so powerful. 

While we had hoped that learning over time would resolve this, either we did not have 

enough test runs to achieve that long run specialization through competition amongst the 

feature detectors, or our dot-product discrimination method’s instability would not allow it.  

Finally, although we were disappointed in the results of the 50 image runs, we wished to 

see if we could see any reasonable improvement due to learning when we ran 1,000 

images (850 training and 150 test) over the course of 3 days of runtime. The learning rate 

for all learning was set to 1 x 10-6 and for the 1,000-image run this means that only about 

100 images of 1’s was trained on plus only 15 test images of 1’s. 

Figure 64 shows a sample of the classification of the 15 test images of 1’s from the run. 

The column “Hierarchical Classification Sequence” shows the order of the feature 

detectors that matched the image in the order they were matched. The next columns 

show the state of the feature detector at the time that it matched the image, or the resulting 

residual image after the subtraction of the explained parts of the image. Due to the small 

number of runs, the feature detectors are all clearly early in their learning, not visibly 

resembling any one image strongly, but showing elements of what appear to be patterned 

learning. The number of 1’s that are classified with a similar classification, appears to 

show the beginnings of a classification scheme, while other examples seem random or 

unrelated.  

Figure 65: After 100 training images, hierarchical classification for MNIST images of 1's showing the percentage 
time each sequence of feature detector sequence matched to an image of a 1. To read the bottom axes, as an 
example, the right most category is feature detector 1 won, then 13 and finally 28; after which the stimulus was 
explained away to nothing. Negligible categories are not shown. This flat distribution across feature sequences 
suggests no hierarchical categorization of the shown images. 
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We then graphed the classification of all images across time for each classification 

hierarchy to see if in fact we can show that learning is occurring. Figure 65 shows the 

feature detector sequence classifications of the first 100 training images while Figure 66 

shows the classification categories as performed on the test images after 750 training 

images.  

In general, the 100-image run produces a more random distribution of feature detector 

sequences (Figure 65 ), the “categories”, than the tighter clustering of categories from the 

750-image run (Figure 66). The images of the one’s are moving into a few more common 

clusters. Given the incomplete training, it is only circumstantial evidence of clustering 

working but is as would be expected given the short training process. 

  

Turning to Figure 68, we see the entire dataset of classifications for a training run of 750 

images. In  Figure 67 we see the results after only 100 images were run. In comparing 

the two, we see the same progression to fewer clusters of greater explanatory frequency 

in the 750-image run than at the end of the 100-image run. In the 100-image run, the bars 

are roughly evenly distributed. In the 750-image run, the number of bars has reduced, as 

well as many of the remaining feature detectors frequency of “winning” bars increase in 

height. For each MNIST image the ground truth is clustering around an increasingly 

consistent sequence of feature detectors as also shown visually in Figure 64 for the run 

of the MNIST 1’s images from a 1,000-image training run. 

There are also many examples of what appear to be random classifications or possibly 

unlearned feature associations. In all the data, while encouraging, is not conclusive in any 

empirically measurable way. Hopefully future studies continue to explore cortico-thalamo-

cortical dynamic circuit modelling in a biologically plausible way to explain more of the 

categorization and classification behaviour that we have attempted to elucidate here.  

 

 

Figure 66: The classification sequences on the test images of 1’s; after 750 training images. Hierarchical classification 
for MNIST images of 1's showing the percentage time each sequence of feature detectors matched to an image of a 
1. Negligible categories are not shown. The peaked distributions of classification sequences suggest improved 
clustering over that shown in  Figure 65. 
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Figure 67: Feature detector categorization performance of MNIST images after 100 image training run. 
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Figure 68: Feature detector categorization performance of MNIST images after 750 image training run. 
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8. Discussion and Future Work 
8.1. Discussion 

The main contribution of this thesis is that, the parts of our model that are neurally 

implemented have been shown to plausibly result in the sequential processing behaviour 

theorized in the Granger model. These parts include the competition between the feature 

detectors and the sequential explaining away of the input stimulus, and the dynamics of 

the neural representations of sensory inputs along the pathway from specific thalamus to 

cortical layers IV then I/II/III and then from layer V back to the thalamic RTN. 

 

While we did not show the repeatability of the Granger model’s hierarchical classification 

in our model, we believe that our work does lend credence that dynamics stemming from 

neural connectivity and neural time-constants are a core component of cortical 

computation. We also believe that this is an area that needs much more research both to 

understand how brains work, but also as a key thrust in pushing the current state of 

artificial intelligence forward past the largely feedforward, non-dynamic approach of deep 

learning and other machine learning models.  

 

Secondly, we have discussed an array of cortical models, focusing on those that are 

envisioned as dynamic ones, and shown in detail a path for transferring those anatomical 

and dynamic models to NEF spiking models both theoretically and practically. We hope 

that this serves as an end to end example of how this can be thought of in concert with 

the large body of published research on the NEF and Nengo neural computational 

models. 

 

This modelling work provides some more credence to the hypothesis that the dynamics 

of networks in the brain are likely a major source of the function of higher order cognitive 

capabilities. We also believe that this lends support to the theories that underlie the Neural 

Engineering Framework (Eliasmith & Anderson, 2003), and the advanced dynamic brain 

model Spaun (Eliasmith, 2013) built with it. In Spaun, the dynamics integrate many 

different types of neural algorithms, including pattern separation and recognition ones like 

support vector machines (SVMs). 

 

8.2. Future Work 

We set out on a functionally broad challenge in this paper, holding up the functioning of 

thalamo-cortico-cortical loops as the explanatory challenge of our work. We now describe 

the many short-comings of our model compared to the Granger model, and compared to 

the biology. We have listed many already in Section 6.3, but we wish to mention a few 

more here. The following are suggestions for future work for anyone wishing to continue 
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an NEF model of the thalamo-cortical circuits using the Granger model as a starting point. 

They could: 

 

a. Improve the model to operate consistently on a trial to trial basis, perhaps using much 

larger layers of feature detectors with spatially arranged lateral inhibition mimicking 

the spatial competition found in cortex. It would then be possible to extend the model 

into multiple sheets of many feature detectors per column to test hierarchical winner-

take-all among the cortical columns, as opposed to narrower individual feature 

detector competition. This will require much larger computational resources. 

 

b. Implement the Granger model’s sequence circuit to learn sequences, and use those 

sequence predictions to constrain the competition amongst the feature detectors as 

cortex is theorized to do. 

 

c. Implement a more realistic attractor-based cortical model within the layers of feature 

detectors inspired by Rolls’ model, described above, and using Eliasmith’s methods 

for building spiking attractors in the NEF (Eliasmith, 2005). 

 

d. Investigate the Granger hierarchical classification model as a method of equating 

stimuli with neural symbolic representations, such as, the Semantic Pointer 

Architecture (SPA) to investigate the resulting model as a candidate for a biologically-

plausible model of feature binding and symbol grounding. This could be done by 

connecting the layer II and III representations that the Granger model constructs (the 

feature detectors in our implementation) with SPA pointers in a learned way, and then 

evaluating what learning mechanisms would enable reliable learning over time. The 

SPA pointers could then also reverse the process, forming predictions by expanding 

the pointers to the learned stimuli that created them, to investigate Eliasmith’s 

concepts of pointer expansion in a symbol grounded way. 

 

8.3. Conclusion 

This project was undertaken to investigate the biological plausibility of the Granger model, 
when modelled using spiking neurons. The results of the modelling work suggest that 
serial, hierarchical progressive categorization could be implemented biologically via the 
interaction of the excitation and inhibition between thalamo-cortical loops. Further study, 
including larger and improved models should be undertaken to evaluate the plausibility of 
dynamic, thalamo-cortico-cortical networks, to further our understanding of the biology, 
but also to search for improved learning algorithms in general. The cortex leaves much 
to be discovered. 
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Appendix A: Code & Parameters 

Source Code for Thesis Work  

All the software for the models in this work can be obtained from: 

 

      https://github.com/ctn-waterloo/nengo_cortical 

 

Simulation Parameters 

gMNISTContinueWithNextImag

e = True  

 if true and running MNIST files, the next MNIST 

image after the last one processed will be used, so 

the run will continue, this is used with the 

useSameWeights and CustomWeights solver to 

restart runs in case they crash 

gProbeSampleEvery = 0.010     default=0.001; number of ms to sample all probe 

data, simultion runs with dt=0.001 seconds usually, 

but no need to sample that often for plotting results 

gMNIST_ImageScaletoNegOne

2One = False  

 default=False; Controls whether the MNIST images 

(which are encoded as 0:1 pixel values (white=0, 

black=1) are changed to go from -1:1 (-1=white, 

1=black) scaling to better match the receptive range 

of the image and feature detector ensembles 

gImageStorageRadius = 1.2   default=2 in various places such as 

AccumulatingMemory and FeatureDetectors; 

controls the radius of the ensembles storing the 

images. images are very high dimensional 

ensembles and unless we use really large neuron 

counts (liek 40,000 neurons to store an image of 

10x10 pixels) the image data is largely -1's and 1's 

(when gMNIST_ImageScaletoNegOne2One is 

True, 0's and 1's if false) for which saturates the 

ensembles at either end of the activation curve, the 

result is that with a radius of 1 (the nengo default) 

you end up with values closer to 0.7 and -0.7 (for -

1:1 encoding) to compensate, making the radius =2 

gives enough encoding room before saturation to 

allow the decoded values to be reasonably close to 

-1 and 1 even for ensembles with only 4,000 

neurons (10% of the ideal). 

https://github.com/ctn-waterloo/nengo_cortical
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gUseDerivativeAccumMemory = 

True  

 default=True; see CorticalCoumn.py ; controls 

whether to use the derivative method (deriv ~= 0) for 

determing when FDDeltaX is stable enough to 

consider this level of FD wins as succesful and 

ended if not derivative method then a PATH average 

value method is used. Note derivative method is far 

more biologically plausible. 

gInputGatedMemoryDifference

Gain = 5  

default=15, in AccumulatingMemory.py; controls the 

gain from the accumulating memory to the memory 

for changes (note Xuan had recommended 15 as 

the value here) 

gUseRandomTransformWeights

OnFDs = True   

default=True : controls whether FDs are initialized 

with a random transform vector on the connection 

from the FD to the Product ensemble note: in Nengo 

weights = encoders * transforms * decoders; so 

setting the transforms to be random initially means 

the feature detectors will start with random weights 

from the image to the feature detector ensemble this 

is what we want as we want each feature detector to 

start as a random weighted filter on the incoming 

stimuli image representing the random initial state of 

the cortical connections. The competitive process 

then selects a winner and that winner learns thier 

weights a little closer to the incomign stimuli, again 

as in cortex Flow: if 

gUseRandomTransformWeightsOnFDs=True then 

random weights will be used; if gUseSameWeights 

= True then the same ones from last one are used, 

else new ones  (see CorticalFeatureDetector); 

causes the weights to be used as the transform,   

guseSameWeights setting determines whether the 

same weights are used, this switch determines 

whether they are used (same or new) 

gFDRecurrence = False     Whether or not to use recurrent connection in the 

FD's to cause them to hold thier value over time 

gFDReccurenceStrength = 1     the strength of the recurrent connection 

gUseSameWeights = False   these are the weights on the transform on the 

connection from the image to the feature detectors, 

works with gUseRandomTransformWeightsOnFDs: 

if gUseRandomTransformWeightsOnFDs is true 

then transform weights are used, if 
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gUseSameWeights is true then they are the same 

ones from last run. These serve to increase the FD 

variation at the start over which the features are 

learned.  

gPESLearningOn = True   default=True; if False feature detectors do not learn 

via hPES weights learning  

gPESInputSynapse = 0.005   default = 0.005; in CorticalFeatureDetector; 

synapse time constant on the inputs to the product 

network 

gVOJALearningOn = True   default=True; if False feature detectors do not learn 

via VOJA encoders learning  

  

gDefaultLearningRate = 5e-5      default = 1e-3; controls the rate of learning on the 

hPES connections. Smaller means FD's learn 

slower. Too large (greater than  1e-3 or so) and the 

circuit never stablizes long enough for the 

accumulating memory to see a stable FDDeltaX and 

so never causes it to subtract the explained parts of 

the image; and the circuit never progresses just 

oscillates in the FD competition process too small 

and it takes a long time to declare a good FD winner  

FDEncodersAsImageTest = 

False     

 default=False; will set Feature Detector encoders = 

parts of the image ( if 3 then in 3 parts) for testing, 

chops up image into FDs pieces and sets FD's 

encoders to those pieces 

EncodersToMatch = []  index of which encoder to match directly to the 

image for debugging only 

gReloadPreviousEncoders = 

True  

 default=True;  if True encoders from last run are 

reloaded, if file not found then the 

gRandomEncodersType encoders are generated 

Used with gMNISTContinueWithNextImage to 

restart a run usually because a large run has 

crashed  

gUseCustomEncoders = True   default=true; Whether to use custom encoders 

(chosen from list below) on featuredecoders objects 

or let nengo solve for them to start with, see 

CorticalFeatureDetectorsCollection.py This must be 

set to True for the gRandomEncodersType setting 
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to be used, otherwise Nengo creates the encoders 

as default  

gRandomEncodersType = 

"TrainingImageSamples"     

 default= NegOneOne. Which form of encoder initial 

value to use;  "ZeroOrOne" = 0 or 1 integers; 

"ZeroToOne" = 0...1 floats; "NegOneOne" = -1..1 

floats "NegOneOne" = -1 to 1 range encoders; note 

-1 on an encoder means that dimension doesn't 

matter "ZeroToOneRandom" = 0 to 1 range random 

encoders; "UsePrevious" = use the ones saved from 

the last run; "Ones" = all ones; 

"TrainingImageSamples" = bootstraps the encoders 

on the feature detectors by setting them equal to a 

different starter image to speed training, note careful 

with the choice of solver, a random solver will negate 

much of the effects of this possibly;  "Hypershpere" 

or anything else  = default setting of 

nengo.dists.UniformHypersphere(surface=True).sa

mple(n=self.p_NeuronsPerFD, d=self.imageDim). 

Note: If using VOJA learning start with Hypersphere 

gDefaultEncoderType = 

"ZeroToOneRandom"   

 default = "ZeroToOneRandom"; Only supported 

one currently. the type of encoder to use if the first 

type has no more options, such as when 

TrainingImageSamples is used but there are only 10 

samples but we need to build 30 featuredetectors. 

Similar in theory to waht some say is the frist step in 

neural learning is to mirror the inputs, after which 

neural learning diverges to what the the network 

learns. This is intentional as the first classifications 

benefit from starting with known samples then the 

second and subsequent category encoders are best 

to start random (if using one of the random encoder 

types above for the default) 

  

gUseSolverType = 

"RandomRange"  

 in CorticalFeatureDetector.py ;default="None";  one 

of : default="LstSq" = Nengo to use the Nengo 

default which is lstsq2 (least squares) in 

corticalFD.py; Zeros : start all feature detectors with 

all zeros; "Random" : random values in the range 

from -1 to 1;  "RandomRange" : start with random 

weights in the range specified in the call to the 

constructor of the Solver; note weights are very 

small normally and should be from a negative to a 
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positive value. Some real weights from a real feature 

detector with 1000 neurons are min=-

0.00021212544  and the max=0.0001728448 so 

good defaults would be min=-0.001 and the 

max=0.001;  "LoadCustomWeightsSolver" = loads 

the previous run's weights or uses RandomRange if 

the files are not found ; "RandomizedSVD" 

solverObj=nengo.solvers.LstsqL2(solver=nengo.util

s.least_squares_solvers.RandomizedSVD()) ; 

faster for large ensembles  

gFDInhibitionOn = True                 default = True; controls whether FD's are be turned 

off from the thalamus output signal by inhibition; see 

CorticalFeatureDetector.py 

gFDInhibitionSignalCutoff = 0.8        default - 0.6, in corticalfeaturedetector.py; 

dotProdOut function below this level the inhib signal 

is considered off, above this the FD is inhibited 

gUseDelayedFDThalInhibGate 

= False    

 default=False; see FeatureDetector.py ; delays 

propagation of error signal in FDiDeltaX until the 

output from the Thalamus is stable. Note this could 

have a negative effect in that it can allow learning to 

go on until ALL FD's have learned all the features 

and thus are all the same can stop the competition 

of the FDs in this way that the model needs to allow 

FDs to specialize. 

gInhibitLosersOnDeltaXBuild = 

True    

 default = True; if True inhibits the output of the FDs 

to the FDDeltaX build process; so the losers output 

does not propagate to DeltaX otherwise  Losers 

would be shown as explained output. False setting 

is only used for debugging to see the full flow of 

FDiDeltaX output reflected in DeltaX. 

gWinningFDSignalDuration  = 

40       

 default = 20 ; in InhibitFlipSwitch.py; number of 

simulation dt's (typically 1 ms each) before declaring 

a winning FD, the time for the network to settle. 

gLateralInhibitionOn = True    In CorticalFeatureDetectorsCollection.py; controls 

whether or not the pyramidal layer IV neurons 

exhibit lateral inhibition to each other   Lateral 

inhibition is the creation of a series of inhibitory 

connections between the FD's      

gLateralInhibStrength = -0.5     default= -0.20 = -20 % * square of activity (0:1 

range) lateral inhibition max;  in 

CorticalFeatureDetectorCollection.py; the strength 
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of the lateral inhibitory connections in the range of -

100% to 0%; normally around -0.10. Biologically this 

inhibition is not the stellate cells inhibition in layer IV, 

this is an analogue for the network competition for 

the resulting final activated neural network selected 

by network competition to represent the inputs. The 

incoming signal which is either neural or numpy dot-

product or the scaled activity sum is a value in the 

range -1 to 2, typically 0.5 to 1.2 it is squared and 

then scaled by gLaterlInhibStrength factor to yield 

an input to inhibit the neurons of the dot-product and 

therefore lower  that FD's score in the competition to 

the basal ganglia. Transform Formula =  

function=lambda x: [[ x**2 * 

gLaterlInhibStrength]]*self.neuronsPerEnsembleArr

ay)  

gLateralInhibStrengthTimeCons

tant = 0.020  

 default = 0.020; in 

CorticalFeatureDetectorsCollection.py; controls the 

TC for the lateral inhibition time constant 

gPyramidalCompetitionType = 

"Activity"           

 default = "Activity", "NumpyDotProduct", "Neural" 

Can be "Neural" = in CorticalFeatureDetectors.py; 

controls whether the dot-product input to the basal 

ganglia is computed using the neural dot-product or 

whether a  numpy.dot() function in a node is used 

"NumpyDotProduct". Or "Activity" based which is the 

sum total of the activity of the neurons 

gActivityScaleFactor = 100         default = 100; the factor by which the summed 

activity of all the neurons in an ensemble is scaled-

down by before being input to the Basal Ganglia 

using this formula: 

1/(gActivityScaleFactor*self.p_NeuronsPerFD) 

gAccumulateOnDerivativeStabl

eMemoryOutputOnlyPositive = 

False  

 Default=False; in 

AccumulateOnDerivativeStableMemory object, sets 

the output to only respond to positive signal, means 

that if the feature detectors over subtract the 

explained features, neural activity will go to zero, this 

is biologically plausible and is what the Granger 

model says the need for this comes from the 

instablity in the BG outputs due to the changing 

signal levels from the input dot-products which don't 

stay within the range of the BG model (0:1.2) and 

bounce around up and down, this causes the BG 
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then thalamus signal to oscillate and that causes the 

accumulating memory to subtract the explained 

features sometimes more than once. this is a very 

hard problem to solve and due the variability in the 

input images has been left as a future improvement 

and this setting caps the explained-away features at 

zero. So once the image has been explained-away 

to zero, the stimulus stops (ie: the image is gone all 

white, the background color) and all feature 

detection stops. This issue with the implementation 

of the dot-product, attempting to model the lateral 

inhibition found in cortex, is perhaps the major  

short-coming of the model and the cause of much of 

its trial to trial instability. After many attempts to 

resolve it and after discussing with the creator of the 

basal ganglia model, it remains outside the scope of 

the BG model to auto-scale the inputs (as perhaps it 

should be, being better solved on the inputs) but 

also it has proven a large project to try to auto-scale 

the inputs. There are several other possible 

alternatives but they are all either separate masters  

level problems in their own right and so this filter has 

been applied instead to allow this model to proceed 

to write-up. If this provokes  interest, please contact 

me for further details and discussion. A BG model 

with auto-scaled dynamics, and perhaps many 

nengo inputs with auto-gain control would be 

extremely useful and a great Masters project and 

one which from my reading is very biolotgically 

plausible, I think auto-gain control is practically a 

core-feature of neurons and neural circuits in 

addition to selective gain control (which many think 

is behind attention). 

gBGAutoInputBias    = False         default = False ;; in CorticalColumn.py; whether or 

not to compute automatically an input bias for the 

basal ganglia, this is an amount to shift up (+) or 

down (-) the input to the basal ganglia to move the 

inputs into the range from 0:1 

gBGInputBiasShiftFactor = 0         default = 0; in CorticalColumn.py; we need to find a 

factor that can shift the inputs to the basal ganglia 

downward to the range 0:1 for best results the BG is 

fed by the dot-products output of the feature-

detectors compared to the incoming-image; these 
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vary by the dimensions of the image and the values 

in the images in test runs on a 0:1 encoded 

(white:black) image with 5x5 pixels, the formula 

used was the max difference in the pixels (computed 

but normally ~= 1 of course)  when dot-producted 

tests show this to be in the range of 0:7 typically. So 

the formula used is to compute -maxDiffernce * 

NoDimensionsSquare * 

gBGAutoInputBiasScaleFactor this has been giving 

an inputBias of around -5 or so, this causes the dot-

product inputs to shift into the range of 0:1.5 

approximately and that gives reasonable results for 

the output of the basalganglia. This scale factor will 

have to be re-determined for each image size and 

encoding method. Also note, when you set this shift 

factor, it has to be set in concert with the 

gproductRangeScaleFactor below. If the inputs are 

already scaled to be in the 0:1 range then do not 

shift the range again. If however the inputs are 

scaled right (all in a tight range of approx = 1 from 

min to max values) then use this to shift them down 

to end in the 0:1 absolute value range   

gproductRangeScaleFactor = 1       DmensionsSquareRoot in the input image; see 

CorticalColumn.py; controls the scaling of the dot-

product value computed by the product ensembles; 

the values from productEnsembles can grow as the 

sum of the number of dimensions of the input; need 

to scale it to range 0 to 1 for best results as input to 

the basal ganglia 

gDOTProductInputMagnitude = 

1     

 default=1; in CorticalFeatureDetector; this is the 

expected radius of the inputs to the product network. 

the coding of the image as 0:1, white:black means 

the radius should be 1 

gDOTProductLookbackWindow 

= 20    

 default = 100 ; in CorticalFeatureDetector, number 

of ms to average the dot product signal over to 

stablize it. note this should be less or same as the 

reset window length so it clear before the reset is 

over 

gBasalGangliaInputPower = 1        default=1; see FeatureDetector.py ; dot-product 

input to the basal ganglia is raised to this power for 
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the neural method only; seperates out the inputs 

better. Inputs should be in the range 0 to 1 to start 

  

gThalamus_Mutual_Inhibition = 

0.8      

 default = 1; in CorticalColumn.py, sets the strength 

with which the Thalamus forces the inputs to inhibit 

each other, 1 means that only 1 winner will be 

chosen; less than 1 means more than 1 winner likely 

gFDdotProdWinLooseCutOff = 

0.2   

 default = 0.2; In CorticalColumn; this is the scaled 

dot-product value that determines the cut-off to 

determine if a FD "wins" based on the output of the 

thalamus ie: wins the competition to explain the 

inputs. Higher values mean more win and lower 

values less win. typically somewhere between 0.2 

and 0.6, but changes by the model or other factors 

will make this set point move around See output 

graphs of the dotProduct and the Thalamus.output 

to determine the range of inputs to this cutoff  

gDotProdtoBGSynapseTC  = 

0.010    

 default = 0.010; in CorticalFeatureDetector.py ; the 

time constant for integrating the dot-product signal 

over before feeding into the BasalGanglia  

gBGtoThalamusSynapseTC  = 

0.010    

 default = 0.020; in CorticalFeatureDetector.py ; the 

time constant for integrating the BG signal over 

before feeding into the thalamus 

gThalamus_threshold = 0.25          default = 0.25; the lowest input signal to consider, 

range from 0. to 1. 

gThalFiltWinSignalValue = 1.0           default = 1; this is the value of the signal out of the 

cleaned up thalamus sent if a FD wins ( or looses in 

case of the losers signal); normally 1 but when the 

signal bounces around 1 it can cause instability in 

the error and FD DeltaX signals which cause 

problems for stablity of the AccumMemory signal a 

value of 1.1 or 1.2 may stabilize the signal so it 

oscillates gently above 0 and therefore not inhibiting 

the learning & FD Delta ensemble 

gThalFiltLosersSignalValue = 

1.0       

 default = 1; Same use as above, except on the 

losing signals. As well note, the losing signal is 

transformed by -1 and used to inhibit the VOJA 

learning, this signal cannot go lower than -1 or the 

VOJA ensemble will start forgetting (negative 

learning)  so only use values very close to 1 here. 
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gThalFiltOutputSynapse = 0.020           default = 0.020; in CorticalColumn.py : synapse 

value to be put on the Output added to filter and 

smooth the Thalamus output; 0.005 is the nengo 

default, 0.050 would be the maximum value; 0.010 

seems to work well 

gStartLearningAfter=0.100        default=0.100; how many seconds to wait before 

turning on learning from the start of the simulation 

gStopLearningAfter = 1         default = 0.80; percentage of the run length of 

images to use as training; after this percentage then 

the images are processed without learning 

gFlipLearningEvery=0.200         default=None; whether to turn learning off after it 

starts after some number of seconds of learning, 

reduces over-fitting note; this setting and 

gInhibitFlipSwitchLookBackWindow are related; the 

learning interval must be shorter (by at least 50 ms 

perhaps)  than the 

gInhibitFlipSwitchLookBackWindow as during 

training an FD needs to win then be allowed to learn, 

then the signal has to stabilize long enough for the 

derivative to stay stable so that the imgae 

subtraction will occur in AccumulatingMemory  

gInhibitFlipSwitchLookBackWin

dow = 300  

 default=gFlipLearningEvery+100 in ms though; in 

FeatureDetector.py in number of ms (not seconds!) 

for the feature detector change signal to propagate 

through before the winning feature detector is 

inhibited so the thalamus outputs the selected 

winning FD (the value of the thalamus output on that 

dimension goes to 1); then this is fed into the 

IhibitFlipSwitch for that FD; this then is delayed and 

after gInhibitFlipSwitchLookBackWindow number of 

ms the signal is allowed out  (it is rounded to 1 or 0 

but not averaged, just delayed) this signal then 

drives the inhibition of the activity in the FD product 

ensemble which feeds the basal ganglia, in effect 

turning off this FD from competing from then on, until 

the reset signal on the change of  image is received. 

During the period of the inhibition signals delay, the 

learning can occur (and must be shorter than the 

delay period) 

gRunSimgleImageMode = False    default=True, in granger.py, controls if true images 

are run one at a time and the simulator does a 
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nengo.network.reset() between each, otherwise 

images are run one after another using the same 

state of the simulator 

gDisableResetSignal = False    gDefaultLearningRate=True; in saccades.py, if true 

the reset between images is off, this is used only 

when running in single image mode 

gInhibResetSignalMinLength = 

0.100  

 default=0.100; number of seconds to hold reset 

signal high at end of image transitions, allows time 

for signal to propagate through net 

gStartResetLeadTime = 0.050     default=0.050; number of sec to signal reset before 

it happens to start the process of shutting learning 

off so no learning happens during the reset 

rInhibResetSignalThreshold = 

0.90  

 default=0.90; in InhibiFlipSwitch; above this the 

reset signal passes through 

gThalamusVOJATickLearningH

urdleRate = 0.5  

 the signal level that is the cut off for learning being 

turned on 

gVOJALearningRate = 1e-3     default 1e-3: the rate at which the encoders are 

learned 

gThalamusPESTickLearningHur

dleRate = 0.5  

 the signal level that is the cut off for learning being 

turned on 

gVOJALearnInhibSignalValue = 

1    

 default 1; the absolute value used to send to the 

hPES learning connection (after transformed to a 

negative to shut off learning) 

gPESLearnInhibSignalValue = 1       default 1; the absolute value used to send to the 

VOJA learning connection (after transformed to a 

negative to shut off learning). Note: VOJA 

implements "forgetting" on the inhibit signal, so the 

value should not be less than 0  

gLearninghInhibInputSignalHur

dleValue = 0.2  

 default=0.3; in LearningSwitch.py; controls what is 

the level of output from the 

ThalamusFiltered.LosersOnOutput[self.pFDid] 

signal which goes to ~1 for a given dimension of it 

output, each corresponding to a feature detector, 

when that FD has LOST the competition the value 

from the thalamus, despite some filtering, does 

move around 1 a bit so a number approx. = 1 works 

gAverageLearningSignalWindo

wLength = 10  

 default=1 in LearningSwitch.py; length of window in 

ms for signal averaging for learning switch 

determination 
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gLearnInhibResetThreshold = 

0.90  

 default = 0.90; in LearningSwitch.py; when the reset 

signal goes above this value the learning signal 

inhibition is reset; so the feature detector being 

inhibitied is released 

gLearningSignalResetTime = 

0.100  

 default = 100, in LearningSwitch.py; number of 

seconds to hold the reset line high once triggered 

between image changes, will inhibit learning in this 

period 

gUseVOJAIntercepts = False     default intercepts on an ensemble are set to 

nengo.dists.Uniform(-1.0, 1.0) by nengo, for VOJA 

learning the encoders move to learn the keys but 

must space themselves out according to the max 

dot-product of the pairs of keys being used; if VOJA 

learning is ON and this is ON then the setting below 

is used as the min-intercept = max dot-product 

between keys 

gVOJAIntercept = 7    the VOJA encoder ensemble's neurons need to be 

set to not respond below the maximum dot-product 

between the images see 

https://pythonhosted.org/nengo/examples/learn_as

sociations.html 

gLearnSignalThreshold = 0.7   if the learning inhibition signal is over this level, 

round up to 1 or floor to 0 below it 

gResetLearningSignalThreshold 

= 0.05  

 default=0.05; in DetectDerivativeChange.py; if the 

s_change_detect signal 

(DetectDerivativeChangeGate.s_change_detect.ou

tput) goes below this level, the 

LearningSwitch.reset() function is called this is to be 

called when the feature detectors subtract away the 

portion of the incoming signal that has been 

"explained" away 

gTurnLearningOnThreshold = 

0.8  

 default=0.80 ; in learningSwitch.py; when the 

learning signal goes above this level, learning is 

turned on 

gAreaIntercepts = True   default=True ; in CorticalFeatureDetector.py; 

controls whether or not the AreaIntercepts 

distribution is used on the image ensemble in 

CorticalFeatureDetectors and the featureDetector 

ensembles as well to improve performance by 

allowing for the use of less neurons but with the 

same accuracy. Note: see also the setting for the 
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solver above; the RandomizedSVD is a sub-solver 

to the standard LstSqrs one which is faster than 

LstSqrs, but if using one of the other solvers that just 

assigns the weights then this likely isn't a help. Also 

using gAreaIntercepts is only useful is solving for 

decoders and not using Random weights 

 

 


