10 research outputs found

    RegGAN: An End-to-End Network for Building Footprint Generation with Boundary Regularization

    Get PDF
    Accurate and reliable building footprint maps are of great interest in many applications, e.g., urban monitoring, 3D building modeling, and geographical database updating. When compared to traditional methods, the deep-learning-based semantic segmentation networks have largely boosted the performance of building footprint generation. However, they still are not capable of delineating structured building footprints. Most existing studies dealing with this issue are based on two steps, which regularize building boundaries after the semantic segmentation networks are implemented, making the whole pipeline inefficient. To address this, we propose an end-to-end network for the building footprint generation with boundary regularization, which is termed RegGAN. Our method is based on a generative adversarial network (GAN). Specifically, a multiscale discriminator is proposed to distinguish the input between false and true, and a generator is utilized to learn from the discriminatorโ€™s response to generate more realistic building footprints. We propose to incorporate regularized loss in the objective function of RegGAN, in order to further enhance sharp building boundaries. The proposed method is evaluated on two datasets with varying spatial resolutions: the INRIA dataset (30 cm/pixel) and the ISPRS dataset (5 cm/pixel). Experimental results show that RegGAN is able to well preserve regular shapes and sharp building boundaries, which outperforms other competitors

    Automated Extraction of Buildings and Roads in a Graph Partitioning Framework

    Get PDF

    Automatic Extraction of Tall Buildings from Off-Nadir High Resolution Satellite Images Using Model-Based Approach

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ฑด์„คํ™˜๊ฒฝ๊ณตํ•™๋ถ€, 2015. 2. ๊น€์šฉ์ผ.์ตœ๊ทผ ๋‹ค์–‘ํ•œ ๊ณ ํ•ด์ƒ๋„ ์ง€๊ตฌ๊ด€์ธก์œ„์„ฑ์ด ๋ฐœ์‚ฌ ๋˜๊ณ , ๊ณ ํ•ด์ƒ๋„ ์œ„์„ฑ์˜์ƒ์˜ ์ƒ์—…์ ์ธ ๋ณด๊ธ‰์ด ํ™œ๋ฐœํ•ด ์ง์— ๋”ฐ๋ผ ์ด๋ฅผ ์ด์šฉํ•œ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ํŠนํžˆ 1m ์ดํ•˜์˜ ๋†’์€ ๊ณต๊ฐ„ํ•ด์ƒ๋„๋Š” ์ง€์ƒ์— ์œ„์น˜ํ•œ ๊ฑด๋ฌผ, ๋„๋กœ, ์ฐจ๋Ÿ‰ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฌผ์ฒด์— ๊ด€ํ•œ ์ •๋ณด๋ฅผ ์ œ๊ณตํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๊ฑด๋ฌผ์˜ 2์ฐจ์› ์ •๋ณด๋ฅผ ์ถ”์ถœํ•˜๋Š” ์—ฐ๊ตฌ๋Š” ๋„์‹œ ๋ชจ๋‹ˆํ„ฐ๋ง, ์žฌ๋‚œ๊ด€๋ฆฌ ๋“ฑ์˜ ๋ถ„์•ผ์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์–ด ํ•„์š”์„ฑ์ด ๋Œ€๋‘๋˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ฑด๋ฌผ ์ถ”์ถœ ์ •ํ™•๋„์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š” ์š”์†Œ๊ฐ€ ๋‹ค์–‘ํ•˜์—ฌ ๋Œ€๋‹ค์ˆ˜์˜ ๊ฑด๋ฌผ ์ถ”์ถœ ์—ฐ๊ตฌ๊ฐ€ ์—ฐ์ง์˜์ƒ์„ ์‚ฌ์šฉํ•œ ์ €์ธต ๊ฑด๋ฌผ ์ถ”์ถœ์— ์ œํ•œ๋˜์–ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์กด ์—ฐ๊ตฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„์—ฐ์ง ๋ฐฉํ–ฅ์œผ๋กœ ์ดฌ์˜๋œ ๊ณ ์ธต๊ฑด๋ฌผ์„ ์ถ”์ถœํ•˜๋Š” ๋ฐ๋Š” ํ•œ๊ณ„๊ฐ€ ๋”ฐ๋ฅด๋ฉฐ, ์ด๋Š” ๋‹ค์–‘ํ•œ ์ œ์›์˜ ์˜์ƒ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๋†’์ด์˜ ๊ฑด๋ฌผ์„ ์ถ”์ถœํ•˜๋Š”๋ฐ ์–ด๋ ค์›€์ด ์กด์žฌํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ๋Š” ๋น„์—ฐ์ง ์˜์ƒ์—์„œ ๊ณ ์ธต๊ฑด๋ฌผ์˜ ์ƒ๋‹จ์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์—ฌ ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณ ์ธต๊ฑด๋ฌผ ์˜์—ญ ์ž๋™ ์ถ”์ถœ๊ณผ ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์ถ”์ถœ์˜ ๋‘ ๋‹จ๊ณ„๋กœ ๊ตฌ๋ถ„๋œ๋‹ค. ๊ฑด๋ฌผ์˜์—ญ ์ž๋™ ํƒ์ง€ ๊ณผ์ •์—์„œ๋Š” Otsu ๊ธฐ๋ฒ•๊ณผ ์˜์—ญํ™•์žฅ ๊ธฐ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ทธ๋ฆผ์ž ์˜์ƒ๊ณผ ๊ฑด๋ฌผ ์˜์—ญ์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•œ๋‹ค. ์ถ”์ถœ๋œ ๋‘ ์˜์—ญ๊ณผ ์˜์ƒ์˜ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ, ์—์ง€ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ์˜ ์„ ์„ ์‹ค์ œ ๊ฑด๋ฌผ ์„ ์— ์ตœ์ ํ™”์‹œํ‚จ ํ›„, ๊ฑด๋ฌผ์˜ ๊ตฌ์กฐ์  ํŠน์ง•๊ณผ ์˜์—ญ์ ์ธ ํŠน์ง•์„ ๋ฐ˜์˜ํ•œ ๋ชจ๋ธ ๊ธฐ๋ฐ˜ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ์˜์—ญ์„ ์ž๋™์œผ๋กœ ์™„์„ฑํ•˜์˜€๋‹ค. ์ œ์•ˆ ๋ฐฉ๋ฒ•์„ ์ฃผ๊ฑฐ์ง€๊ตฌ์™€ ์—…๋ฌด์ง€๊ตฌ์˜ IKONOS-2, QuickBird-2 ์˜์ƒ์— ์ ์šฉํ•˜์—ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์šฐ์ˆ˜์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ํ™”์†Œ ๋ฐ ๊ฐ์ฒด ๊ธฐ๋ฐ˜์˜ ์ •ํ™•๋„ ๋ถ„์„ ๊ฒฐ๊ณผ, ๋ชจ๋“  ๊ฒฝ์šฐ์— ๋Œ€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ์ •ํ™•๋„๋Š” 0.87, ์ƒ์‚ฐ์ž ์ •ํ™•๋„๋Š” 0.79, ๊ทธ๋ฆฌ๊ณ  F ์ธก์ •์น˜๋Š” 0.83 ์ด์ƒ์œผ๋กœ ๋‚˜ํƒ€๋‚˜ ์˜์ƒ์˜ ์ข…๋ฅ˜์™€ ์‹คํ—˜ ์ง€์—ญ์˜ ์†์„ฑ๊ณผ ๋ฌด๊ด€ํ•˜๊ฒŒ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์œ ์šฉํ•จ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋˜ํ•œ ๊ฐ์ฒด ๊ธฐ๋ฐ˜์˜ ํ‰๊ท  F ์ธก์ •์น˜๋Š” 0.89๋กœ ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด ๊ฑด๋ฌผ ์ถ”์ถœ ์—ฐ๊ตฌ์™€ ๋น„๊ตํ•˜์—ฌ ๋น„์Šทํ•˜๊ฑฐ๋‚˜ ๋†’์•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ‘๋ฐฑ์˜ ๋‹จ์˜์ƒ๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์ค‘ ๋ถ„๊ด‘ ์˜์ƒ์ด๋‚˜ ๋ถ€๊ฐ€ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ธฐ์กด์˜ ์—ฐ๊ตฌ์— ๋น„ํ•ด ๋น„์šฉ ํšจ์œจ์ ์ธ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋น„์—ฐ์ง ์˜์ƒ์—์„œ ๊ณ ์ธต๊ฑด๋ฌผ์˜ ์ƒ๋‹จ์„ ๋‹ค๋ฅธ ๋ฉด๊ณผ ๊ตฌ๋ถ„ํ•˜๋Š” ์ž๋™ํ™”๋œ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ๊ธฐ์กด ๊ฑด๋ฌผ ์ถ”์ถœ์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ๊ณ ํ•ด์ƒ๋„ ์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ๊ณ ์ธต๊ฑด๋ฌผ์˜ ์ •๋ณด๋ฅผ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ธฐ๋ฒ•์˜ ์šฐ์ˆ˜์„ฑ์„ ๋ฐ”ํƒ•์œผ๋กœ, ์ œ์•ˆ ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋„์‹œ ์ง€์—ญ์˜ ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ์„ ์ถ”์ถœํ•˜๋Š” ์—ฐ๊ตฌ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ฑด๋ฌผ ์ƒ๋‹จ ๊ฐ„์˜ ๋งค์นญ์„ ํ†ตํ•œ 3์ฐจ์› ๊ฑด๋ฌผ ๋ชจ๋ธ ์ƒ์„ฑ, ๋„์‹œ๊ฑด๋ฌผ๋ณ€ํ™”ํƒ์ง€ ๋“ฑ์˜ ๋ถ„์•ผ์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Š” ์ถ”์ถœ๋  ์ˆ˜ ์žˆ๋Š” ๊ฑด๋ฌผ ์ •๋ณด๋ฅผ ๋‹ค์–‘ํ™”ํ•˜์—ฌ ์˜์ƒ์„ ์ด์šฉํ•œ ๊ฑด๋ฌผ ์ถ”์ถœ ๋ถ„์•ผ๊ฐ€ ๋”์šฑ ๋ฐœ์ „ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฐ˜์„ ์ œ๊ณตํ•œ๋‹ค.1. ์„œ๋ก  1 1.1 ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ ๋ฐ ๋™๊ธฐ 1 1.2 ์—ฐ๊ตฌ๋™ํ–ฅ 2 1.3 ์—ฐ๊ตฌ์˜ ๋ชฉ์  ๋ฐ ๋ฒ”์œ„ 7 2. ๊ณ ์ธต๊ฑด๋ฌผ ์˜์—ญ ์ž๋™ ์ถ”์ถœ 11 2.1 ์˜์ƒ ์ „์ฒ˜๋ฆฌ 12 2.2 Otsu ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ๊ฑด๋ฌผ ๊ทธ๋ฆผ์ž ์˜์—ญ ์ถ”์ถœ 15 2.3 ์˜์—ญํ™•์žฅ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ๊ฑด๋ฌผ ์˜์—ญ ์ถ”์ถœ 16 2.3.1 ์˜์—ญํ™•์žฅ ๊ธฐ๋ฒ•์„ ์œ„ํ•œ ์ดˆ๊ธฐ ์‹œ๋“œ ์ถ”์ถœ 16 2.3.2 ๊ณ ์ธต๊ฑด๋ฌผ ์˜์—ญ ์ค‘์ฒฉ ๋ฐ ์˜ค์ถ”์ถœ ์ œ๊ฑฐ 18 3. ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์ถ”์ถœ 21 3.1 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์„  ์ถ”์ถœ 23 3.1.1 LSD๋ฅผ ์ด์šฉํ•œ ์˜์ƒ ๋‚ด ์ดˆ๊ธฐ ๊ฑด๋ฌผ ์˜์—ญ ์„  ์ถ”์ถœ 23 3.1.2 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ์„  ์ถ”์ถœ 25 3.2 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์„  ์ตœ์ ํ™” 32 3.3 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ์ถ”์ถœ 36 3.3.1 ์ˆ˜์ง๊ด€๊ณ„๋ฅผ ์ด์šฉํ•œ ๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ์ถ”์ถœ 36 3.3.2 ํ‰ํ–‰๊ด€๊ณ„๋ฅผ ์ด์šฉํ•œ ๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ์ถ”์ถœ 39 3.3.3 ์ถ”์ถœ๋œ ๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ํ†ตํ•ฉ ๋ฐ ์ตœ์ ํ™” 43 4. ์‹คํ—˜ ๋ฐ ์ ์šฉ 47 4.1 ์‹คํ—˜ ์ง€์—ญ ๋ฐ ์ž๋ฃŒ 47 4.2 ์‹คํ—˜ ๊ฒฐ๊ณผ 48 4.2.1 ๊ณ ์ธต๊ฑด๋ฌผ ์˜์—ญ ์ž๋™ ์ถ”์ถœ ๊ฒฐ๊ณผ 48 4.2.2 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์ถ”์ถœ ๊ฒฐ๊ณผ 53 4.2.2.1 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์„  ์ถ”์ถœ ๋ฐ ์ตœ์ ํ™” ๊ฒฐ๊ณผ 53 4.2.2.2 ๊ณ ์ธต๊ฑด๋ฌผ ์ƒ๋‹จ ์˜์—ญ ์ถ”์ถœ ๊ฒฐ๊ณผ 59 5. ๊ฒฐ๋ก  71 6. ์ฐธ๊ณ ๋ฌธํ—Œ 74Maste

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing

    Deep Learning for Building Footprint Generation from Optical Imagery

    Get PDF
    Auf Deep Learning basierende Methoden haben vielversprechende Ergebnisse fรผr die Aufgabe der Erstellung von Gebรคudegrundrissen gezeigt, aber sie haben zwei inhรคrente Einschrรคnkungen. Erstens zeigen die extrahierten Gebรคude verschwommene Gebรคudegrenzen und Klecksformen. Zweitens sind fรผr das Netzwerktraining massive Annotationen auf Pixelebene erforderlich. Diese Dissertation hat eine Reihe von Methoden entwickelt, um die oben genannten Probleme anzugehen. Darรผber hinaus werden die entwickelten Methoden in praktische Anwendungen umgesetzt

    Building Detection With Decision Fusion

    No full text
    A novel decision fusion approach to building detection problem in VHR optical satellite images is proposed. The method combines the detection results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG). After an initial segmentation and pre-processing step, a large variety of color, texture and shape features are extracted from each segment. Then, the segments, represented in different feature spaces are classified by different base-layer classifiers of the FSG architecture. The class membership values of the segments, which represent the decisions of different base-layer classifiers in a decision space, are aggregated to form a fusion space which is then fed to a meta-layer classifier of the FSG to label the vectors in the fusion space. The paper presents the performance results of the proposed decision fusion model by a comparison with the state of the art machine learning algorithms. The results show that fusing the decisions of multiple classifiers improves the performance, when they are ensembled under the suggested hierarchical learning architecture

    Building Detection With Decision Fusion

    No full text
    A novel decision fusion approach to building detection problem in VHR optical satellite images is proposed. The method combines the detection results of multiple classifiers under a hierarchical architecture, called Fuzzy Stacked Generalization (FSG). After an initial segmentation and pre-processing step, a large variety of color, texture and shape features are extracted from each segment. Then, the segments, represented in different feature spaces are classified by different base-layer classifiers of the FSG architecture. The class membership values of the segments, which represent the decisions of different base-layer classifiers in a decision space, are aggregated to form a fusion space which is then fed to a meta-layer classifier of the FSG to label the vectors in the fusion space. The paper presents the performance results of the proposed decision fusion model by a comparison with the state of the art machine learning algorithms. The results show that fusing the decisions of multiple classifiers improves the performance, when they are ensembled under the suggested hierarchical learning architecture
    corecore