50,384 research outputs found

    How to securely replicate services (preliminary version)

    Get PDF
    A method is presented for constructing replicated services that retain their availability and integrity despite several servers and clients being corrupted by an intruder, in addition to others failing benignly. More precisely, a service is replicated by 'n' servers in such a way that a correct client will accept a correct server's response if, for some prespecified parameter, k, at least k servers are correct and fewer than k servers are correct. The issue of maintaining causality among client requests is also addressed. A security breach resulting from an intruder's ability to effect a violation of causality in the sequence of requests processed by the service is illustrated. An approach to counter this problem is proposed that requires that fewer than k servers are corrupt and, to ensure liveness, that k is less than or = n - 2t, where t is the assumed maximum total number of both corruptions and benign failures suffered by servers in any system run. An important and novel feature of these schemes is that the client need not be able to identify or authenticate even a single server. Instead, the client is required only to possess at most two public keys for the service

    Deterministic broadcasting time with partial knowledge of the network

    Get PDF
    We consider the time of deterministic broadcasting in networks whose nodes have limited knowledge of network topology. Each node u knows only the part of the network within knowledge radius r from it, i.e., it knows the graph induced by all nodes at distance at most r from u. Apart from that, each node knows the maximum degree Delta of the network. One node of the network, called the source, has a message which has to reach all other nodes. We adopt the widely studied communication model called the one-way model in which, in every round, each node can communicate with at most one neighbor, and in each pair of nodes communicating in a given round, one can only send a message while the other can only receive it. This is the weakest of all store-and-forward models for point-to-point networks, and hence our algorithms work for other models as well, in at most the same time.We show trade-offs between knowledge radius and time of deterministic broadcasting, when the knowledge radius is small, i.e., when nodes are only aware of their close vicinity. While for knowledge radius 0, minimum broadcasting time is theta(e), where e is the number of edges in the network, broadcasting can be usually completed faster for positive knowledge radius. Our main results concern knowledge radius 1. We develop fast broadcasting algorithms and analyze their execution time. We also prove lower bounds on broadcasting time, showing that our algorithms are close to optimal

    Sum-Rate Maximization for Linearly Precoded Downlink Multiuser MISO Systems with Partial CSIT: A Rate-Splitting Approach

    Full text link
    This paper considers the Sum-Rate (SR) maximization problem in downlink MU-MISO systems under imperfect Channel State Information at the Transmitter (CSIT). Contrary to existing works, we consider a rather unorthodox transmission scheme. In particular, the message intended to one of the users is split into two parts: a common part which can be recovered by all users, and a private part recovered by the corresponding user. On the other hand, the rest of users receive their information through private messages. This Rate-Splitting (RS) approach was shown to boost the achievable Degrees of Freedom (DoF) when CSIT errors decay with increased SNR. In this work, the RS strategy is married with linear precoder design and optimization techniques to achieve a maximized Ergodic SR (ESR) performance over the entire range of SNRs. Precoders are designed based on partial CSIT knowledge by solving a stochastic rate optimization problem using means of Sample Average Approximation (SAA) coupled with the Weighted Minimum Mean Square Error (WMMSE) approach. Numerical results show that in addition to the ESR gains, the benefits of RS also include relaxed CSIT quality requirements and enhanced achievable rate regions compared to conventional transmission with NoRS.Comment: accepted to IEEE Transactions on Communication

    Contingency Management Requirements Document: Preliminary Version. Revision F

    Get PDF
    This is the High Altitude, Long Endurance (HALE) Remotely Operated Aircraft (ROA) Contingency Management (CM) Functional Requirements document. This document applies to HALE ROA operating within the National Airspace System (NAS) limited at this time to enroute operations above 43,000 feet (defined as Step 1 of the Access 5 project, sponsored by the National Aeronautics and Space Administration). A contingency is an unforeseen event requiring a response. The unforeseen event may be an emergency, an incident, a deviation, or an observation. Contingency Management (CM) is the process of evaluating the event, deciding on the proper course of action (a plan), and successfully executing the plan
    corecore