
How to Securely Replicate Services*
(Preliminary Version)

Michael Reiter
Kenneth Birman

TR 92-1274
March 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency
(DoD) under DARPA/NASA subcontract NAG 2-593 administered by the NASA Ames
Research Center, by grants from GTE, IBM and Siemens, inc., and by a National
Science Foundation Graduate Fellowship. Any opinions, conclusions or
recommendations expressed in this document are those of the authors and do not
necessarily reflect the views, policies or decisions of the National Science
Foundation or the Department of Defense.

https://ntrs.nasa.gov/search.jsp?R=19920011946 2020-03-17T13:31:10+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42813745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




How to Securely Replicate Services*

(Preliminary Version)

Michael Reiter

re±fur@ca, cornell, edu

Kenneth Birman
ken@ca, cornel1, edu

Department of Computer Science

Cornell University

Ithaca, New York 14853

March 24, 1992

Abstract

A method is presented for constructing replicated services that retain their availability and

integrity despite several servers and clients being corrupted by an intruder, in addition to others

failing benignly. More precisely, a service is replicated by n servers in such a way that a correct

client will accept a correct server's response if, for some prespecified parameter k, at least k

servers are correct and fewer than k servers are corrupt. The issue of maintaining causality

among client requests is also addressed. A security breach resulting from an intruder's ability to

effect a violation of causality in the sequence of requests processed by the service is illustrated. An

approach to counter this problem is proposed that requires that fewer than k servers are corrupt

and, to ensure liveness, that k < n - 2t, where t is the assumed maximum total number of both

corruptions and benign failures suffered by servers in any system run. An important and novel

feature of these schemes is that the client need not be able to identify or authenticate even a single

server.Instead, the clientisrequired only to possessat most two public keys for the service.

"This work was supported by the DefenseAdvanced Research ProjectsAgency (DoD) under DARPA/NASA sub-

contractNAG2-593 administeredby the NASA Ames ResearchCenter,by grantsfrom GTE, IBM, and Siemens,Inc.,

and by a NationalScienceFoundation Graduate Fellowship.Any opinions,conclusionsor recommendations expressed

inthisdocument _rethoseofthe authorsand do not necessarilyreflectthe views,politiesordecisionsofthe National

ScienceFoundation or the Department ofDefense.



1 Introduction

Distributedsystems are oftenstructuredin terms of clientsand services.A serviceexports a set of

commands, which clientsinvoke by issuingrequestato the service.After executinga command, the

servicemay returnan appropriateresponseto the clientthatinvoked the command. In the simplest

case,the serviceisimplemented by only one server,ffthisserverisnot su_cientlyimmune tofailure,

however, then the servicemust be replicated.

In hostileenvironments, replicationintroducesother problems. For instance,itisoften more

difficult,or at leastrequiresmore resources,to protectmany serversfrom corruptionby an intruder

than itis to protectonly a singleserver.A replicatedserviceshould thus be designed to remain

availableand correctdespiteseveralserversbeing corrupted by an intruder (in addition to others

fairing benignly). One way to do this employs the state machine approach [23] to replicating the

service,so that each serverindividuallycomputes the resultand sends itto the client.Ifthe client

authenticatesthe response from each serverand accepts the response,ifany, sent by a majority

of servers,then itobtains the correctresponse ifa majority of serversare correct.Such schemes,

however, requirethat the clientbe able to identifyand authenticatethe serversthat comprise the

service.This may be difficultifthe setof serverscan change over time or ifthereisno trustworthy

source from which the clientcan obtain the identitiesand authenticationinformationof the servers.

In thispaper we propose a combined solutionto these problems using the statemachine ap-

proach. In our method, the serviceisimplemented by n serversin such a way that for some pre-

specifiedparameter k, a correctclientacceptsa response from the serviceprovided that at leastk

serversare correct.Moreover, iffewer than k serversare corrupt,any response accepted at a correct

clientisguaranteed to have been computed by a correctserver.An important featureof thisscheme

isthat the clientpossessesexactlyone publickey for the service(as opposed to,e.g.,one for each

server)and can treatthe serviceas a singleobjectforthe purposes of authentication.This enhances

applicationmodularity and significantlysimplifiesthe serviceinterfacefor clients.We emphasize

that the clientneed not know the identityof even a singleserverto authenticatethe responseof the

service.

Even in a system with fewer than k corrupt servers,at leastk correctservers,and the above

guarantees,correctclientsmay acceptimproper responsesfrom the serviceifan intruderhas caused

the correctserversto processimproper requestsor to processrequestsin an incorrectorder.In this

paper we alsodiscussthisissue.We focuson an attackin which an intrudereffectsand exploitsa

violationof causalityin the sequence ofrequestsprocessedby the service.(While similarto an attack

described in [20],thisattackismore severebecause itinvolvescorrupt servers.)We alsopropose a

way to avoid thisattack that requiresthat the clientpossessat most one additionalpublickey for

the service,that fewer than k serversare corrupt,and, to ensure liveness,that k < n - 2t,where t

is the assumed maximum totalnumber of both corruptionsand benign failuressufferedby servers

in any system run.



The abovediscussionmay be evocativeof the large body of literatureproviding solutionsto

variousdistributedcomputing problems in models where Byzantine failurescan occur but authen-

ticationispossible(see [17,24]). Nevertheless,our work has a somewhat differentemphasis: we

employ specificcryptographictechniquesto achievethe aforementionedresults,and in facta signif-

icantcontributionof our work isthe demonstration of the practicalvalue of these techniques.Our

approach thus stands in contrastto the body of literaturejustdescribed,which typicailyassumes

only a conventionaldigitalsignaturescheme.

The remainder of thispaper isstructuredas follows.In section2 we give a briefoverview of

the statemachine approach to replication;for more detail,the readershould see [23].In section3

we enumerate our assumptions about the system. In section4 we presenta method ofimplementing

servicesthat provides the availabilityand integrityguarantees outlined above. In section5, we

discussthe importance of maintaining causalityamong clientrequestsand a method to counter an

intruder'sattempts to exploitviolationsof causality.In section6 we outlinerelatedwork, and we

conclude in section7.

2 State Machine Replication

A state machine consists of a set of state variables and exports a set of (possibly parameterized)

commands. The state variables encode the state of the state machine, and the commands transform

that state. A client of the state machine invokes a command by issuing a request to the state

machine. Each command is implemented by a deterministic program and is executed atomically

with respect to other commands. Commands should be executed by a state machine in an order

that isconsistentwith Lamport's causalityrelation[16].That is,two requestsfrom the same client

should be processedin the order they were issued,and ifone requestcould have caused another from

a differentclient,then a statemachine receivingboth should processthe former first.Execution of

each requestresultsin some response(i.e.,output),which we assume isreturned to the clientthat

issuedthe request.Responses of a statemachine are completely determined by itsinitialstateand

the sequence ofrequestsitprocesses.

State machine replicationis a general method of implementing a fault-tolerantserviceby si-

multaneously employing many statemachine serversand coordinatingclientinteractionswith them.

Ifallserversaxe initializedto the same state,and ifaU correctserversprocess the same sequence

of requests,then allcorrectserverswillgive the same response to any given request. By prop-

erlycombining the responsesof the servers,where "properly"depends on the type of failuresbeing

considered,the response of the fault-tolerantserviceisobtained.



3 The System Model

Our system consists of a set of principals, n of which are servers and the remainder of which are

clients. All prinr.ipals communicate exclusively via a network of arbitrary topology. A principal is

correct in a run of the system if it always satisfies its specification. A principal may fail in an arbitrary

manner, limited only by the (conjectured) properties of the cryptosystems and signature schemes we

employ. Our failure model is thus most similar to "Byzantine with message authentication."

In order to capture the notions of an _accidental" failure versus a purposeful corruption by

an intruder, we partition the failed principals into two sets: the honest principals and the corrupt

principals. Formally, the only property that this partitioning must have is that any principal that

ever suffers "truly Byzantine" failures--i.e., failures that cannot be classified as fall-stop, crash,

omission, or timing failures--must be classified as corrupt. In a given system run, we let corrupt and

correct (in slanted font) denote the numbers of corrupt and correct servers, respectively.

Although principals fall as a single unit, it is convenient to view each principal as consisting of

logically separate modules. (See figure 1.) More precisely, each server consists of a communication

module, a coordination module, and an application module. The communication module is closest to

the network, the application module is furthest, and the coordination module lies in between. The

application module of a server is simply a state machine as described in section 2. The coordination

module delivers a request (c, m 1, from client c and with contents m, to that state machine by calling

deliver( (c, m)), which places (c, m) on the end of a list of requests to be processed that is available

to be read by the state machine. We assume that calls to deliver are made strictly sequentially, in

the sense that a call to de//ver is not made until all previous calls to de//ver have returned. Using

the primitives supplied by the communication module, the coordination module also implements a

respond primitive respond(c, m) by which the state machine can send a response m to a client c.

The communication module implements two communication primitives for use by the coordina-

tion module. The first is a send primitive send(c, m) by which the coordination module can send a

message to a client; this is presumably used in the implementation of respond(c, m) and will not be

used further in this paper. The second is an atomic broadcast primitive abcast(m) by which a server

s can broadcast a message (s, m} to the other servers. Servers' coordination modules communicate

exclusively through the use of this broadcast primitive. A server's communication module receives

a message (_, m}, from server s and with contents m, by calling receive( (s, m)), which places (_, m)

at the end of a list of received messages that is available to be read by the coordination module.

Messages are received only from servers, according to an atomic broadcast protocol T_ that is tolerant

of t < n server failures; henceforth we assume that a total of at most t servers fall in any system run.

The protocol _ satisfies the following specification.

Receipt Atomicity: A message is either received at all correct servers exactly once or is never

received at any correct server.



Figure I: Structureof principals

(a) Server (b) CUent

Application Module

• -de'//_,e.r_((c, m')) -'' r.e.sPPT(.c'.m.) • •

Coordination Module

....t.. abcast(m ) send(c,m)
rece ve(<s,ml)"' " ....... ....

Communication Module

Network

Application Module

request(m)

" ' ........ ......
Communication Module

Network

Receipt Validity: A correct server receives a message from a correct server iff the latter previously

broadcast that message.

Receipt Order. A correct server receives message Ca, m} before another message (_', m I} iff all correct

servers do. That is, all correct servers receive the same sequence of messages.

Receipt Consistency:. The sequence of messages received by an honest server is a prefix of the

sequence of messages received by a correct server. 1

There already exist protocols in the literature that satisfy this specification in various models

and for various definitions of honest. For instance, if the honest principals axe defined to include only

those principals suffering crash failures, the system is synchronous, and the network is sufficiently

connected, then the protocol described in [4] for Byzantine failures with authentication satisfies this

specification for any choice of t < n. Moreover, Chandra [2] has developed randomized 2 protocols

satisfying the above specification for the same definition of honest in an asynchronous system, by

combining randomized solutions to consensus [3] and deterministic solutions to reliable broadcast [I].

The required relationship between r_ and t for these protocols depends on the underlying consensus

and reliable broadcast protocols used. Our protocols do not rely upon any bounds on message

llt is shown in [12]that even in a synchronous system, _ny atomic broadcast protocol that is tolermat of omission

failuresand that guarantees consistency with respect to faulty principals requires a majority of correct principals.

Thus, ifhonest is defined to include those servers that sufferomission failures,the resultsof this paper require tt> 2*.

_Itis weB-known that there isno deterministic solution to consensus, and thus atomic broadcast, in sn asynchronous

system that can suffer even a single crash failure [I0].



transmission times, and so the only such bounds required for our results, if any, are those required

by the particular atomic broadcast protocol used.

A client consists of only two modules, an application module and a communication module. The

application module of a client c is some client program that can issue a request (c, m t to the service

by calling request(m). The communication module of the client implements this primitive, e.g., by

signing and broadcasting <c, m> to the entire network. By assuming that this request eventually

reaches some correct server, and by having that server's communication module forward this request

by executing abcast((c, m)), the above specification of atomic broadcast can be made to hold for

client requests. That is, we assume that servers also implement a protocol, called D, satisfying the

following properties.

Delivery Atomicity: A request is either delivered at all correct servers exactly once or is never

delivered at any correct server.

Delivery Va_dity: A correct server delivers a request from a correct client iff the latter previously

issued that request.

Delivery Order. A correctserverdeliversa request (c,m) beforeanother request (d,m') iffall

correctserversdo. That is,allcorrectserversdeliverthe same sequence of requests.

Delivery Consistency: The sequence of requestsdeliveredby an honest serveris a prefixof the

sequence of requestsdeliveredby a correctserver.

Assuming that each server is initialized to the same state, these properties imply that all correct

and honest servers will produce the same response (or no response) to a given request. The commu-

nication module of a client accepts a response m for the application module by ca_Uing accept(m).

4 Preserving Integrity and Availability

RecaLlfrom sectionI that our firstgoal isa servicethat satisfiesthe followingproperties,forsome

prespecifiedk.

Integrit_ ff corrupt < k, then the response accepted at a correct client, if any, is that computed

by a correct server.

Availability: If correct > k, then a correct client will accept a response from the service.

We satisfythese requirementsby replacingthe respond(c,m) and accept(m) routinesof servers

and clients,respectively,with two new routines,respond'(c,m) and acceptS(m),that willensurethese

properties.Therefore,the new structuresof principalswillbe as picturedin figure2. Although we

have replaced the respond routinewith respond' at the interfaceprovided to the applicationmodule



of each server,we assume that respond isstillavailableforexecution by the coordinationmodule.

Similarly,we assume that accept isstillavailableto the communication module of each client.

Figure2: New structureof principals

(a) Server (b) Client

Application Module

respond'(c,m)

•" ............
Coordination Module

abcast(m) send(c,m)

mi)""" ...........
Communication Module

Network

Application Module

request(m)

'"' im .............
Communication Module

I
Network

The respond_ routinesat the differentserverswillemploy a (k,n)-thresholdsignaturescheme.

A (k,r_)-thresholdsignaturescheme is,informally,a method ofgeneratinga publickey and r_shares

of the corresponding privatekey in such a way that for any message m, each share can be used to

produce a partialresultfrom m, where any k.ofthesepartiM resultscan be combined intoa signature

form that can be verifiedwith the publickey. Moreover, knowledge of k sharesisnecessaryto sign

m, in the sensethat without the privatekey itiscomputationaUy infeasibleto (i)createa signature

form without k.partialresultsform, (ii)compute a partialresultform without the corresponding

share,or (iii)compute a share or the privatekey without k.other shares.

Cryptanalytic attacksagainstthresholdsignatureschemes differfrom those againsttheircon-

ventionalcounterpartsin that the cryptanalystmay possesssome number of sharesand be able to

acquirepartialresults,in additionto message/signaturepairs.For our purposes,we willsay that a

(k.,n)-thresholdsignaturescheme issecureif,informally,thereis no feasiblealgorithm that,given

some numbers of these items of information,can perform any of tasks(i)-(ili)above for some new

message m. Note that to be secure,a signaturescheme need not be ableto tolerateattacksin which

a cryptcualystcan see the partialresultsor the signaturefor any message of itschoice,as would be

possiblein a chosen message attack..Such attackscan easilybe prevented [5].

Our respondtroutineisnot dependent upon any particularimplementation of a (k,r_)-threshold

signaturescheme, although for concretenesswe outlinethe necessary detailsof an implementation

proposed in [7];a detailedunderstanding of thisscheme isnot essential.The scheme begins with

an RSA [22]public key (e,N) and privatekey d, where .N"is the product of two safe primes and



the Carmichael function A isused in place of Euler'stotientfunction¢ to createe from d. That is,

ed -- I rood A(N), where A(N) isthe smallestpositiveintegersuch that a:;_(N)_= I rood N forall

E Z_. The n shares{Ki}z<_i<_,_are generated from d insuch a way thatforany setT C {i,...,n}

of sizek, _eT(Ki •Pi,T)- d - i rood A(N), where the integers{P_',r)ieTare fi_ceda pr'/oriand

public. So, by definingthe i-thpartialresultfora message rn to be a,_,__=raK' rood N, itfollows

that forany T C_ {I,...,n} ofsizek, A,,_,T---rn.I'lieT(a,_,i)P_.rrood iV isa proper signatureforra.3

For our routineswe assume that (the coordinationmodule of) each server_ issecretlygiven

solepossessionof K_ and any principalcan refiabiyobtainthe publickey (e,N) of the service.We do

not discusshow thisdistributionof privatesharesor publickeys isaccomplished, although we note

that allpublickey systems requiresimilarsteps.The integerspi,rforalliand T can be _hardwired"

intothe implementation of the servers.The responde(c,m) and accept'ira)routinesare implemented

as follows.

Routine respondt(c,rn)at serversi:

I. Execute abcast(a,,_,i).

2. WaSt untila set of partialresults{a,,_,j}jer,IT[ = k, for m such that A,_,T isa valid

signaturefor m, has been received.

3. Execute respond(c,(rn,Am,T)).

Routine acceptS(rn)at clientc:

i. Ifrn isnot of the form (rn_,5,),then returnto the callingroutine.

2. If5"isa validsignatureform _,then execute accept(rn_).4

Claim i If the threshold signature scheme is secure, then thi_ protocol satisfies Integrit_t.

Proof.Ifthe signaturescheme issecureand corrupt < k, then the corrupt serverscannot generate k

partialresultsfrom which to signa message. Thus, the only message that could be properly signed

isthat computed by a correctserver.O

Claim 2 Thi_ protocol satisfies Availability.

Proof. Suppose that correct>. k. By Receipt Validityof 7"£,allcorrectserverseventuallyreceive

partialresultsfrom k correctservers,and so each correctservercan compute a proper signatureon

itsresponse,c_

3For reasons of security and efflciency, it is a_Iv/sable that a message digest of the message be signed, a.s opposed to

the message itseff [5].

'Here we do not consider attacks on the f_shness of responses [25].



In terms of communication complexity, in a failure-free run the replacement of respond with

respond _ results in an additional n executions of _, which can be executed concurrently. Therefore,

the entire protocol that begins when a client issues a request and ends when it accepts a response

consists of three communication "phases" that must be executed roughly sequentially: the request

by the client (one execution of _)), the dissemination of partial results (n executions of T£), and the

sending of the responses (n executions of respond). This protocol can be optimized in at least two

ways, first by noticing that a client needs to receive only one correctly signed response for Availability

to be satisfied. This implies that only t + 1 servers need to be designated to respond to any given

request. In addition, the partial results for the signature of the response need to be broadcast only

to that set of servers. The set of servers designated to respond to a given request can be fixed in

advance or determined dynamically. A second optimization is for servers to communicate partial

results by a reliable broadcast protocol, obtained by removing the Receipt Order requirement and

appropriately weakening the Receipt Consistency requirement of atomic broadcast. Since reliable

broadcast is weaker, it possibly can be implemented more efficiently. Reliable broadcast can be used

because the order in which partialresultsare receivedby serversisnot important in thisprotocol.

Potentiallythe most computationally expensive part of the algorithm isstep 2 of the respond_

routine,in which the serversortsthrough the partialresultsitreceivesuntilitfindsa T of sizek

such that A,_,Tisa validsignature.The servermust examine at most only the firstI= rain(n,k % t)

partialresultsreceived(from Iunique servers),and at most (_)subsetsof partialresults,because in

Ipartialresultsare at leastk correctpartialresults(ifcorrect:>k). While thiscould be expensiveif

Iislargeand k _ I/2,the expected searchtime fora validsignatureshould be small in the common

casein most systems,i.e.,when n and corruptaresmall.One optimizationisto have a serveralways

includeitsown index in T (i.e.,always includeitsown partialresultin the signaturecomputation).

Also, certainheuristics,such as using partialresultsfrom a combination of serversthat previously

worked, can be used to furtherreduce the expected searchtime. Additionaloptimizationsare a topic

of ongoing research.

5 Preserving Input Causality

One guarantee provided in the previous section is that if corrupt < k, then the response accepted at a

correct client will be the response computed by a correct server. Even the output of a correct server,

though, may not reflect the way things "should be" if an intruder has caused the service to deliver

improper requests or to deliver requests in an incorrect order. In general, ensuring proper responses

from a correct server requires access control, because responses computed from state variables that

can be written (directly or indirectly) by corrupt clients cannot be trusted. Access control is an

entire research area in itself and will not be discussed further here.

In this section we address the issue of ensuring that requests are delivered in a correct order



by correct servers. Because we assume an atomic broadcast protocol to disseminate client requests,

we concern ourselves only with the requirement that correct servers deliver requests in an order

consistent with causality (see section 2). A common method of preserving causality among client

requests is for each client to refrain from sending any messages between the time it issues a request

to the service and the time at which the request is delivered at some honest or correct server [23].

Consider the case,however, inwhich a correctclientissuesa requesttothe service,and afterreceiving

the request,a corrupt serversends a message to a corrupt client.Ifthe corrupt clientsubsequently

issuesa request,then thereisa causalrelationshipbetween the two requests.However, itisnot clear

how thisrelationshipcan be detected by correctservers.

To see why thismay be important, suppose that the serviceof interestisa tradingservicethat

tradesstocksand that a clientissuesa requesttopurchase sharesof stock through thisservice.After

discoveringthe intended purchase,a corrupt servercould colludewith a corrupt clientas described

above to issuea requestforthe same stockto the service.Ifthe correctserversdeliverthisrequest

before that of the correctclient,thisrequest may adjust the apparent demand for the stock and

raisethe priceofferedto the correctclient.Thus, by allowingthe causallysubsequent requestof

the corrupt clientto be deliveredbeforethe requestofthe correctclient,a type of "insidertrading"

may occur. Itisworth noting that accesscontrolsalone cannot naturallyavoid thisproblem, as the

intentisthat any clientcan requestto purchase stock at any time.

In the reminder of this section,we present new request and deliveryroutines,respectively

denoted request'(m)and deh'ver'((c,m)), that replacerequest(m) and de/]ver((c,m)). Therefore,if

used with the respond' and accept'routinesof section4, principalswould be structuredas in figure

3. These new routinesprotectcorrectclientsfrom the type of attack describedabove, in the sense

thatany requestbased on informationobtained from a correctclient'srequest(c,m) can be delivered

at correctserversonly after(c,m). As before,we willuse deS"verin our implementation of de_ver',

and similarlyfor requestand request'.

In the implementation of request'(m),the correctclientc encrypts m under a publicencryption

key of the servicebefore issuing(c,m). Then, c isprovided the followingguarantee. The reader

should verifythat thisguarantee prevents the aforementionedproblem, provided that corrupt <:/c.s

(This/c can be chosen independently of that in section4.)

Causa/ity:Ifcorrupt <_/c,then ifsome requestis(i)issuedafterm isdecrypted anywhere (other

than the sending client),and (ii)deliveredat a correctserver,then that requestisdeliveredat

allcorrectserversafter<c,m).

In additionto satisfyingCausaLity,request_and deliver'must alsoensure thatclientrequestsare

deliveredaccording to the specificatibnof atomic broaxlcast--i.e.,that DeliveryAtomicity,Delivery

Validity,Delivery Order, and Delivery Consistency stillhold. The implementations of reques_ and

sl:[erewe do not consider franc anai_isi_attacks [25]or attacks that exploit the malleabilityof the cryptosystem [8].

I0



Figure3: New structureof principals

(a) Server (b) Cnent

Application Module

.. res.p.o_'(.c:m.)..• ' ae i  r

Coordination Module

.... _.. abcast(m) send(c,rn)

 eceive(m))""'+...........
Communication Module

t
Network

Application Module

{' request'(m)
" " ' acc6i,t,t, ) ....... ......

Communication Module

Network

deriver'that we propose satisfyallbut the "if"directionof Delivery Validitywith no furtheras-

sumptions; to ensure that a correctclient'srequestwilleventuallybe deliveredat allcorrectservers,

we requirek < n - 2t,and thus n > 2t.

Our deh'verI routineemploys a (k,n)-thresholdcwptosystern. A (k,n)-thresholdcryptosystem

is,informally,a method ofgeneratinga publickey and n sharesof the corresponding privatekey in

such a way thatforany message rnencrypted under the publickey,each sharecan be used to produce

a partialresultfrom the ciphertextof m, where any/¢ of these partialresultscan be combined to

decrypt m. Moreover, knowledge of k sharesisnecessaryto decrypt m, in the sense that without

the privatekey it is computationaJJy infeasibleto (i)decrypt m without k partialresultsfor rn,

(ii)compute a partialresultfor rn without the corresponding share,or (ill)compute a share or the

privatekey without k other shares.

As with thresholdsignatureschemes, cryptanalyticattacksagainstthresholdcryptosystems may

involvethe use ofpartialresultsand some number ofshares,inadditiontoplalntext/ciphertextpairs.

For our purposes,we willsay that a (k,n)-thresholdcryptosystem issecureif,informally,there is

no feasiblealgorithm that,given some numbers of theseitems of information,can perform any of

tasks (i)-(lli)above for some new ciphertextm. Again we point out that to be secure,a threshold

cryptosystem need not be able to tolerateattacksin which a cryptanalystcan see the partialresults

or the plalntextfor any ciphertextof itschoice,as would be possiblein a chosen cipherteztattack.

This isin accordance with the securityof allimplementations of thresholdcryptosystems thus far

proposed: allproposed implementations axe known to be vulnerable to chosen ciphertextattacks,

because the conventionalcryptosystems on which they are builtare vulnerableto such attacks.

Because the actsof signinga message and decrypting a message are operationallyidenticalin

11



the RSA signature scheme and cryptosystem, one implementation of a (k, n)-threshold cryptosystem

can be obtained directly from the (k, a)-threshold signature scheme described in section 4. Messages

would be encrypted under the public key (e, N) of the service in the usual manner, and the i.th

partial result for an encrypted message m -- (m_) e rood N would be defined precisely as in section

4--i.e., a,_._ -- m/_ rood N. Then, m _ =- A,_,T =- m • [IieT(a,_,_)P'.r for any T of size k. Other

implementations of threshold cryptosystems have been proposed, based upon both the RSA and

E1Gamal [9] cryptosystems [6, 14].

Suppose that we are using the RSA threshold cryptosystem described above and that we have

the initial conditions assumed in the previous section; i.e., server s; is secretly given sole possession

of K_, any principal can reliably obtain the public key (e, N) of the service, and all servers know (a

priori) Pi,T for all i and T. The basic idea of our algorithm is that each client c encrypts the contents

m of its request with the public key of the service, in an attempt to force k servers to cooperate

to decrypt it. Then, each correct or honest server refrains from broadcasting its partial result for

(the ciphertext of) m until the delivery sequence through (c, m) is fixed (locally). In this way, if

corrupt < k, once a corrupt server collects k partial results for m, the sequence of requests through

(c, rn) has been fixed at some, and thus all, correct servers, and no requests can be placed before

(c, rn) in the delivery sequence at correct servers.

This algorithm preserves Causality iff each server requires k partial results for m to decrypt

m. Even under the assumption that this cryptosystem is secure, however, this unfortunately is not

the case with this or any proposed implementation of a (k, n)-threshold cryptosystem. The problem

is that our protocol as described above allows a corrupt server to mount chosen ciphertext attacks,

against which neither the RSA nor the E1Ga_nM cryptosystem (nor any threshold cryptosystem based

upon them) is resistant. In our setting, a corrupt server can see at any time how any ciphertext m of

its choosing is decrypted, by simply requesting that a corrupt client c issue (c, m) as aa apparently

legitimate request to the service. The corrupt server can then collect k partial results for m to see

the plalntext to which m decrypts.

Methods of using chosen ciphertext attacks against the RSA and E1Gamal cryptosystems are

well-known. Here we illustrate one method, originally due to Moore (see [5]), by which a corrupt

server can decrypt the RSA ciphertext m - (rn') e rood N in a correct client's request (c, m) without

waiting to receive k partial results for m.

1. The corrupt server chooses an arbitrary x and computes y - z e rood N; i.e., z =- y_ rood N. s

2. Via a. corrupt cl/ent, the corrupt server issues a request with contents ym rood N to the service.

6The obvious simplified form of this attack, in which z and y are chosen so that z =- y -- 1 rood N, could easily

be made unproductive for the corrupt server: if each correct client signs the contents of its request before encrypt/ng

it and each correct server derivers a request on behalf of the client whose signature _ppeaxs on the decrypted contents

(and not necessarily the client that issued the request), then by i_uing a request contain/n_ rn, the corrupt server

would only expedite the delivery of the correct client's request.

12



3. The corrupt server collects k partial results for ym rood iV and forms (yra) _ mod N.

4. The corrupt server computes a:-1 -- y-a mod N, and then

z-l(ym) a =- y-ayama = m d - (rn') _ -- m' rood N.

(NB: If z does not have an inverse rood N, then the corrupt server can factor N because

gcd(x, N) is a prime factor of N.)

Similar attacks are possible with the threshold cryptosystems described in [6, 14].

Therefore, until a practical threshold cryptosystem is designed that can tolerate chosen cipher-

text attacks, such attacks must be prevented. A simple way to do this is to have a separate public

key for each client. That is, the public key for client ci would be a pair (ej, Nj), and each server

s_ would be given a share K_,j for use when cooperating to decrypt a request from client cj. This

prevents chosen ciphertext attacks against the keys and ciphertexts of correct clients, because any

request received from a corrupt client will be decrypted using the shares of the key for that client,

and not a correct one. In practice, having separate cryptosystem parameters for each client may

require that each client be individually "registered" with the service outside of the system before

employing the service. While this could limit the settings in which our protocols can be used, we

believe that this is not an unreasonable restriction if maintaining causality among client requests is

of such importance.

The one remaining problem in our protocol is that corrupt servers can provide incorrect partial

results that may disrupt the decryption process. Therefore, it must be possible for a server to

determine when it has properly decrypted a request. To facilitate this, clients are required to send

with each request a message digest of the request. Message digests have the property that the message

digest of a given message can be computed efficiently, but it is computationMly infeasible to produce

two messages having the same message digest or to produce any message having a prespecified

target message digest. Accordingly, we henceforth assume that the included message digest uniquely

identifies, but does not disclose, the contents of the encrypted message and that the joint use of

the message digests and the threshold cryptosystem does not reveal information that a cryptanalyst

could use to circumvent the properties of either one. The validity of this assumption obviously

depends on the chosen implementation of message digests. We also note that if the message digest

function is injective, a message digest does, in fact, uniquely identify a message, r Several efficient

implementations of message digest functions have been proposed (e.g., [18, 21]) but will not be

discussed here. Let digest(m) denote the message digest of m.

Then, the request I and de//ver r routines execute as follows.

tOne such implementation employs a determia_tic public key cryptosystem: the diges_ for a message is computed

by encrypting the message under an a p_ori, commonly known public key, for which the corresponding private key h_-_

been destroyed and is not known.

13



Routine request'(m) at client ci:

1. Create the RSA ciphertext rn I -- rn*_ rood Nj and message digest D = digest(m) of m.

2. Execute reques_((m',D)).

Routine deliver'( (c i, m)) at server s_:

1. If rn is not of the form (m p, D), then return to the calling routine.

2. Execute abcast(a,_, i), where a,_,,i -- (rn') K_,J rood N i.

3. Wait until the first k + t partial results {a,,,,e}e_T, IT1 -- k + t, for m I have been received

(from k + t unique servers).

4. Search for a subset T' C_T of size k such that digest(A_,,r,) = D. If such a T' exists and

Arn',T'isa validrequest,then execute deldver((ci,Am,,y,)).

This protocol satisfies Delivery Atornicity, Delivery Order, and Delivery Consistenc!l.Claim 3

Proof. (DeliveryAtomicity) By Delivery Atomicity of _9,for each clientrequest deliverr iseither

calledexactlyonce at allcorrectserversor never calledat any correctserver.Clearlya requestofthe

lattertype isnever deliveredat any correctserver,and so now considera request(c,rn),m = (rn_,D),

of the former type. Ifonly fewer than k + tpartialresultsforrn_are receivedat correctservers,then

the request willnever be deliveredat any correctserver.So, suppose that k + t partialresultsfor

rn_ are receivedat allcorrectservers.Because partialresultsaxe broadcast atomically,allcorrect

serversemploy preciselythe same set {arn',i'}i'eT,IT[ = k + t,of partialresultswhen attempting

to decrypt rnt.Therefore,one correctserverdeliverssome requestiffallcorrectserversdo, and all

correctserversdeliverthe same request,assuming that D uniquely identifiesa singlerequest.

(DeliveryOrder) By DeliveryOrder of 19,allserversexecute the same sequence of de//ver_calls.

And, because any callto de//ver'returns before de//verj iscalledagain,it followsfrom Delivery

Atomicity that allserversexecute the same sequence of de//vercalls.

(DeliveryConsistency) By DeliveryConsistencyofD, the sequence of de//verjcallsat an honest

serverisa prefixof the sequence of deliver_callsat a correctserver.Moreover, because the sequence

ofmessages receivedat an honest serverisa prefixof the sequence of messages receivedat a correct

server(by Receipt Consistency of7"£),ifthe honest serverreceivessufficientlymany messages,itwill

use the same set {a_,._,}i,_T, IT[ = k + t, of partial results to decrypt each request as the correct

serversdo. Thus, the sequence ofrequestsdeliveredat an honest serverwillbe a prefixofthe requests

deliveredat a correctserver.C2

Claim 4 If a request is delivered from a correct client at a correct server, then it was issued by that

client. (That is, the "only if" direction of Delivery Validity holds.)

14



Proof. By Delivery Validityof D, if delived((c,m)) is calledat a correctserverand c iscorrect,

then c must have issuedthisrequest.Therefore,a requestfrom a correctclientcan be deliveredat

a correctserveronly ifthe clientissuedthat request,o

Claim 5 If k < n - 2t, then if a correct client issues a request, it will be delivered at all correct

servers. (That is, if k < n - 2t, then the "if" direction of Delivery Validity holds.)

Proof. By Delivery Validity of D, deliver' is called exactly once for each request (c, m), m = (m', D1,

issued by a correct client c. If k < n - 2t, then k + t < n - t < correct, and so at least k + t partiM

results for m' are broadcast and, therefore, received at all correct servers. Since the set of k + t

partial results used at each correct server contains at least k partiM results from k correct servers,

m' can be decrypted and delivered. (

From the above claims, we immediately have the following.

Claim 6 Ilk <_ n-2t, this protocol satisfies the specification of atomic broadcast (for client requests).

We now prove that the above protocolsatisfiesCausality.

Claim 7 [_ the threshold cryptosystem is secure, then this protocol satisfies Causality.

Proof.Suppose that the thresholdcryptosystem issecureand corrupt< k. Then, the earliestpoint

at which the ciphertextm 'in a request(c,m}, m = (rn',D}, from a correctclientc can be decrypted

anywhere issometime aftersome corrector honest serverbroadcasts itspartialresultfor m'. Let

s be the firstcorrector honest serverto broadcast itspartialresultfor m'. By Delivery Order and

Delivery Consistencyof D, allcorrectserverseventuallyexecute (possiblyan extensionof) the same

sequence of de//ver'callsthat s executes.Therefore,allcorrectserverswillexecute deliver'((c,m))

beforede//ver'((_,rh})for any (_,r_}issuedafterm _was decrypted. Ifadlcorrectserversdeliver(the

plalntextcorresponding to) rn',then Causalityissatisfied.Moreover, because c iscorrect,the only

way in which m _could not be deliveredat allcorrectserversisifthe correctserversnever receivek+ t

partialresultsforrn_.In thiscase,the deliver'((c,m)) callat each correctserverwillnever return,

and no more requestswillbe deliveredat any correctserver,thus triviallysatisfyingCausality.12

In a failure-free run, the replacement of deliver with deliver' results in an additional n executions

of 7_, which can be executed concurrently.Thus, when thisprotocolisused to disseminateclient

requestsand the protocolofsection4 isused tosignresponses,the totalmessage comp|exity is2n+ I

broadcasts (n of which can be reliableonly; see section4) and t + i responses,structuredin four

communication phases. And, a clientmay need two public keys for the service,depending on the

particularcryptosystem and signaturescheme used.

As in the protocolof section4,step4 of deh'ver'ispotentiallyexpensive,because itmay require
k+t

a serverto sortthrough ( _ ) subsetsof partialresultsto be able to decrypt a request. In fact,a

15



corruptclientcan forceeach serverto sortthrough (k_t)subsetsby sending a ciphertextand digest

that do not "match." As before,we relyon heuristics,a small (_-t),and a small corrupt in the

common case to reduce the expected costof decryptingrequestsfrom corrector honest clients.A

kd-t
bad request from a corrupt clientcan be detected in a reasonableamount of time if( k ) issmall,

and then subsequent requestsfrom that clientcan be ignored,

Finally,we note that while this protocol prevents a potentiallyseriousattack arisingfrom

violationsof causality,itdoes not necessarilyaddressallsuch attacks.A furtherexamination of the

relationshipbetween securityand causalityisa topicof ongoing research.

6 Related Work

This work was largelyinspiredby [11],which presentsa replicated,sharedkey authenticationservice.

The authenticationservicedescribedthereallowstwo principalsto establisha secret,shared encryp-

tion key provided that forsome prespecifiedvalue/¢,at least/¢serversare correctand fewer than

/cserversare corrupt. The method discussedin the presentwork cannot immediately be appliedto

constructsuch a service,because of the additionalsecrecyrequirements. However, our method can

be used toconstructan analogous publickey authenticationserviceand has the additionaladvantage

that,unlikethe serviced, ,din [11],a clientneed only possessat most two keys forthe service,

and not one foreach serv,.

Using the state machine approach to construct services tolerant of arbitrary failures with au-

thentication was first considered in [15]. Since then, other authors have concentrated upon secure

replication of data. Secure data replication using quorum methods is considered in [13] for the case

in which both data integrity and secrecy axe important. In these schemes, however, an intruder that

successfully corrupts a client may also be able to compromise the integrity and secrecy of all data.

Moreover, clients axe expected to be able to authenticate data repositories. In [19], a space-efficient

information dispersal algorithm is developed to facilitate the provision of data integrity and avail-

ability. The scheme decomposes a file F into n pieces, each of size IF1/l, such that any l pieces

su_ce to reconstruct F.

7 Conclusion and Future Work

We have presented a method for securelyreplicatingservicesusing the state machine approach.

Using our protocols,a servicecan be replicatedas n serversin such a way that forsome prespecified

parameter /c,a clientwillaccept a response computed by a correctserverprovided that at least

/¢serversaxe correctand fewer than /cserversare corrupt. We have alsoaddressed the issueof

ensuring causalityamong clientrequests.A securitybreach resultingfrom an intruder'sabilityto

violatecausalitywas illustrated,and a safeand liveapproach was presentedto counter thisproblem,

16



provided that corrupt < k _< n - 2t. An important and novel feature of our methods is that they free

the client of the responsibility of learning the identity and public key of each server. This is achieved

by employing two recent advances in cryptography, namely threshold cryptosystems and threshold

signature schemes.

In addition to those topics of ongoing research mentioned in the previous sections, another direc-

tion of research is ways to employ the techniques described here in a hierarchical fashion to enhance

the security of applications. As a simple example of this, one could conceivably employ a different

replicated service to produce each partial result for a message, and then these partixl results could

be combined to either sign or decrypt this message appropriately. However, the consequences and

benefits of such designs have not yet been fully investigated and will be discussed further elsewhere.

Another topic that has not been sufficiently studied is how the detect/on of corrupt clients and servers

can be achieved and exploited to optimize our protocols.

Acknowledgements

This work benefited tremendously from many discussions with YaJr Franket (University of Wisconsin

at Milwaukee). Tushar Chandra (Cornel/University) also contributed several interesting discussions,

and Sam Toueg (Cornel/University) provided helpful comments and information. Cliff Krnmvieda

(Cornel/University) commented on an early draft of this paper.

References

[i]

[2]

[3]

[el

[7]

BRAC_A, G., AND TOUEG, S. Asynchronous consensus and broadcast protocols.Journal of

the ACM 32, 4 (Oct. 1985), 824-840.

CHANDRA, T. D., Feb. 1992. Private communication.

CtIOR, B., AND DWORK, C. l_%ndomization in Byzantine agreement. Advances in Computer

Research 5 (1989), 443-497.

CRISTIAN, F., AGHILI, H., STRONG, R., AND DOLEV, D. Atomic broadcast: From simple

message diffusion to Byzantine agreement. In Proceedings of the International Symposium on

Fault-Tolerant Computing (June 1985), pp. 200-206. A revised version appears as IBM Research

Laboratory Technica_ Report RJ5244 (April 1989).

DENNING, D. E. Digital signatures with RSA and other public-key cryptosystems. Communi-

cations of the ACM 57, 4 (Apr. 1984), 388-392.

DESMZDT, Y., AND FRANKEL, Y. Threshold cryptosystems. In Proceedings of CRYPTO '89

(Aug. 1989), pp. 307-315. Published as Lecture Notes in Computer Science _35.

DESMEDT, Y., AND FRANKEL, Y. Shared generation of authenticatorsand signatures. In

Proceedingsof CRYPTO '91 (1991).

17



[8]

191

[101

[Ii]

[i2]

[13]

[14]

[i5]

[16]

[17]

DOLEV, D., DwoaK, C., AND NAOR, M. Non-maLleable cryptography. In Proceedings of the

ACM Symposium on Theory of Computing (May 1991), pp. 542-552.

ELGAMAL, T. A public key cryptosystem and a signature scheme based on discrete logarithms.

IEEE Transactions on Information Theory IT-31, 4 (July 1985), 469-472.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibilityofdistributedconcensus

with one faultyprocess.Journal of the ACM 32,2 (Apr. 1985),374-382.

GONG, L. Securelyreplicatingauthenticationservices.In Proceedingsof the IEEE International

Conference on Distributed Computing Systems (1989), pp. 85--91.

GOPAL, A., AND TOUEG, S. Inconsistencyand contamination. In Proceedingsof the ACM

Symposium on Principles of Distributed Computing (Aug. 1991), pp. 257-272.

HERLIIIY, M. P., AND TYGAR, J. D. How to make replicateddata secure.In Proceedingsof

CRYPTO '87 (Aug. 1987),pp. 379-391. Published as LectureNotes in Computer Science 293.

LAIrl, C. S., AND HARN, L. Generalized threshold cryptosystems. In Proceedings of ASI-

ACRYPT '91 (Nov. 1991).

LAMPORT, L. The implementation of reliabledistributedmultiprocesssystems. Computer

Networks 2 (1978), 95-114.

LAMPORT, L. Time, docks, and the ordering of events in a distributed system. Communications

of the ACM 21, 7 (July 1978), 558-565.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generalsproblem. ACM Trans-

actionson Programming Languages and Systems J, 3 (July 1982), 382-401.

[18] MERKI, E, R. C. A fast software one-way hash function. Journal of Cryptology 3, 1 (1990),

43-58.

[19]

[20]

[2i]

[22]

[23]

[24]

[25]

RABIS, M. O. Effidentdispersalofinformationforsecurity,load balancing,and faulttolerance.

Journal of the ACM 36, 2 (Apr. 1989),335-348.

REITER, M. K., BIRMAN, K. P., AND GONG, L. Integratingsecurityin a group oriented

distributed system. In Proceedings of the IEEE Symposium on Research in Security and Privacy

(May 1992).

RIVEST, R. L. The MD4 message digestalgorithm. InteractItFC 1186,Oct. 1990.

RtVEST, P,.. L., SltAMIlt, A., AND ADLEMAN, L. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM 21, 2 (Feb. 1978), 120-126.

SCHNEIDER, F. B. Implementing fault-tolerantservicesusing the state machine approach: A

tutorial.ACM Computing Surveys 22, 4 (Dec. 1990),299--319.

SRIKANTH, T. K., AND TOUEG, S. Simulating authenticated broadcasts to derive simple

fault-tolerant algorithms. Distributed Computing 2 (1987), 80-94.

VOYDOCK, V. L., ANt) KENT, S. T. Securitymechanisms in high-levelnetwork protocols.

ACM Computing Surveys 15, 2 (June 1983), 135-171.

18


