756 research outputs found

    Simulation of Conformal Spiral Slot Antennas on Composite Platforms

    Get PDF
    During the course of the grant, we wrote and distributed about 12 reports and an equal number of journal papers supported fully or in part by this grant. The list of reports (title & abstract) and papers are given in Appendices A and B. This grant has indeed been instrumental in developing a robust hybrid finite element method for the analysis of complex broadband antennas on doubly curved platforms. Previous to the grant, our capability was limited to simple printed patch antennas on mostly planar platforms. More specifically: (1) mixed element formulations were developed and new edge-based prisms were introduced; (2) these elements were important in permitting flexibility in geometry gridding for most antennas of interest; (3) new perfectly matched absorbers were introduced for mesh truncations associated with highly curved surfaces; (4) fast integral algorithms were introduced for boundary integral truncations reducing CPU time from O(N-2) down to O(N-1.5) or less; (5) frequency extrapolation schemes were developed for efficient broadband performance evaluations. This activity has been successfully continued by NASA researchers; (6) computer codes were developed and extensively tested for several broadband configurations. These include FEMA-CYL, FEMA-PRISM and FEMA-TETRA written by L. Kempel, T. Ozdemir and J. Gong, respectively; (7) a new infinite balun feed was designed nearly constant impedance over the 800-3000 MHz operational band; (8) a complete slot spiral antenna was developed, fabricated and tested at NASA Langley. This new design is a culmination of the projects goals and integrates the computational and experimental efforts. this antenna design resulted in a U.S. patent and was revised three times to achieve the desired bandwidth and gain requirements from 800-3000 MHz

    Model-order reduction techniques for the numerical solution of electromagnetic wave scattering problems

    Get PDF
    It is the aim of this work to contribute to the development of model-order reduction (MOR) techniques for the field of computational electromagnetics in relation to the electric field integral equation (EFIE) formulation. The ultimate goal is to enable a fast-sweep analysis. In a fast-sweep problem, some parameter on which the original problem depends is varying and the problem must be solved as the parameter changes over a desired parameter range. The complexity of the original model prohibits its direct use in simulation to compute the results at every required point. However, one can use MOR techniques to generate reduced-order models (ROMs), which can be rapidly solved to characterise the parameter-dependent behaviour of the system over the entire parameter range. This thesis focus is to implement robust, fast and accurate MOR techniques with strict error controls, for application with varying parameters, using the EFIE formulations. While these formulations result in matrices that are significantly smaller relative to differential equation-based formulations, the matrices resulting from discretising integral equations are very dense. Consequently, EFIEs pose a difficult proposition in the generation of low-order accurate reduced order models. The MOR techniques presented in this thesis are based on the theory of Krylov projections. They are widely accepted as being the most flexible and computationally efficient approaches in the generation of ROMs. There are three main contributions attributed to this work. ² The formulation of an approximate extension of the Arnoldi algorithm to produce a ROM for an inhomogeneous contrast-sweep and source-sweep analysis. ² Investigation of the application of the Well-Conditioned Asymptotic Waveform Evaluation (WCAWE) technique to problems in which the system matrix has a nonlinear parameter dependence for EFIE formulations. ² The development of a fast full-wave frequency sweep analysis using the WCAWE technique for materials with frequency-dependent dielectric properties

    Simulation of Spiral Slot Antennas on Composite Platforms

    Get PDF
    The project goals, plan and accomplishments up to this point are summarized in the viewgraphs. Among the various accomplishments, the most important have been: the development of the prismatic finite element code for doubly curved platforms and its validation with many different antenna configurations; the design and fabrication of a new slot spiral antennas suitable for automobile cellular, GPS and PCs communications; the investigation and development of various mesh truncation schemes, including the perfectly matched absorber and various fast integral equation methods; and the introduction of a frequency domain extrapolation technique (AWE) for predicting broadband responses using only a few samples of the response. This report contains several individual reports most of which have been submitted for publication to referred journals. For a report on the frequency extrapolation technique, the reader is referred to the UM Radiation Laboratory report A total of 14 papers have been published or accepted for publication with the full or partial support of this grant. Several more papers are in preparation

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533

    Advanced constellation and demapper schemes for next generation digital terrestrial television broadcasting systems

    Get PDF
    206 p.Esta tesis presenta un nuevo tipo de constelaciones llamadas no uniformes. Estos esquemas presentan una eficacia de hasta 1,8 dB superior a las utilizadas en los últimos sistemas de comunicaciones de televisión digital terrestre y son extrapolables a cualquier otro sistema de comunicaciones (satélite, móvil, cable¿). Además, este trabajo contribuye al diseño de constelaciones con una nueva metodología que reduce el tiempo de optimización de días/horas (metodologías actuales) a horas/minutos con la misma eficiencia. Todas las constelaciones diseñadas se testean bajo una plataforma creada en esta tesis que simula el estándar de radiodifusión terrestre más avanzado hasta la fecha (ATSC 3.0) bajo condiciones reales de funcionamiento.Por otro lado, para disminuir la latencia de decodificación de estas constelaciones esta tesis propone dos técnicas de detección/demapeo. Una es para constelaciones no uniformes de dos dimensiones la cual disminuye hasta en un 99,7% la complejidad del demapeo sin empeorar el funcionamiento del sistema. La segunda técnica de detección se centra en las constelaciones no uniformes de una dimensión y presenta hasta un 87,5% de reducción de la complejidad del receptor sin pérdidas en el rendimiento.Por último, este trabajo expone un completo estado del arte sobre tipos de constelaciones, modelos de sistema, y diseño/demapeo de constelaciones. Este estudio es el primero realizado en este campo

    Solving Electrically Very Large Transient Electromagnetic Problems Using Plane-Wave Time-Domain Algorithms.

    Full text link
    The marching-on-in-time (MOT)-based time domain integral equation solvers provide an appealing avenue for solving transient electromagnetic scattering/radiation problems. These state-of-the-art solvers are high-order accurate, rapidly converging and low-/high-frequency stable. Moreover, their computational efficiencies can be significantly improved by accelerators such as the multilevel plane-wave time-domain (PWTD) algorithm. However, practical transient electromagnetic problems involving millions of spatial unknowns and thousands of time steps were barely solved by PWTD-accelerated MOT solvers. This is due to the lack of (i) an efficient parallelization scheme for PWTD’s heterogeneous structure on modern computing platforms, and (ii) a temporal/angular/spatial adaptive PWTD that further improves the computational efficiency. The contributions of this work are as follows: First, a provably scalable parallelization scheme for the PWTD algorithm is developed. The proposed scheme scales well on thousands of CPU processors upon hierarchically partitioning the workloads in spatial, angular and temporal dimensions. The proposed scheme is adopted to time domain surface/volume integral equations (TD-SIE/TD-VIE) solvers for analyzing transient scattering from large and complex-shaped conducting/dielectric objects involving ten million/tens of millions of spatial unknowns. In addition, we developed a single/multiple graphics processing units (GPU) implementation of the PWTD algorithm that achieves at least one order of magnitude speedups compared to serial CPU implementations. Second, a wavelet compression scheme based on local cosine bases (LCBs) that exploits the sparsity in the temporal dimension is developed. All PWTD operations are performed in the wavelet domain with reduced computational complexity. The resultant wavelet-enhanced TD-SIE solver is capable of analyzing transient scattering from smooth quasi-planar conducting objects spanning well over one hundred wavelengths.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113642/1/liuyangz_1.pd

    Investigation into the use of active frequency selective surfaces to extend the absorption bandwidth of a conventional Salisbury screen absorber

    Get PDF
    It is well accepted that the absorption bandwidth of a metal back-plane absorber, built with either dielectric or magnetic materials, is inherently narrow. It is also well known that in order to increase the absorption bandwidth, the absorber thickness must be increased through decreasing the permittivity or permeability of its spacer. This improved performance, however, comes at a cost. The absorption bandwidth is increased at the expense of not only an increase of absorber thickness, specially at lower frequencies, but also the yielding of a mechanically weaker structure. The most important implication of the former is that there is a tradeoff between absorber thickness and absorption bandwidth. These two conflicting absorber properties are, however, of equal importance since the optimum absorber is one which has a small thickness as well as a wideband absorption response. This inherent trade-off is due to the fundamental frequency limitations imposed by the constitutive parameters of materials and is more detrimental at microwave frequencies.The aim of the research programme described in this thesis was thus to investigate the use of adaptive complex impedance structures, in the form of active frequency selective surfaces (AFSSs), to extend the absorption bandwidth of a small thickness Salisbury screen absorber, thus addressing directly the aforementioned by minimizing the trade-off that exists between absorber thickness and absorption bandwidth

    Doctor of Philosophy

    Get PDF
    dissertationChirp signals arise in many applications of digital signal processing. In this dissertation, we address the problem of detection of chirp signals that are encountered in a bistatic radar which we are developing for remote sensing of cosmic ray induced air showers. The received echoes from the air showers are characterized by their large Doppler shift (several tens of MHz), and very short sweep period (~ 10 ^s). This makes our astrophysical problem a challenging one, since a very short sweep period is equivalent to a very low energy chirp signal. Furthermore, the related parameters of the received echoes are nondeterministic since they are tied to the physical parameters of the air showers that are stochastic in nature. In addition, our problem is characterized by the rarity of the expected chirp-echoes to be received, few events per week, and thus, background noise reception is the case most of the time. The primary focus of this research is to address these challenges and find an optimized detection approach under the existing receiver environment which contains non-Gaussian noise and is characterized by low signal-to-noise ratio (SNR). Matched filters are commonly used in radar systems when the chirp signal is known. In our first method, we revisit this context and use a matched filter as a basis of building a rake-like receiver that consists of a set of filters matched to quantized chirp rates, logarithmically distributed within the chirp-rate interval of interest. We examine the detection capability of the proposed structure through extensive theoretical and numerical analysis. Theoretical analysis and simulation results prove that the proposed detector has high detection capability for a range of chirp slopes in a low SNR environment. A major source of false-alarms was found to be due to sudden noise spikes that cover wide frequency bands. These transient signals have high amplitudes and occur at random time instants. This leads to erroneous detection decision. We study the influence of amplitude limiting the noisy signal on reducing the received false-alarms and enhancing the detection performance of the proposed rake-like receiver. In our second method, we use Hough transform (HT), which is widely used in the area of image processing for the purpose of finding parameterized patterns, as a basis of building a robust detection technique. We examine the detection capability of the proposed structure through theoretical and numerical analysis. Our results prove that the proposed detector has high detection capability for a range of chirp slopes in a low SNR environment. The introduced detection algorithms are implemented over a Virtex-5 FPGA. National Instruments modules are used as a high-performance custom hardware. Due to rarity of received echoes, we emulate the expected radar echoes to evaluate the system performance. The detection performance of the emulated echoes is examined using the implemented receiver at the field. Also, we compare the performance of both detectors
    corecore