2,019 research outputs found

    Modularization for the Cell Ontology

    Get PDF
    One of the premises of the OBO Foundry is that development of an orthogonal set of ontologies will increase domain expert contributions and logical interoperability, and decrease maintenance workload. For these reasons, the Cell Ontology (CL) is being re-engineered. This process requires the extraction of sub-modules from existing OBO ontologies, which presents a number of practical engineering challenges. These extracted modules may be intended to cover a narrow or a broad set of species. In addition, applications and resources that make use of the Cell Ontology have particular modularization requirements, such as the ability to extract custom subsets or unions of the Cell Ontology with other OBO ontologies. These extracted modules may be intended to cover a narrow or a broad set of species, which presents unique complications.

We discuss some of these requirements, and present our progress towards a customizable simple-to-use modularization tool that leverages existing OWL-based tools and opens up their use for the CL and other ontologies

    Knowledge-based methods for automatic extraction of domain-specific ontologies

    Get PDF
    Semantic web technology aims at developing methodologies for representing large amount of knowledge in web accessible form. The semantics of knowledge should be easy to interpret and understand by computer programs, so that sharing and utilizing knowledge across the Web would be possible. Domain specific ontologies form the basis for knowledge representation in the semantic web. Research on automated development of ontologies from texts has become increasingly important because manual construction of ontologies is labor intensive and costly, and, at the same time, large amount of texts for individual domains is already available in electronic form. However, automatic extraction of domain specific ontologies is challenging due to the unstructured nature of texts and inherent semantic ambiguities in natural language. Moreover, the large size of texts to be processed renders full-fledged natural language processing methods infeasible. In this dissertation, we develop a set of knowledge-based techniques for automatic extraction of ontological components (concepts, taxonomic and non-taxonomic relations) from domain texts. The proposed methods combine information retrieval metrics, lexical knowledge-base(like WordNet), machine learning techniques, heuristics, and statistical approaches to meet the challenge of the task. These methods are domain-independent and automatic approaches. For extraction of concepts, the proposed WNSCA+{PE, POP} method utilizes the lexical knowledge base WordNet to improve precision and recall over the traditional information retrieval metrics. A WordNet-based approach, the compound term heuristic, and a supervised learning approach are developed for taxonomy extraction. We also developed a weighted word-sense disambiguation method for use with the WordNet-based approach. An unsupervised approach using log-likelihood ratios is proposed for extracting non-taxonomic relations. Further more, a supervised approach is investigated to learn the semantic constraints for identifying relations from prepositional phrases. The proposed methods are validated by experiments with the Electronic Voting and the Tender Offers, Mergers, and Acquisitions domain corpus. Experimental results and comparisons with some existing approaches clearly indicate the superiority of our methods. In summary, a good combination of information retrieval, lexical knowledge base, statistics and machine learning methods in this study has led to the techniques efficient and effective for extracting ontological components automatically

    Learning Ontology Relations by Combining Corpus-Based Techniques and Reasoning on Data from Semantic Web Sources

    Get PDF
    The manual construction of formal domain conceptualizations (ontologies) is labor-intensive. Ontology learning, by contrast, provides (semi-)automatic ontology generation from input data such as domain text. This thesis proposes a novel approach for learning labels of non-taxonomic ontology relations. It combines corpus-based techniques with reasoning on Semantic Web data. Corpus-based methods apply vector space similarity of verbs co-occurring with labeled and unlabeled relations to calculate relation label suggestions from a set of candidates. A meta ontology in combination with Semantic Web sources such as DBpedia and OpenCyc allows reasoning to improve the suggested labels. An extensive formal evaluation demonstrates the superior accuracy of the presented hybrid approach

    Inferring Concept Hierarchies from Text Corpora via Hyperbolic Embeddings

    Full text link
    We consider the task of inferring is-a relationships from large text corpora. For this purpose, we propose a new method combining hyperbolic embeddings and Hearst patterns. This approach allows us to set appropriate constraints for inferring concept hierarchies from distributional contexts while also being able to predict missing is-a relationships and to correct wrong extractions. Moreover -- and in contrast with other methods -- the hierarchical nature of hyperbolic space allows us to learn highly efficient representations and to improve the taxonomic consistency of the inferred hierarchies. Experimentally, we show that our approach achieves state-of-the-art performance on several commonly-used benchmarks

    The problem of learning non-taxonomic relationships of ontologies from text

    Get PDF
    Manual construction of ontologies by domain experts and knowledge engineers is a costly task. Thus, automatic and/or semi-automatic approaches to their development are needed. Ontology Learning aims at identifying its constituent elements, such as non-taxonomic relationships, from textual information sources. This article presents a discussion of the problem of Learning Non-Taxonomic Relationships of Ontologies and defines its generic process. Four techniques representing the state of the art of Learning Non-Taxonomic Relationships of Ontologies are described and the solutions they provide are discussed along with their advantages and limitations

    Comparing human and automatic thesaurus mapping approaches in the agricultural domain

    Get PDF
    Knowledge organization systems (KOS), like thesauri and other controlled vocabularies, are used to provide subject access to information systems across the web. Due to the heterogeneity of these systems, mapping between vocabularies becomes crucial for retrieving relevant information. However, mapping thesauri is a laborious task, and thus big efforts are being made to automate the mapping process. This paper examines two mapping approaches involving the agricultural thesaurus AGROVOC, one machine-created and one human created. We are addressing the basic question "What are the pros and cons of human and automatic mapping and how can they complement each other?" By pointing out the difficulties in specific cases or groups of cases and grouping the sample into simple and difficult types of mappings, we show the limitations of current automatic methods and come up with some basic recommendations on what approach to use when.Comment: 10 pages, Int'l Conf. on Dublin Core and Metadata Applications 200
    • …
    corecore