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ABSTRACT

Chirp signals arise in many applications of digital signal processing. In this dissertation, 

we address the problem of detection of chirp signals that are encountered in a bistatic radar 

which we are developing for remote sensing of cosmic ray induced air showers. The received 

echoes from the air showers are characterized by their large Doppler shift (several tens of 

MHz), and very short sweep period (~  10 ^s). This makes our astrophysical problem a 

challenging one, since a very short sweep period is equivalent to a very low energy chirp 

signal. Furthermore, the related parameters of the received echoes are nondeterministic 

since they are tied to the physical parameters of the air showers that are stochastic in 

nature. In addition, our problem is characterized by the rarity of the expected chirp-echoes 

to be received, few events per week, and thus, background noise reception is the case most 

of the time. The primary focus of this research is to address these challenges and find 

an optimized detection approach under the existing receiver environment which contains 

non-Gaussian noise and is characterized by low signal-to-noise ratio (SNR).

Matched filters are commonly used in radar systems when the chirp signal is known. In 

our first method, we revisit this context and use a matched filter as a basis of building a 

rake-like receiver that consists of a set of filters matched to quantized chirp rates, logarithmically 

distributed within the chirp-rate interval of interest. We examine the detection capability 

of the proposed structure through extensive theoretical and numerical analysis. Theoretical 

analysis and simulation results prove that the proposed detector has high detection capability 

for a range of chirp slopes in a low SNR environment.

A major source of false-alarms was found to be due to sudden noise spikes that cover wide 

frequency bands. These transient signals have high amplitudes and occur at random time 

instants. This leads to erroneous detection decision. We study the influence of amplitude 

limiting the noisy signal on reducing the received false-alarms and enhancing the detection 

performance of the proposed rake-like receiver.

In our second method, we use Hough transform (HT), which is widely used in the area of 

image processing for the purpose of finding parameterized patterns, as a basis of building a 

robust detection technique. We examine the detection capability of the proposed structure



through theoretical and numerical analysis. Our results prove that the proposed detector 

has high detection capability for a range of chirp slopes in a low SNR environment.

The introduced detection algorithms are implemented over a Virtex-5 FPGA. National 

Instruments modules are used as a high-performance custom hardware. Due to rarity of 

received echoes, we emulate the expected radar echoes to evaluate the system performance. 

The detection performance of the emulated echoes is examined using the implemented 

receiver at the field. Also, we compare the performance of both detectors.
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CHAPTER 1

INTRODUCTION 

1.1 Background and Motivation
The study of high energy cosmic rays is a very important and challenging physical 

problem. It is considered to be a major step forward in understanding the fundamental 

nature of the universe [1]. The term “cosmic rays” is given to high energetic particles of 

extra-terrestrial origin, that continually strike the Earth’s atmosphere. Cosmic rays can 

have energies of over 1018eV, which is much higher than the energy produced by terrestrial 

particle accelerators. The source of these particles yet remains an interesting mystery to be 

solved. When cosmic rays experience collisions with atoms of the upper atmosphere (about 

10 km above the ground), they create extensive air showers (EAS), a cascade of “secondary” 

particles that propagate through the atmosphere towards the earth’s surface. EAS resulting 

from cosmic rays produce ionization columns which are detected by such conventional 

observatories as ground surface-detector arrays and fluorescence detectors. Currently, the 

Telescope Array (TA) detector, which has been operating in Utah since 2007, employs two 

detection mechanisms: three fluorescence detectors (FDs) that record the ultraviolet light 

(UV) emitted from EAS, and a grid of scintillation detectors (SDs) that measures the flux of 

secondary charged particles arriving at the surface [2]. Fluorescence detection is costly and 

has a low duty cycle (about 10%), since the observations can only be made on clear moonless 

nights. Scintillation detectors operate with 100% duty cycle, but must cover hundreds or 

thousands of square kilometers in order to obtain reasonable detection rates. For example, 

the world’s two largest detectors now in operation, the Telescope Array (Utah) [3] and the 

Auger Observatory (Argentina) [4], utilize ground arrays covering 800 km2 and 3,000 km2, 

respectively. Therefore, a clear motivation exists for moving towards a simpler and more 

efficient technique such as radar.

Our research group, the Telescope Array RAdar (TARA) project, is working on a 

novel approach based on bistatic radar technology [5]. This technique is promising and 

if successful, it will allow the next generation of cosmic ray observatories to be built at a
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fraction of the cost required by current technologies.
TARA is co-located with the TA detector, a conventional cosmic ray detector, which 

happens to be located in a low-noise environment; this way, radar echoes can coincide 

with real events found in reconstructed TA data. Co-location with a conventional detector 

allows for definitive coincidence studies to be performed. If coincidences are detected, the 

conventional detector’s information on the air shower geometry will allow direct comparison 

of radar echo signals with the predictions of air shower radio frequency (RF) scattering 

models.
Fig. 1.1(a) includes a map illustrating the location of the radar transmitter and receiver 

relative to the conventional Telescope Array detector. Fig. 1.1(b) and (c) show the TARA 

transmitter and receiver antenna arrays, respectively, which are currently in operation. 

TARA transmitter operates in a vacant VHF band and consists of broadband log-periodic 

antennas, designed to zoom the transmit beam on the part of the sky that is more likely to 

give a strong reflection from air showers. Multiple receive antennas are used to provide a 

space diversity gain.

1.2 The Research Problem
The motivation beyond radar detection of cosmic ray air showers lies in the large 

ionization densities, at the core of the air shower, which can reflect radio frequencies that lie 

in the low VHF band. Research studies have shown that the radar cross section is greatest 

in the forward scattering direction [6]. Thus, bistatic radar is advantageous in detecting 

weak returning echoes, in comparison with monostatic or ranging radar. Based on the 

physical features of our radar target, returning echoes are excepted to be characterized by 

a rapid phase modulation-induced frequency shift, covering several tens of MHz in a period 

of 10 to 15 ^sec. These signals sweep linearly from a high to low frequency, this can be 

modeled as a linear-downward chirp. Also, the related parameters of the received echoes 

are nondeterministic, since they are tied to the physical parameters of the air showers which 

are affected by the energy of the underlying particle and its angle of arrival as it reaches the 

earth’s atmosphere. Thus, unlike most of the existing chirp applications, we are interested 

in the detection of chirp echoes of variable parameters, center frequencies and frequency 

rates, within a relatively wide band. In addition, our detection threshold is required to be 

set as low as possible in order to enhance the ability of detecting signals of signal-to-noise 

ratio (SNR) in the negative dB range.
Besides the above mentioned challenges, our problem is characterized by the rarity of 

the expected chirp-echoes to be received, few events per week, and thus, background noise
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TA/TALE Project Area 
° TaraTX/RX 
. TA-SDs 
. TALESDs 
0 FDs 
. CLF

(b ) (c)

Figure 1.1: Illustrative diagram for the TARA observatory, (a) Map of TARA 
observatory sites (transmitter and receiver) along with the Telescope Array (TA) detector 
facilities. The transmitter broadcasts as station WF2XZZ near Hinckley, Utah, towards a 
receiver site located at the TA Long Ridge Fluorescence Detector. The sounding radiation 

illuminates the air over the central portion of the TA Surface Detector array, (b) 
Transmitter antenna array, (c) Receiver antenna array.

reception is the case most of the time. Based on our radar environment, background noise is 

punctuated with persistent single-frequency tones that might originate from different sources 

around the receiver unit including the radar carrier signal (54.1MHz). These deceptive tones 

are powerful, which, may accordingly, lead to positive false-alarms. The other major source 

of false-alarm is the sudden noise spikes that cover wide frequency bands. These spurious 

signals cause an erroneous radar detection decision by exceeding the detection threshold.

All these challenges that confront our radar system make the problem of interest unique 

and give rise to the need for robust signal processing technique as well as a detailed analysis 

that this research strives for.
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1.3 Research Contributions
Research contributions of this dissertation can be summarized as follows:

1. A strategy is proposed for the detection of chirp signals with nondeterministic chirp 

rates based on the method of matched filtering. We propose a rake-like receiver that 

consists of a bank of filters matched to a number of quantized chirp rates. Through 

analytical results, we show that distributing the matched filters logarithmically within 

the chirp-rate interval of interest is a near optimal selection. We examine the detection 

capability of the proposed structure through extensive theoretical and numerical 

analysis. Theoretical analysis and simulation results prove that the proposed detector 

has high detection capability for a range of chirp slopes under low SNR environment. 

This work in presented in [7].

2. One major source of false-alarm in our application is the sudden noise spikes that 

cover wide frequency bands. We propose adding an amplitude limiter prior to the 

bank of filters to alleviate the effect of the high amplitude spikes. This enables us 

to bring down the detection threshold and thus obtain better detection performance. 

This work is presented in [8].

3. Proposed receiver is implemented over a Virtex-5 FPGA. National Instruments modules 

are used as a high-performance custom hardware. Due to the rarity of received echoes, 

we emulate the expected radar echoes to evaluate the system performance. The 

detection performance of the emulated echoes is examined using the implemented 

receiver at the field. This work is presented in [9] and [10].

4. Linear chirp signals have a unique signature in time-frequency domain. This property 

motivated us to study the detection of linear chirps using this interesting domain. 

We propose a detection algorithm based on Hough transform for detecting our radar 

received echoes that can deal with the existing receiver environment. The detection 

capability of the proposed structure is examined through theoretical and numerical 

analysis. Proposed receiver is implemented using system-on-chip design in a similar 

way to the first method. This work is presented in [ll].

5. As a member of TARA collaboration, I participated in constructing the world’s first 

bistatic radar observatory for Ultra-High Energy Cosmic Rays (UHECR). Construction 

was completed during summer 2013. TARA is co-located with the Telescope Array, the 

largest conventional cosmic ray detector in the Northern Hemisphere, in radio-quiet
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Western Utah. TARA employs an 8MW  Effective Radiated Power (ERP) VHF 

transmitter and smart receiver system in an effort to detect the scatter of sounding 

radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate 

bistatic radar as a useful new remote sensing technique for UHECRs.

I was lead coordinator and responsible for the construction, design, implementation, 

and testing of the receiver side in the project. This work is presented in [5], [10], [12], 

[13], and [14].

1.4 Dissertation Outline
This dissertation is divided into seven chapters. Chapter 1, this chapter, describes the 

motivation behind this dissertation, characterizes the research, and summarizes our research 

contributions. In Chapter 2, we present a review of relevant literature. Chapter 3 illustrates 

our first method, the rake-like receiver. A thorough analysis of the proposed method under a 

white-Gaussian noise background is also presented. In Chapter 4, we introduce our bistatic 

radar experiment and the experimental results. In Chapter 5, we present the proposed 

amplitude limiter and discuss the corresponding radar system performance. In Chapter 6, 

we introduce the Hough transform based detector. Finally, conclusions and future directions 

are given in Chapter 7.



CHAPTER 2

REVIEW OF LITERATURE

Linear chirp signals are ubiquitous in nature. They can be observed in many areas, such 

as echolocation (bats) [15], geophysics [16], underwater explorations [17], and gravitational 

waves in astrophysics [18]. Also, they are frequently encountered in various areas of signal 

processing, such as sonar [19], radar [20], and spread spectrum communications [21,22]. 

Some of these applications rely on chirp signal transmission as in the case of sonar [19], 

while others model the received signal after doppler spread as chirp signals, e.g., in synthetic 

aperture radars (SARs) [23], and heart sound signals [24].

In a radar problem, the transmitted signal will be subject to a phase shift induced by the 

distance and relative motion between the target and the receiver. Thus, a chirp signal can 

be observed. The phase angle of the chirp reflects the related parameters of the radar target 

including the speed and range. In the literature, various techniques have been developed 

for the estimation of chirp parameters, including the doppler frequency shift [25] and the 

doppler frequency rate [26]. In the current phase of our radar application, our main interest 

lies in the detection of the received chirp echoes produced by cosmic ray induced air showers. 

Our main goal is simply to find an approach that counteracts the challenges and provides 

a reasonably high performance under the existing challenges and our hardware limitation.

Different techniques have been developed for the detection of linear chirp signals. The 

developed methods may target the detection problem in different domains: time-domain or 

frequency domain or joint time-frequency domain.

The time-domain methods include several adaptive algorithms that approach the detection 

problem as a recursive least squares (RLS) algorithm [27], or a least mean square (LMS) 

algorithm [28], and a multiple frequency tracker [29]. However, these adaptive techniques 

suffer performance degradation under low-SNR conditions [30].

Matched filters are one of the most commonly used time-domain methods in radar 

systems. Basically, a matched filter correlates a known deterministic signal with the received 

signal in order to maximize the peak output SNR when a noisy radar echo is passed through
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it. In other radar applications, matched filters are used as pulse compression filters [31].

If the parameters of the radar chirp echoes are known, the optimal detector in stationary 

white-Gaussian noise is proven to be a matched filter followed by a threshold comparison 

[32]. Passing the chirp echo through its corresponding matched filter should result in a high 

peak at the output of the filter. This output is known as the chirp autocorrelation function 

which is well studied in many contexts, e.g., [32]. Neyman-Pearson criterion, or likelihood 

ratio test, is commonly used in evaluating the detection performance of the matched filter 

for the case of deterministic chirp signal [33]. In the case of multiple deterministic chirp 

signals, generalized likelihood ratio test (GLRT) detector is considered where a bank of 

matched filters are used, [33]. A mismatch of chirp rates between the received signal and 

the matched filter will result in phase error and thus, a loss in the output peak value.

In our application, as mentioned before, we lack the knowledge of received signal parameters 

and thus, mismatch of the chirp rate between the received chirp signal and the matched 

filter(s) at the receiver is unavoidable.

The assumption of white-Gaussian noise is frequently used in the study of radar and 

communication systems to greatly simplify their analysis. For various applications, the 

Gaussian noise assumption is justified, such as microwave terrestrial or satellite links; 

however, in other cases, including ours, background noise turns out to be impulsive and 

thus of a non-Gaussian nature. The main reason for this is that signal background may 

get disturbed by external interference sources with an impulsive nature that is well above 

the background level. These sources could be either natural, such as lightening strikes, or 

man-made, like power-line communications or electric motors. In radar applications, the 

detection threshold may be raised in order to avoid excessive false-alarms which deteriorate 

the detection performance of the radar receiver. In radar literature, there are various 

methods that tackled this problem through using band-pass limiters [34,35] or nonlinear 

functions [36,37]. However, to our knowledge, none of these methods consider the detection 

problem of nondeterministic chirp signals after mitigating the effect of impulsive noise.

In this dissertation, we work out two different solutions for this problem. First, we 

introduce an amplitude limiter that alleviates the effect of transient background. Second, 

we introduce a smart time-frequency domain method that can efficiently filter the existing 

noGaussian components to a great extent.

Discrete Fourier transform (DFT) is considered as a standard and useful tool for spectrum 

analysis in the area of digital signal processing that is typically implemented in an efficient 

way using fast Fourier transform (FFT). Fourier transform provides the corresponding
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magnitude and phase of the signal spectral content. However, it does not provide a 

time distribution of the spectral components which we would need for linear chirp signals 

to look at the change of frequency versus time. In the past, more advanced techniques 

have also been developed to overcome the limitations of matched filters. These methods 

approach the detection problem in the time-frequency plane. They exploit the hidden 

features of the chirp signals in the time-frequency plane by applying a transformation such 

as the short-time Fourier transform (STFT) or the Wigner distribution (W D) to obtain the 

time-frequency information. Among them, Page’s test [38], the expectation-maximization 

(EM) algorithm [39], and Hough transform (HT) [40] are more broadly used. Other 

two-dimensional techniques include Radon transform [41] and Radon-Fourier transform [42]. 

These methods are suitable for detecting chirp signals in nonstationary noise backgrounds 

where false-alarms can be significantly reduced. While these approaches are more robust 

than the method of matched filters, a major drawback is the direct relation between 

computational complexity and chirp signal bandwidth.

In this dissertation, we consider Hough transform as a basis for the detection of chirp 

signals with nondeterministic parameters (center-frequencies and chirp-rates). We introduce 

additions to the proposed detector that optimize the detection performance and greatly 

reduce the computational complexity to become feasibly implemented.



CHAPTER 3

RAKE-LIKE RECEIVER FOR CHIRP
DETECTION

3.1 Problem Statement
In our radar problem, we are interested in detecting the presence or absence of a 

chirp signal in a white-Gaussian noise background. The chirp signal of interest is a linear 

down-chirp with known start (high) frequency f H Hz, known end (low) frequency f L Hz, and

Assuming that it is centered around time t =  0, such a chirp signal is mathematically 

written as

where TK =  ( f H — f L)/  k is the chirp duration in seconds, f C =  ( f H +  f L) / 2, and rect(-) 

denotes the rectangular function.

For the purpose of our study in this dissertation, we consider a signal

ranges from —1  to + 1 . We also assume that x(t) is passed through a filter with the 

impulse response cK0(—t), i.e., a filter that is matched to a chirp signal with the parameters 

f H, f L, and ko. When the magnitude of the matched filter output passes a set threshold, 

it is declared that a chirp has been detected. There are two possibilities: First, the case 

when the detection has originated from the chirp signal cK(t). Second, the case when the 

detection has originated from the background noise v(t). In the first case, we say correct 

detection has occurred, and in the second case, we say a false detection has occurred. A 

third case that will be also studied in this chapter is when the presence of noise misleads the 

detector so that the presence of chirp is not detected. We refer to this as missed-detection. 

In the rest of this chapter, we develop mathematical formulations that lead to expressions

unknown chirp rate of k Hz/sec. An example of the signal of interest is shown in Fig. 3.1.

x(t) =  cK(t) +  v (t) (3.2)

where v(t) is an additive white-Gaussian noise with variance ct̂ , and the time variable t
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( a )

(b)

Figure 3.1: Linear down-chirp signal, (a) Signal in time-domain. (b) Signal in
time-frequency domain.

for the probabilities of correct detection, false detection, and missed-detection. Development 

of these results requires mathematical tools that are developed next.

3.2 Characterizing the Filtered Components
The goal in this section is to characterize the filtered signal

y(t) =  x(t) * h(t) (3 .3)

where * denotes linear convolution, and h(t) =  cKo(—t). More specifically, we are interested 

in the filtered chirp component

/ OO

cK{T)h(t -  r ) d r ,

-OO

and the filtered noise component

/ OO

v{t)h{t -  r )d r ,

-OO

o f  y(t) =  yc( t ) + y v(t).

(3 .4)

(3 .5)
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3 .2 .1  F ilte re d  C h irp  C o m p o n e n t

Considering the general case, where k =  k0, one finds

,t — t  „

This may be rearranged as

/■1  T t — T yc(t) =  rect(— )rect(— —  )cos(2^ /cT  — ̂ k t2) co s (2 ^ /c (t—t )  — ̂ ( t  — t ) 2)^t. (3.6)
7-00 TK0

yc(t) =  1  Z1  rect( TL )rect(t- ^ ) ( ej(2wfcT-WKT' ) +  e—j ( 2 f —™t2A  
7 - 1  Tk Tko V /4

X ^eJ(2̂ fc(t-r)+^Ko(t-r)2) +  e-j(2nfa(t-r)+wko(t -r )2)^ ^T

1 z11  T t — T /
-  rect(— ) rect(— —  ) I cos (2/ c t  — 'kkt2 +  ^ko(t — t ) 2)
2 7 — 1  T K T K0 \

+  cos (2 ^ /ct — 4^/cT  +  1 KT2 +  *KK0(t — t )2)^ dT. (3.7)

For typical values of k and k0, the output signal component is dominated by the first term 

and the effect of the second term is negligible. Accordingly, y (t) can be approximated as
1 p co t  t _t

yc(t) ~  2  rect(— ) rect(— — ) cos ( 2 / t — ^ k t2 +  ^ o ( t  — t ) 2) dT. (3.8)
2 7 — 1  T K T K0

Assuming k is greater than k0, and letting 5k =  k — k0, after some algebraic manipulations, 

we obtain

yc(t) =  2 J  rect(t=t) rect(tr ^ ) cos ^ 5k ( T +  K K )  — 0 (t^  dT (3.9)

where 0(t) =  ^t 2 /C +  K0t +  Kok̂  J . Furthermore, noting that the duration of h(t) is longer 

than that of cK(t), (3.9) can be written as

y°(t) =  2 Z  tk cos ^ 5k ( t + — 0 (t^ d T . (3.10)

This result can be simplified as

1 f f  ̂ 2(t) 2 f  02(t) 2 'I
yc(t) =  < cos(0(t)) / cos(u2)du — sin(^(t)W  sin(u2)du > (3.11)

\/4^5k I .701 (t) .701 (t) J’✓i(t) JSi(t)

where
-----  XK~t

_ 5k 2

and
-----  '  K~ t IK

✓i(t) =  K̂5K: — (3.12)

✓2(t) =  ^KK +  . (3.13) 

Also,

(u2)du= n ^ n « 2(t^ —^ n ✓ ^ j  (3.14)
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and
rd2(t)

sin(u2)du =  r 2  ^ -  S ^ / f  ✓iW

Vc{t) = 1 cos(^(i)) C f  W )  -  C l ^  «i(t)

-  Sin(^ ^ )) 2  w  -  s v f  « i « )

(3.15)

where C(x) and S(x) are Fresnel cosine and sine integrals [ [43], pp.887, Eq. (8.250)], 

respectively. Substituting (3.14) and (3.15) in (3.11), we get

(3.16)

3 .2 .2  F ilte r e d  G au ssia n  N o ise

The output noise component Vu (t) is defined as

Vu(£) =  / v (t )h(t -  t )dr . (3.17)

Filtered noise is a Gaussian process with zero-mean and covariance function r(i) which is 

defined as

/1
Vu (t)Vu (t  -  t)dT

-OO

(3.18)

Assuming unit noise variance, i.e., a'U =  1, r(t) is simplified to the autocorrelation function 

of the chirp signal cK(t). This can be easily deduced from (3.16) by setting k =  ko. The 

result simplifies to

r(t) =
(Tk - ■ cos (2^ /ot) sinc (Kt (TK -  |t|)) (3.19)

3.3 Detection Analysis
For the radar setup introduced in Section 3.1, there are two signal conditions - either 

noise only or signal-plus-noise and two possible outcomes from the threshold comparison - 

either filtered output exceeds a threshold or it does not. Ideally, we wish to correctly detect 

a chirp, when it exists. For the signal model (3.2), this is the case, when t is around zero. 

Also, we wish not to detect anything when the chirp is absent. We term the probability 

of signal-plus-noise exceeding threshold as probability of correct detection (PCD). The 

complement of PCD is termed as probability of missed-detection (PMD). Also, we term 

the average rate of erroneous detection decisions caused by filtered noise as false-alarm rate 

(FAR).

Our strategy is to choose the threshold (7 ) that, for a given signal-to-noise ratio, leads 

to a PCD close to one, while keeping a reasonable (small) value of FAR. The threshold

S
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selection is subject to compromise between aiming at high detection efficiency to avoid 

missing real radar events and maintaing a low level of false-alarms to keep less storage (low 

system cost) and accelerating the offline processing of the stored data. We start our analysis 

by investigating the relation between (y , FAR) and then (y , PCD).

3 .3 .1  F a lse -A la rm  R a te

When the chirp is absent, the detection problem is reduced to noise reception and y(t) 

reduces to yu(t). In our triggered data acquisition system, |ŷ (t)| is compared to a threshold 

level y. When |ŷ (t)| exceeds y , a positive false-alarm is generated. In order to mitigate 

false-alarms, the detection threshold y should be set high which comes at the expense of 

missing the detection of a low-level chirp, if present. Thus, it is desirable to have a detection 

threshold that minimizes PMD while keeping FAR below a certain level.

The problem of FAR is that of determining the level-crossing rate (LCR) of yu (t). 

According to a theorem from Rice, [44], the average number of up-crossings of the filtered 

Gaussian signal yu(t) through a threshold level y per second is given by

1 2
Nv =  —  A1/ 2e- V  , (3.20)

where A =  — t" (0 ) /t(0) and t /0(0) is the second derivative of the covariance function r(t) at

7yv, wheret =  0.  ̂ is the normalized threshold level, i.e.,  ̂ =  y / &yv, where is the variance of the

output noise component yu (t).

Using the evaluated autocorrelation formula (3.19), A can be evaluated as shown in 

Appendix A. This leads to

A = ( W c )2 +  ^ | ^ ) ,  (3.21)

where B  =  fH — fL.

Noting that a false-alarm occurs every time yu(t) exceeds y or drops below — y, one finds 

that

FAR =  2NV

=  ^ / ( W c )2 +  (^ )  e- ^  . (3.22)

It is interesting to note that FAR is a function of center frequency and bandwidth of the 

chirp. Also, FAR is independent of the noise variance a .̂ It is a function of the normalized 

threshold level ^. This means that our detector follows the constant false-alarm rate (CFAR) 

criterion by using an adaptive threshold (y) that tracks noise variations.
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3 .3 .2  P r o b a b il ity  o f  C o r r e c t  D e te c t io n

Analysis of PCD based on continuous time signals turns out to be a difficult task. Thus, 

here, we resort to an analysis of PCD in discrete time. Assuming that a sufficiently high 

sampling rate is selected, the result will be very close to those of continuous time.

Assuming a sampling interval Ts, the equivalent discrete time of the chirp signal cK(t) 

is obtained as

cK,n =  cos (2^/onTs -  ^k(uTs)2) , n  =  - N / 2 , . . . , 0 ,  ••• ,N /2  -  1, (3.23)

where N  =  2|_(TK/2 ) /T s_|. A similar results is applicable for cK0,n, where k is replaced by 

k0 and N  by N0. Let y  denote the 2N0 +  1 vector of samples of y(t) over the interval1 

(—TK0,Tko). Similarly, the corresponding vectors of samples of yc(t) and yu(t) are denoted 

as y c and y u, respectively. In case the chirp signal is present, y  =  y c +  y u is a Gaussian 

vector with mean of y c and an autocorrelation matrix R  whose elements are samples of the 

autocorrelation function r(t) of (3.19). On the other hand, when the chirp signal is absent, 

y  =  y v is a Gaussian vector with zero mean and autocorrelation matrix R.

To derive an equation for PCD, we note that

PCD =  1 -  PMD (3.24)

and

PMD =  p y (Vn : |yn| <  y) (3.25)

where V denotes ‘for all’ . Accordingly, PMD is calculated as

1 CY CY
PMD =  — =  ••• /  e- 2 (y-yc)T R-1(y- yc)dy (3.26)

y /det{2̂ R } J - y -Y

where dy is the shorthand notation for dyNo ■ ■ ■ dy0 ■ ■ ■ dy-No. Changing integration variable 

y  to z =  y  — y c, we obtain

1 f  Y-yc,-No f  l - Vc,No i T _i
PMD =  —=  ■■■ e- 1z R  zdz. (3.27)

V det{2^R }  J -l-yc -N 0 J-l-Vc,N0

This is a standard integral and various numerical methods for its evaluation are available 

in the literature. Here, we follow the method described by Genz in [45]. To keep this

One may note the deterministic part of y(t)(assumingthat k and k0 are known) stretches over the 
2 , 2interval ^— Tk+Tko , Tk . Here, since we assume k 0 is a known parameter, but k  is a random variable

(but, usually close to k 0 ) ,  for the simplicity of the derivations, but without any significant loss in the accuracy 
of the results, we consider a length 2TK0 of y(t), centered around t = 0.
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chapter self-contained, a summary of the relevant derivations of Genz’s method is presented 

in Appendix B. This leads to the following simplified expression for PMD.

PMD =  (b-No — a-No) /  (b-No+1 — a-No+1) (b-No+2 — a-No+2) ••• (bNo — aNo) /  dc
7o 7o 7o

(3.28)

where dc is the shorthand notation for dcNo • • • dc0 • • • dc-No. In addition,

a  =  $
i - 1

~y  — yc,i — ^  k,j$  1(bj +  (bj — aj)cj)
j=-No

/li i =  —No +  l , . . . , 0, ,No

(3.29)

and

bi =  $
i 1

y — yc,i ^ 2 .  ̂ k,j $  (bj +  (bj — aj )cj )
j= No

/ 1i,i I , i  =  —No +  l , . . . , 0,

where

and

a-No =  $  ( (—Y — yc-No ) / l-No-No )

b-No =  $  ((Y — yc-No ) /1-No-No )

,No

(3.30)

(3.31)

(3.32)

The function $(•) is defined in (B.7). The innermost integral in (3.28) is equal to unity and 

thus, the number of integration variables is reduced from 2No +  l to 2No.

The above integral can be computed using a variety of numerical integration methods. 

Here, we use Monte Carlo integration method, based on uniform sampling. We follow the 

subregion adaptive method described in [46]. This leads to the algorithm presented in 

Table 3.1. We present details of the Monte Carlo integration method in Appendix C.

3.4 Chirp Detector
In this section, we develop a method of systematically choosing the parameters of a bank 

filters matched to a set of chirp rates in order to assure a high probability of correct detection 

while keeping a low level of false-alarm rate. Without loss of generality, we consider our 

radar application as a specific example that our design will be applied to. For the echoes 

being reflected from cosmic ray induced air showers, the chirp rates of interest belong to
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Table 3.1: Summary of the Monte Carlo Integration Method.
Input: y c, R
Parameters: Threshold: 7 , Number of iterations: Nmax, Variance of the result: a2 
Output: PMD and PCD

1. Compute lower triangular Cholesky matrix L =  [li j ] 8 ( i , j ), of R  =  
LLt  .

2. Set a-No =  $  ( ( - 7  -  Vc,-No) / 1 - n0,-No) ,  
b-No =  $  ((Y -  Vc,-No) A-No,-No) .

3. Initialize: n =  1, PMD(1) =  0,ae2(n) =  a large value, ^ ( -  N0) =
(b-No -  a-No ) .

4. w hile {a^(n) >  a2 AND n <  Nmax}

{

Generate uniformly-distributed random vector [c-No, ■ ■ ■ ,c No-1] 
e [0,1]

For i =  - N0 +  1 : N0
Set ui-i  =  $ - 1(b j-i +  (bi-i -  ai-i)ci-i)

Compute ai =  $  

Compute bi =  $

7 yc, i P j= -N o o Uj / l i»i) 

7 -  yc,i -  P j= -N o houj / l i»i)
^ (i) =  (bi -  a*)tf (i -  1)

End

Let 5 =  n ( ̂  ( No ) -  P MD(n))

Update the integral: PMD(n +  1) =  PMD(n) +  5 

Update the variance: af (n +  1) =  a2(n) +  52 

Increment n

5. PCD =  1 -  PMD

}

the interval K =  [-3 , -1 ] MHz/^s. We decide on the number and locations of the matched 

filters in this interval and the threshold parameter 7  that leads to a small probability of 

false-alarm; the probability of correct detection remains very close to one.

Consider a received chirp signal with an arbitrary chirp rate k, that lies within the 

chirp-rate interval K, and a filter matched to the chirp rate ko. In Fig. 3.2, we graphically 

demonstrate the output of the matched filter. When k equals ko, the output of the matched 

filter exhibits a sharp peak in response to the chirp waveform. When k =  ko, the sharp peak
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Figure 3.2: Color map indicating the detection of a range of chirp rates using a single
matched filter.

in the matched filter output spreads out and disappears as the difference between k and 

increases. To quantify the peak degradation as the mismatch between k and k0 increases, 

we graphically demonstrate the peak output of the matched filter using (3.16) for a range of 

k values within an interval around k0. Fig. 3.3 depicts the percentage of peak degradation 

for a range of logarithmically distributed k values around k0. This result clearly shows that 

the matched filter correlates well with chirp signals whose chirp-rate is within a range from 

k0. Specifically, chirp signals with <  k <  Km\fA results in a peak with an absolute 

value greater than 80% of the peak output, when k =  k0, where A  denotes the logarithmic 

step between two chirp-rates.

Following the above observation, to ensure at least one reasonably high matched filter 

output, hence, to avoid a miss-detection, we consider a detector that uses a bank of M  

filters, matched to a number of quantized chirp rates, ki, k2, •••, k m , logarithmically 

distributed as depicted in Fig. 3.4, within the interval of interest. If we consider 80% of the 

peak output as still an acceptable peak, according to the result presented in Fig. 3.3, the 

parameter M  and the equally spaced chirp rates ki , k2, •••, km should be elected within 

the interval K =  [-3 , -1 ] MHz/^s, such that
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Figure 3.3: Matched filter output peak value degradation in percentage.

8 - T  < P A

< <  A, for m =  1,2, ••• , M  -  1 (3.33)
Km

—  < p A .
, kM

The solution to this problem can be easily worked out. The result is M  =  5 and the 

following are chirp rates in MHz/ ^s

ki =  -1.1161, K2 =  -1.3904, K3 =  -1.7321, K4 =  -2.1577, K5 =  -2.6879

A functional block diagram of the detection process is illustrated in Fig. 3.5. A decision 

is made at the output of the matched filter-bank by comparing magnitudes of the elements of 

y i , y 2, ••• , y M , each, against the corresponding threshold levels 71 , y2, ••• , ym , respectively. 

Threshold levels are defined as nY units of the signal level (equivalently, noise standard 

deviation) at the output of each filter, denoted by am for the mth matched filter. Every 

time a trigger condition is met, an event (the presence of chirp) is announced.

For each recorded event, we are interested in testing between two exclusive hypotheses: 

(i) the null hypothesis denoted as Hq and (ii) the alternative hypothesis denoted as H 1. Hq
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Figure 3.4: Chirp rate parameter logarithmic distribution over the set of matched filters

Figure 3.5: Block diagram of the chirp detector.
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and H i corres pond to t he cases of chirp absence and chirp presence, respectively.

3 .4 .1  H 0: C h irp  S ign al A b s e n c e

When the chirp signal is absent, the false-alarms generated by a bank of matched filters 

is the sum of false-alarms generated by all the filters. These alarms would be independent, 

if the signals at the outputs of matched filters were a set of independent processes. In that 

case, for small values of FARs, one could say the total number of false-alarms is equal to 

the sum of false-alarms originated form each matched filter. Accordingly, one finds that
M

FAR =  ^  FARm (3.34)
m= i

where FARm is the false-alarm rate originated from the mth matched filter.

Clearly, the assumption that the matched filter outputs are a set of independent processes 

cannot be true as all filters are excited by the same input. Nevertheless, we argue that (3.34) 

will be approximately valid, if the Gaussian processes at the matched filters outputs (in the 

absence of a chirp) are approximately uncorrected. In the next section, through computer 

simulation tests, we find that (3.34) is quite an accurate approximation.

3 .4 .2  H i : C h irp  S ign al P re se n ce

Following (3.25), in presence of a bank of M  matched filters, PMD is formulated as

PMD =  p y (8n : |v i [n] | <  Yi, ■ ■ ■ , I Vm [n] | <  Ym  |H ) . (3.35)

A complete analysis of (3.35) turned out to be a difficult task. Here, to continue, we assume 

that the matched filters outputs are a set of independent random processes and later confirm 

the accuracy of this assumption through computer simulations. With this assumption, one 

finds that
M

PMD ^  Y  PMDm (3.36)
m= i

where

PMDm =  pYm(8n : |ym[n]| <  Ym|H). (3.37)

The numerical results presented in the following section show that (3.36) is indeed an 

accurate approximation for the matched filter bank design that was presented above.

3.5 Numerical Analysis
In this section, we present numerical results that are obtained from the analytical 

formulations of the previous sections to demonstrate the detection performance of the
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proposed detector. These results are also validated by comparing them with simulation 

results. In evaluating (3.28) using the Monte Carlo integration method, we set Nmax =  100 

and a 2 =  10-7 .

Before we proceed with the presentation of our numerical results, we make the following 

observations. It is clear from (3.22) and (3.28) that the performance of the proposed 

detector, for each SNR value, depends on the threshold level 7 . The FAR decreases as 

Y increases. Also, PCD increases as 7  decreases. On the other hand, since the goal is to 

design a system with low FAR and PCD of close to one, for a given SNR, one should choose 

a y that results in a compromise between a low FAR, while keeping PCD close to one. For 

the problem of particular interest to us, we wish to reduce FAR as much as possible while 

not missing any detection of air shower incidents.

We present results of FAR and PCD for different SNR values in the range of [-25,10] dB. 

All numerical results are based on the matched filter bank detector that was designed in 

the previous section.

3 .5 .1  F a lse -A la rm  R a te

Equation (3.22) provides an expression for the FAR at the output of a single matched 

filter. As seen, it is a function of the chirp center frequency and bandwidth as well as 

the normalized threshold level q =  7 /a v. However, it is independent of the chirp rate k. 

Therefore, in the bank of M  matched filters that we use in our design, for a given q, FARm 

will be the same for m =  1,2, ••• , M .

Fig. 3.6 shows the simulated and analytical results of FAR for a single matched filter 

output as well as the collective FAR from the bank of five matched filters in our design. As 

predicted by (3.34), the latter is similar to the former, but shifted vertically by a factor of 

M  =  5.

We see that the simulation results match the theoretical results perfectly for the single 

matched filter case. However, for a bank of matched filters, we notice a deviation of 

the simulation results from the theoretical results at lower threshold values. This can 

be understood as the joint probability of false-alarm between different filters is relatively 

high at low threshold values, which is being neglected in our theoretical framework.
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Figure 3.6: Comparison of the simulated and analytical false-alarm rate over a filtered
AWGN process.

3 .5 .2  P r o b a b il ity  o f  D e te c t io n

3 .5 .2 .1  D e te c t io n  P e r fo r m a n c e  t o  M a tc h e d  C h irp s

In order to grasp a better understanding of the detection properties of the proposed 

detector, we start by looking at chirp signals that are perfectly matched to one of the filters 

in the filter bank. Fig. 3.7 presents the probability of detection under the matching case, for 

the five chirp slopes. The results are based on the expression given in (3.28) and simulation 

results. These results clearly prove the validity of our theoretical calculations. In addition, 

we see that PCD decreases as the chirp slope increases. This can be understood, if one 

notes that a larger chirp slope corresponds to a shorter chirp duration and, hence, a smaller 

correlation/signal peak at the filter output. This observation suggests that the chirps with 

smaller slopes are more likely to be seen in the proposed detectors.

3 .5 .2 .2  D e te c t io n  P e r fo r m a n c e  t o  M is m a tch e d  C h irp s

In order to appreciate the performance advantage of the proposed detector, we have 

to understand the limitation of the detection performance under the worst case scenario. 

Hence, we consider the case of receiving a linear chirp signal with a mismatched chirp 

slope and examine the resulting detection performance. In particular, we desire to see 

the effect of the maximum mismatch on the detection performance. For five matched
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Signal-to-noise ratio (dB)

Figure 3.7: Probability of detection versus signal-to-noise ratio by the bank of filters 
under the matching case for threshold 12am.

filters, the chirp slopes with maximum mismatches within the chirp rate interval would 

be |k1^v/A , k2/a /A , k3/\ /A , k4/\ /A , k5/\ /A , k5\/A }. Fig. 3.8 shows the probability of 

detection by the bank of filters for these chirp slopes. This figure demonstrates the expected 

degradation of detection performance with the increase of chirp rate. As observed, the 

maximum degradation observed corresponds to the chirp rate k5\/A. Comparing the results 

of Fig. 3.7 and Fig. 3.8, one finds that this degradation is about 2 dB. Clearly, this can 

be reduced by increasing the number of matched filters in the bank, or, to lesser extent by 

rearranging the positions of the five matched filters.

Next, we fix the slope of the chirp signal to be matched to the first filter (k1 =  

-1.1161 MHz/^s) and test the detection performance under different threshold levels. 

Fig. 3.9 presents PCD plots as a function of SNR for threshold levels (7a1,10a1,13a1). 

As observed, the curves shift to the right 2 to 3 dB each time the threshold is increased by 

3a1 units. It is also interesting to note that the PCD of the chirp signal with rate k2/a /A  

is higher than that of the chirp signal with rate k1^\/A, although the former chirp rate is 

higher. This happens due to the fact that the detection of the chirp signal with the rate 

k2/\ /A  is dominated by two matched filters (those with the chirp rates of k1 and k2), while 

the detection of the chirp signal with the rate k1^v/A  is dominated by only one matched
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Figure 3.8: Probability of correct detection of different chirp signals versus 
signal-to-noise ratio by a bank of filters for threshold 12am.

filter (the one with the chirp rate ki).

3 .5 .3  R e c e iv e r  O p e ra t in g  C h a ra cte r is t ic

Fig. 3.10 shows the receiver operating characteristic (ROC) curves for the proposed 

detector. This set of curves show the calculated PCD of a linear chirp signal, with the 

rate of —1 MHz/^s, versus the FAR of the HT-based detector for a number of low received 

SNR values (-8 dB,-10 dB,-12 dB). Each point on each of the ROC curves corresponds to 

a specific threshold level. As depicted in the figure, we can find a range of threshold values 

[6.5am,7am] where FAR is in order of 10-2 , few events per hour, or lower and at the same 

time, we can get almost complete probability of detection for the transmitted chirp at SNR 

of —12 dB.
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Figure 3.9: Probability of correct detection of -1.1161 MHz/^s versus signal-to-noise 
ratio by a matched filter under different threshold levels.

FAR (Hz)

Figure 3.10: Probability of correct detection and false-alarm rate versus normalized
threshold (^) under various SNR values.



CHAPTER 4

EXPERIMENTAL RESULTS 

4.1 Radar Experiment Setup
The Telescope Array RAdar (TARA) project utilizes a bistatic radar technique to detect 

radar echoes from the ionization trails of ultra-high energy cosmic rays (UHECR) as they 

pass through the earth’s atmosphere [10]. Fig. 4.1 shows the structural block diagram of the 

bistatic radar system. TARA is considered the largest and most ambitious attempt yet at 

detecting UHECR via their radar signature. TARA is co-located with the Telescope Array, 

the largest conventional cosmic ray detector in the Northern Hemisphere, in radio-quiet 

Western Utah.

TARA employs a very high frequency (VHF) continuous wave (CW ) transmitter station 

at Millard county in Delta, Utah. This transmitter station, operating under FCC license, 

illuminates the sky with 40 kW of power above the Telescope Array surface detectors with a 

continuous 54.1 MHz carrier signal. We make use of analog television transmitters donated 

to the University of Utah by Salt Lake City’s KUTV Channel 2 and ABC4 [5].

The TARA receiver antenna site is located at the Telescope Array Long Ridge Fluorescence 

Detector site, 40 km distant from the transmitter site. Receiver antennas are dual-polarized 

log periodic dipole antennas (LPDA) designed to match the expected radar echoes frequency 

characteristics. Due to noise below 30 MHz and the FM band above 88 MHz, the effective 

band is reduced to 40 to 80 MHz. There are three dual-polarization antennas at the receiver 

site, two of which are currently connected to the data acquisition system (see Appendix D). 

As depicted in Fig. 4.1, the outputs of the receiving antennas pass through the receiver RF 

front-end which consists of a bank of RF limiters, FM filters and amplifiers (see Appendix E). 

The amplified and filtered RF signals are then fed to our receiver data acquisition (DAQ) 

system. The DAQ is designed to detect chirp echoes and confront the problem of a variable 

noise environment. Appendix F gives more details about expected chirp echoes from cosmic 

ray air showers.
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Figure 4.1: Elements of the bistatic radar system.

In our design, we use the National Instruments FlexRIO system which provides an 

integrated hardware and software solution for a custom software defined radio DAQ. At the 

input, we utilize the NI-5761 adapter module with a sample rate (Fs) 250 million samples per 

second (MSPS). Our system-on-chip design is implemented over a Virtex-5 FPGA which 

is integrated with PXIe interface for host connectivity. A description of receiver DAQ’s 

subsystems along with the DAQ implementation details are discussed in Appendix G.

In this chapter, we study the performance of the proposed rake-like receiver. For receiver 

testing, we conduct two basic performance tests through a series of radar measurements. 

First, we evaluate the performance of the proposed detector under the existing non-Gaussian 

environment. The goal from this test is to measure the average false-alarm rate (FAR) 

acquired by the proposed detector. Second, we assess the detection performance of the 

proposed detector for a typical chirp signal versus SNR under a specified threshold level 

that corresponds to a proper level of false-alarm rate.

Before we proceed with the presentation of the performance results, we make the following 

observation. It is clear that the system performance, for each SNR value, depends on the 

chosen threshold level. The FAR decreases as the threshold increases. Also, PCD increases
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as the the threshold decreases. Our goal from the performed analysis in this chapter is to 

design our system with low FAR and almost complete PCD, for a given low SNR. This can 

be achieved by choosing a threshold that results in a compromise between a low FAR, while 

not missing detection of air shower incidents at a specified SNR level.

As mentioned before, our radar system receives multiple undesirable frequency tones 

which might originate from different sources around the receiver unit, including the radar 

carrier signal (54.1 MHz). These persistent tones are powerful, specifically the carrier signal, 

and thus, lead to a high misleading RMS at the output of the matched filters. However, the 

observed tones can be easily filtered out. In our design, we implement a digital band-pass 

filter at the input stage of our detector (before the amplitude limiter) that only keeps the 

band of interest.

4.2 Performance Evaluation
Detection performance of the rake-like receiver has been evaluated under two test signal 

conditions: noise only or signal plus noise. The ability to detect a received chirp signal in 

background noise depends on the ratio of the signal power to the background noise power. 

Radar carrier power dominates the background so two quantities are used to describe the 

background noise. First, we define the ratio of the test chirp signal power to the radar 

carrier power over the time interval that chirp presents as the signal-to-carrier ratio (SCR). 

Second, we define the ratio of the test chirp signal power to the noise power at the input of 

the rake-like receiver, after filtering out the radar carrier, as the signal-to-noise ratio (SNR), 

viz.,

SNR =  P  , (4.1)

where Pc is the chirp signal power and av is the standard deviation of the background noise 

after filtering out the carrier signal.

4 .2 .1  F a lse -A la rm  R a te

Fig. 4.2 depicts the average false-alarm rate versus a range of normalized threshold 

values. We define q as the normalized threshold level. For high threshold values (q >  7), we 

can see that false-alarm rates are relatively high. Based on our current DAQ settings, FAR 

of 10 Hz leads to storing 130 GB of data every day; this is very high storage and would 

correspond to excessive postprocessing. In order to achieve a 2 Hz false-alarm rate, q has a 

value of 9.5; this is a high threshold level and shall cause a degradation in chirp detection 

performance.
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Figure 4.2: False-alarm rate versus normalized threshold units of the standard
deviation at each filter output).

4 .2 .2  P r o b a b il ity  o f  C o r r e c t  D e te c t io n

The second test applies a theoretical chirp signal with various chirp rates and SNR values 

that correspond to a reasonable false-alarm rate. Based on data storage and postprocessing 

computational requirements, we have decided that a false-alarm rate of ~  2 Hz is reasonable. 

Due to scarceness of real events, we alternatively placed artificially-generated chirp signals 

in the same background for evaluating the detection performance. Artificially generated 

chirp signals are transmitted in situ to the receiving antennas by an arbitrary waveform 

generator (AFG 3101; Tektronix, Inc.) and a dipole antenna.

A periodic, linear chirp with —1 MHz/^s rate is embedded in a real receiver site 

background wave form. Fig. 4.3 shows the spectrogram of a chirp embedded with -10 dB 

SNR and -40 dB SCR value.

Fig. 4.4 shows detection performance for a 2 Hz false-alarm rate. As seen, the minimum 

SNR for which complete detection is achieved is 2.5 dB. This poor performance is expected 

due to the high threshold level.

To better understand the reason behind the significant amount of false-alarm rates at 

lower threshold levels, we carefully analyze the background noise components. Fig. 4.5 

shows a sample of the acquired data at the field using our receiver, where FM radio signal 

range and noise below 30 MHz is filtered out. From the time-frequency representation, we 

can deduce that the background noise is punctuated with deceptive single-frequency tones
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Figure 4.3: Time-frequency (spectrogram) representation of a linear, -1 MHz/^s, -10 dB 
SNR received chirp signal as recorded by the DAQ system.

and random noise spikes. The major source of false-alarm is the sudden noise spikes as they 

cover wide frequency bands and arrive at random instants of time. These spurious signals 

cause an erroneous radar detection decision by exceeding the detection threshold and thus, 

lead to high and variable false-alarm rates, even at high threshold levels.

To confront this challenge, a robust signal processing technique is needed to filter the 

random noise spikes and thus, we would be able to bring the threshold lower and enhance the 

detection performance. In the next two chapters, we work out two different solutions for this 

problem. In Chapter 5, we introduce a simple technique that alleviates the effect of transient 

background and thus, significantly enhances the detection performance of nondeterministic 

chirp signals. In Chapter 6, we introduce a smart time-frequency domain method that can 

efficiently filter the existing non-Gaussian components to a great extent.

chirp
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Figure 4.4: Probability of correct detection for the rake-like receiver with q =  9.5 and
false-alarm rate of ~  2 Hz.
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Figure 4.5: Spectrogram of background noise sample at the field.



CHAPTER 5

AMPLITUDE LIMITER FOR TRANSIENT 
BACKGROUND ALLEVIATION

In our radar application, we strive to extract every bit of performance that we are able 

to coax from our system. A few dB additional gain of signal-to-noise ratio (SNR) is possible 

to achieve with a significant increase in transmitted power. In this chapter, we study the 

influence of amplitude limiting the noisy signal prior to the rake-like receiver to alleviate the 

effect of the high amplitude spikes. This simple technique would allow us to set the detection 

threshold as low as possible and enhance the ability of detecting signals of signal-to-noise 

ratio (SNR) in negative dB range.

5.1 Proposed Amplitude Limiter
The background signal of our radar receiver is observed to be impulsive or spiky. These 

predominant spikes represent the main source of false-alarms due to their coverage of wide 

frequency bands. Consequently, the threshold of our proposed detector must be raised in 

order to keep the desired level of false-alarm rate sufficiently low. This challenge gives rise to 

the need for smart analysis to reduce false-alarms while keeping the detection threshold as 

low as possible to avoid miss-detection of the rare events. Optimally, impulsive noise should 

be removed. This can be achieved through complete knowledge of the distinct features of the 

transient signals in time and frequency domains. However, in our application, impulsive 

noise statistics are observed to have time and frequency varying characteristics. Thus, 

we resort to a suboptimal approach that would mitigate the effect of noise spikes and 

significantly reduce the number of false-alarms.

In this section, we propose adding an amplitude limiter that filters out the high-amplitude 

spikes for reducing the number of false-alarms. In the context of this dissertation, we 

consider the case in which clipping is performed at an arbitrary level.

As shown in Fig. 5.1, we assume that the amplitude limiter clips the amplitude of the 

received signal to a factor k of its root mean square (RMS) value before clipping. The
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Figure 5.1: Clipping at an arbitrary level of raw input signal.

amplitude limiting process can be mathematically modeled as

!y =  x, |x| < k a s

y =  k<7s,x >  k<7s (5.1)

y =  - k < 7 s , x  <  -k(7s,

where x is the raw input, y is the amplitude limited output, and as is the RMS value of 

the signal before clipping. Obviously, the use of the limiter circuit results in reducing the 

relative power ratio of the transient signals. In addition, clipping lowers the signal RMS or 

the mean-square amplitude.

In the next section, we repeat our experimental results and conduct two basic performance 

tests through a series of radar measurements. First, we evaluate the performance of the 

proposed detector under the existing non-Gaussian environment. The goal from this test 

is to measure the average false-alarm rate (FAR) acquired by the proposed detector and 

evaluate the expected improvement that could be achieved by varying the clipping level 

of the proposed amplitude limiter. Second, we assess the detection performance of the 

proposed detector for a typical chirp signal versus SNR under a specified threshold level 

that corresponds to a proper level of FAR. The FAR is expected to decrease as the amplitude 

limiter level decreases. Our goal from the performed analysis in this section is to design our
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system with low FAR and almost complete PCD, for a given low SNR. This can be achieved 

by choosing a threshold and amplitude limiter level that results in a compromise between 

a low FAR, while not missing detection of air shower incidents of a specified SNR level.

5.2 Intuitive Understanding of the Amplitude 
Limiter’s Impact

In our analysis, we consider the case of clipping the amplitude of chirp signals at an 

arbitrary level above the level of the noise, i.e., k >  1. This corresponds to clipping chirp 

signals with positive SNR values. In this section, we study the impact of the amplitude 

limiter on chirp detection performance.

We design our system to achieve complete PCD, for a given low SNR, with a low and 

fixed FAR. In order to achieve this criteria, we would need to set our detection threshold 

as low as possible to avoid missing detection of air shower incidents at a specified SNR 

level. From our reported results in Chapter 3, this corresponds to q <  8, where q is the 

normalized threshold level. Clearly, for these low threshold values, our rake-like receiver is 

able to detect negative SNR chirps and thus, clipping positive SNR chirps should still result 

in complete PCD.

Fig. 5.2 demonstrates the effect of clipping a chirp signal on the correlation sum at 

the output of the filter. Although the signal is clipped (less energy), it still matches the 

polarity of the original chirp signal and that results into a high peak value sufficient to 

exceed nominal threshold values.

To better understand the amplitude limiter’s impact, consider receiving a positive SNR 

chirp signal (10 dB) of a 5 MHz bandwidth and -1 MHz/^s rate. We carefully look at the 

output of the first matched filter in the rake-like receiver whose slope is k equals -1 MHz/^s.

Fig. 5.3 (a) shows the time-domain representation of a chirp signal before and after 

applying the amplitude limiter. Clearly, the limiter distorts the chirp signal and, hence, 

we expect a smaller correlation/signal peak at the filter output. Fig. 5.3 (b) shows the 

output of the filter due to the chirp and its clipped version. As depicted, the peak value 

of the filter’s output due to clipped chirp is still significantly higher than the set threshold 

(q =  8). In Fig. 5.4, we repeat the same test for a lower clipping level (k =  1) and yet, we 

see the amplitude limiter does not degrade detection performance of chirp signals, although 

hard-clipping is performed.

In the next section, we study the influence of the amplitude limiter on the transient 

background and how it can efficiently remove the high amplitude transients.
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Raw chirp signal

to+ T

Figure 5.2: Demonstration of the amplitude limiter’s effect on the correlation sum at the 
filter output. Raw chirp signal (blue) and clipped chirp signal (red), each is correlated 

with a raw chirp signal. The plot at the right shows the correlation result due to the raw 
chirp signal (blue) and the clipped chirp signal (red).

5.3 Performance Evaluation
Consider the following observations about performance analysis. First, it is clear that 

system performance depends on the chosen threshold level rj (user defined, a multiple of am 

as defined previously) for each SNR value. False-alarm rate is expected to decrease as the 

threshold level increases, at the expense of detection efficiency of low SNR chirp signals.

Conversely, detection efficiency increases as the threshold decreases. Second, the false-alarm 

rate is expected to decrease as the amplitude limiter level decreases because high amplitude 

transients are effectively removed. To this date, radar echoes from cosmic ray air showers 

have not been detected, so it is unlikely that the EAS cross section is large enough to 

produce such large amplitude impulses. Therefore such signals are dismissed a priori. Our 

strategy is to choose the threshold and amplitude limiter level that gives high detection 

efficiency for a given SNR and low false-alarm rate.

In this section, we study the performance of the proposed detector along with the 

amplitude limiter to understand the influence of the limiter circuit on the transient signals.
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Figure 5.3: Impact of amplitude limiter (k =  3) on the peak value of the matched filter 
output. (a) Time-domain representation of a 5 MHz linear chirp with -1 MHz/^s rate 

before amplitude limiter (blue) and after amplitude limiter (k =  3) (red). (b) Normalized 
matched filter output due to chirp signal before clipping (blue) and after clipping (red). 

Threshold level (8q) is the black solid line.

We conduct two basic performance tests through a series of radar measurements to determine 

the ideal amplitude limiter level and the efficiency as a function of MF threshold. First, 

we evaluate the performance of the proposed detector under the existing non-Gaussian 

environment. The goal of this test is to measure the average false-alarm rate of the 

non-Gaussian noise environment and evaluate the improvement that could be achieved 

by adding the amplitude limiter and varying the clipping level. Second, we assess the 

detection performance for a typical chirp signal versus SNR under a specified threshold 

level that corresponds to a proper level of false-alarm rate.

As mentioned before, our radar system receives multiple undesirable frequency tones 

which might originate from different sources around the receiver unit, including the radar 

carrier signal (54.1 MHz). These persistent tones are powerful, specifically the carrier signal, 

and thus, lead to a high misleading RMS at the output of the matched filters. However, the 

observed tones can be easily filtered out. In our design, we implement a digital band-pass 

filter at the input stage of our detector (before the amplitude limiter) that only keeps the 

band of interest.

Fig. 5.5 depicts the false-alarm rate versus a range of threshold values for different 

settings of the amplitude limiter. We would typically prefer to have our detector set where
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Figure 5.4: Impact of amplitude limiter (k =  1) on the peak value of the matched filter 
output. (a) Time-domain representation of a 5 MHz linear chirp with -1 MHz/^s rate 

before amplitude limiter (blue) and after amplitude limiter (k =  1) (red). (b) Normalized 
matched filter output due to chirp signal before clipping (blue) and after clipping (red). 

Threshold level (8q) is the black solid line.

the false-alarm is as low as reasonably achievable. We can see that the level of the amplitude 

limiter has a significant effect on reducing the false-alarm rate as a result of reducing the 

relative power ratio of the embedded spikes. Efficiency curves for different amplitude limiter 

levels (described in the next paragraphs) show that the amplitude limiter does not decrease 

detection performance of chirp signals, although they are also clipped. Results are shown 

in Fig. 5.5 for three different amplitude limiter levels. Consider the following interpretation 

of Fig. 5.5. In order to achieve a 2 Hz false-alarm rate, q has a value of six for k =  3 and 9.5 

for k =  10 (black dashed line). Thus, detection thresholds can be decreased which enhances 

positive detection of low SNR signals.

The second test applies a theoretical chirp signal with various chirp rates and SNR values 

that correspond to a reasonable false-alarm rate. Based on data storage and postprocessing 

computational requirements, we have decided that a false-alarm rate of ~  2 Hz is reasonable. 

Due to scarceness of real events, same as in the previous chapter, we alternatively placed 

artificially-generated chirp signals in the same background for evaluating the detection 

performance. Artificially generated chirp signals are transmitted in situ to the receiving 

antennas by an arbitrary waveform generator (AFG 3101; Tektronix, Inc.) and a dipole
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Figure 5.5: False-alarm rate versus relative threshold ('q units of the standard deviation 
at each filter output) for different amplitude limiter levels.

antenna. Both linear chirp signals and a simulated radar echo are used in measuring 

detection performance.

5 .3 .1  L in ear C h irp  S ignal

A periodic, linear chirp with -1 MHz/^s rate is embedded in a real receiver site background 

wave form. Fig. 4.3 shows the spectrogram of a chirp embedded with -10 dB SNR and -40 dB 

SCR value.

Fig. 5.6 shows detection performance for a 2 Hz false-alarm rate. Efficiency is shown 

for cases where the amplitude limiter is removed and at two different levels that result 

in the same false-alarm rate, each with different threshold levels. The minimum SNR for 

which complete detection is achieved is 5 dB when no amplitude limiter is applied, 0 dB for 

k =  10 (soft clipping), -6 dB for k =  3 (hard clipping). These results imply that by using 

the amplitude limiter, high detection performance can be achieved with low complexity. To 

maximize detection ability, the amplitude limiter is currently fixed at k =  3.
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Figure 5.6: Probability of detection for the rake-like receiver.

5 .3 .2  S im u la ted  A ir  S h ow er

In a more realistic test, a simulated radar echo from a 10 EeV air shower inclined 30° 

out of the T X  !  R X  plane and located midway between the transmitter and receiver 

is scaled and transmitted to the receiving antennas using a function generator. Fig. 5.7 

shows a spectrogram of the received waveform with 5 dB SNR and -25 dB SCR. The echo 

is broadband (about 25 MHz) and short in duration (10 ^s). Detection efficiency of the 

emulated chirp is shown in Fig. 5.8. The minimum SNR for which complete detection is 

achieved is -7 dB.
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Figure 5.7: Spectrogram of simulated air shower radar echo with 5 dB SNR. The radar 
echo is from a simulated shower inclined 30° out of the T X  !  R X  plane and located 

midway between the transmitter and receiver.
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Figure 5.8: Probability of correct detection for the rake-like receiver using q =  6 for a 
simulated air-shower echo that is scaled and emulated with a function generator.



CHAPTER 6

HOUGH TRANSFORM-BASED CHIRP 
DETECTOR

In our detection problem, two different signal spaces are considered. The first space is 

obtained by applying DFT to segments of the received signal. This is referred to as TF-space. 

The second space is obtained by applying Hough-transform to points in TF-space, hence 

termed as HT-space. We note that here we are dealing with discrete-time signals in both 

TF-space and HT-space. Accordingly, for each sample set, TF-space and HT-space are 

represented by a pair of matrices. For clarity of presentation, we refer to the elements of 

TF-space matrix as points, and to the elements of HT-space matrix as cells.

In processing TF-space points, we introduce a TF-threshold 7  and only points which 

exceed 7  are Hough-transformed. We also introduce an HT-threshold (  and whenever the 

amplitude of a cell in the HT-space exceeds (, signal detection is declared.

In this chapter we evaluate the detection performance of the proposed detector. A  

false-alarm is declared when in the absence of a chirp signal, one of the cells in the HT-space 

exceeds (, and probability of false-alarm (PFA) is measured accordingly. The average 

number of false detections per unit of time is defined as the false-alarm rate (FAR). In 

presence of a linear chirp, when the amplitude of at least one of the cells in HT-space 

exceeds (, we say a correct detection has occurred, and accordingly define the probability of 

correct detection (PCD). The complement of PCD is termed probability o f missed-detection 

(PMD).

6.1 HT-Based Detection Algorithm
Hough transform (HT) is a pattern detection technique that is commonly used in digital 

signal and image processing. It is frequently used as a robust method for finding lines in 

noisy backgrounds [40,47]. The main premise of the technique is transforming the spatial 

image pattern into a space of possible parameter values [48]. In that sense, HT converts 

a complex pattern detection problem in time-frequency space “ TF-space” into a simple
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peak detection problem in Hough-transform space “HT-space.” In the following context we 

focus, in particular, on using HT for linear chirp detection. TF-space in this case is the 

time-frequency representation of the received signal samples, and the variables of HT-space 

are those used to determine the linear variation of the instantaneous frequency in TF-space, 

viz., chirp parameters.

The TF-space is represented by ( t , f ), where t is the time and f  is the frequency; see 

Fig. 6.1(a) . The HT-space, on the other hand, is represented by (k,c), where k is the linear 

chirp slope and c is the chirp intercept (the intercept of the line with the c axis in the (k,c) 

plane) or the initial frequency.

In our analysis, we use short time Fourier transform (STFT) as a mean of signal 

evaluation in time-frequency plane. The incoming data samples, symbolized in vector format 

as x, are divided into overlapping data blocks in time. Each data block “segment” is chosen 

to be short enough so that the signal can be considered stationary within the segment. 

The choice of the data block size is based on a tradeoff between temporal and frequency 

resolution. For each data block, a windowing function w  is applied to localize the signal 

energy in time and then N-point DFT is applied to each windowed segment.

The N-point discrete-time STFT at time m can be described mathematically as [49]

N - i
Xnm  =  X  XiWi-me-j2wn N , n  =  0 ,1 , . . . , N  — 1 (6.1)

i=0

where n and m denote the corresponding frequency index and data-block index, respectively. 

The window sequence wm is assumed to be nonzero in the interval [0,N-1], where N  is the 

number of window samples.

In our application, expected radar echoes lie within a specific frequency band. We take 

advantage of this feature by only considering the bandwidth of interest. We denote the 

indices of the start frequency and the end frequency as n i a nd n 2 , re s p ec t i vely, and we note 

that Nb =  n2 — n  +  1 is the number of frequency indices that cover the band of interest.

Complex values X n>m are considered as elements of a matrix X , known as spectrum 

matrix, that we refer to as

X  =  [ Xn , m] , n  =  m ,n  i +  1 , . . . , i  ; m =  0 ,1 , . . . , M  — 1 (6.2)

where M  defines the number of recorded time-blocks. The magnitude squared of the 

elements of X  yields to the TF-space matrix

S =  [|Xn,m|2] , n  =  rn ,n i +  1 , . . . ,n2;  m =  0 , 1 , . . . , M  — 1. (6.3)
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Figure 6.1: Illustration of HT for a linear downward chirp with slope -1 MHz/^s, start
frequency 65 MHz, and bandwidth 5 MHz.

Each element in S is compared to the TF-threshold 7 . We choose 7  as 70 times ,̂ where 

 ̂is the mean of the entries of S. The parameter 70, thus, may be thought as the normalized 

version of 7  with respect to the background noise. This way, the HT scheme that we adopt 

is capable of tracking the noise level. Time-frequency points that exceed 7 , signified by 

the parameters (tm, f n), known as seed points, are transformed into the following lines in 

HT-space

ck — f n tmKk. (6.4)

Moreover, each line is weighted by the amplitude of its corresponding seed point in the 

TF-space matrix. The mapped lines to HT-space are then integrated to form the accumulator-matrix, 

which is initially reset to zero. For more clarity, equation (6.4) can be manipulated in the 

following form

f i — Kkti +  ck j i  — n 1,n 1 +  1) . . . ;  n2 (6.5)

which shows that a single cell (nk ,ck) in the HT-space corresponds to a single straight line 

in the TF-space. Accordingly, lines of the HT-space that are mapped from collinear points 

in the TF-space all intersect at a common cell in the HT-space resulting in a local peak as 

shown in Fig. 6.1(b). If the peak is detected, the corresponding line in TF-space can be 

easily located.

In the case of deterministic chirp detection, the cell in HT-space at which the peak 

happens is known. However, in our case, we are interested in detecting a linear chirp signal 

with unknown parameters and thus, the local peak detection problem is translated to a
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peak searching over a range of locations. Detection occurs when the amplitude of any of 

the accumulator-matrix cells exceed C. We choose C =  CoY, where Co may be thought as a 

normalized version of C. Also, recalling the relationship y =  YoV, one may note that the 

choice of C also relates to the level of the background noise, hence, the method adopted 

in this chapter has a noise tracking capability. We consider an incremental advance of the 

spectrum matrix for each accumulator-matrix computation. The step size of the incremental 

advance can be defined as the sampling-period of the TF-space Ts, whose minimum value is 

1 time-sample. If Ts is set to its minimum value, the accumulator-matrix can be efficiently 

computed from the results of the previous accumulator-matrix without missing any possible 

detection and effectively reducing the number of possible false-alarms. On the other hand, 

if a chirp exists, the corresponding detection instant is variable and occurs for an indefinite 

received-percentage of the chirp. Fig. 6.2 shows the advance of a linear chirp signal in 

time that conveys the stated observation. In this chapter, we consider the detection to be 

declared from the first detection instant then we start observing the TF-space for future 

chirps after skipping M  samples.

6.2 Image Space Properties
The choice of the window function and its related parameters plays an important role 

in the localization of the signal in the time-frequency plane and thus, minimizing spectrum 

leakage. In the following subsections, we shed more light on the window related parameters.

6 .2 .1  W in d o w  T y p e

The window function is selected to localize the signal energy in time and avoid time 

discontinuities. The window type is chosen to trade off the width of its main lobe and 

attenuation of its side-lobes.

Figure 6.2: Advance of chirp signal in time.
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The rectangular window is defined as

1, 0 <  i <  Nw -  1 
0, otherwise.

(6.6)

The two signals x i and wi are multiplied in the time-domain where the corresponding 

operation in the frequency domain is a circular convolution of the spectra. Despite being the 

simplest window, rectangular window has very strong side-lobes and thus, poor localization 

in the frequency domain.

The choice of window length of the spectrogram is crucial as it should be selected during 

the time in which the spectral characteristics are nearly constant. It provides a compromise 

between temporal and frequency resolution: a shorter window size means more temporal 

localization but less spectral discrimination. In other words, if the selected window is too 

short, STFT introduces significant smearing of temporal and spectral information (blurring) 

which can distort the spectral information over time [50]. However, for a too long window, 

STFT fails in capturing the rapid changes of the spectral content. For a linear chirp signal 

of constant amplitude, using a rectangular window, the optimal window length is given

In our detection problem, we aim to obtain the maximum possible number of collinear 

points using the minimum possible number of computations. The choice of the amount of 

overlapping between successive windows can be seen as a trade-off between the number of 

collinear points and the number of time-blocks per a single spectrum matrix.

In our application, radar events are very rare, probably a few events per week, and 

occur at random instants of time. Thus, noise reception is expected to be dominant. This 

challenge gives rise to the need for smart background analysis to reduce false-alarms while

out. From the time-frequency representation we can deduce that the noise background is

6 .2 .2  W in d o w  L en g th

by [51]

seconds. (6.7)

6 .2 .3  W in d o w  O v e r la p p in g  P e rce n ta g e

6.3 Radar Background Challenges

keeping the detection threshold as low as possible to avoid miss-detection of the rare events. 

Fig. 6.3 shows a sample of acquired data at the field, where FM radio signal range is filtered
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Figure 6.3: Spectrogram of background noise at the receiver site. Frequency and time 
are on the vertical and horizontal axes, respectively, with color representing the power in a 
particular frequency component. The carrier signal is represented by the horizontal line at
54.1 MHz. Broadband transients are the vertical lines and stationary noise sources are the

horizontal band near 30 MHz.

rich with multiple undesirable components, including stationary signals as the persistent 

frequency tones located at 28.5MHz and 54.1MHz as well as the broadband transient signals 

that are randomly located in time-domain. In this section, we investigate the background 

signal components and explore some additions to the HT detector for reducing the number of 

false-alarms, speeding-up the detection test, yet without degrading the detection efficiency.

When frequency-tones are received within the band of interest, they share the linear 

variation in time-frequency plane with the expected linear-chirps, but with a zero slope. 

These tones can be easily discerned in the HT-space and their effect can be alleviated 

by neglecting their corresponding local-peaks located at (k =  0) cells so that other peaks 

can be investigated using the same procedure. However, the strength of powerful tones 

lies beyond their misleading local-peaks as they also result in a grid of high-variance cells 

that may accumulate in time and result in false peaks that are randomly located. Thus, 

we identify the presence of powerful tones for each computed TF-space matrix, then the 

detected components are excluded from the test simply by forcing them to zero, so that 

other time-frequency points are investigated.

6 .3 .1  P o w e rfu l T on es
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6 .3 .2  N o ise  Spikes

Transient signals “spikes” are very common in our scenario and they represent the main 

source of false-alarms due to their coverage of wide frequency bands. Consequently, the 

threshold of our proposed detector must be raised in order to keep the desired level of 

false-alarm rate sufficiently low. This challenge gives rise to the need for smart analysis 

to reduce false-alarms while keeping the detection threshold as low as possible to avoid 

miss-detection of the rare events. Narrow spikes are also featured by their high slopes 

in time-frequency plane (almost vertical lines). After Hough transformation, they produce 

local-maxima in the accumulator-matrix, which shall be collocated at the maximum slope-points. 

Consequently, they can be neglected due to the prior knowledge of the expected range of 

chirp-slopes and then searching process for chirps continues.

In the previous section, we explored the time-frequency domain features that efficiently 

filter the undesirable noise components, and hence, our radar problem is reduced to signal 

detection in a white-Gaussian noise background.

First, we note that the signal of interest has the form of

where f c  denotes the chirp center frequency, f H start (high) frequency and f L end (low) 

frequency.

The received signal Xj, thus, is modeled as

where ui is an additive white-Gaussian noise (AWGN). For our radar application, we 

consider two received signal hypotheses: either noise only (H0) or signal-plus-noise (H i). 

As mentioned in Section 6.1, a detection is declared when the amplitude of any of the 

accumulator-matrix cells exceed the HT-threshold.

For Ho, we wish not to detect anything and thus, minimize false-alarms. However, for 

H 1, we wish to detect the chirp signal with a high probability, when it exists. In other

6.4 Detection Analysis

(6.8)

where rect( ■ ) denotes the rectangular function, i denotes the time index, Nc denotes the 

number of chirp signal samples, and the time-varying phase ✓i is expressed as

✓i =  2 f  i -  ^Ki2, i  =  0 , 1 , . . . ,Nc  -  1 (6.9)

Xj =  Cj +  V j , i  =  0 , 1 , . . . ,Nc  -  1 (6.10)
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words, we wish to choose the pair of thresholds (7 , C) such that, for a given signal-to-noise 

ratio (SNR), leads to a PCD close to one, while keeping a reasonably low value of PFA. The 

pair of thresholds’ selection is subject to a compromise between aiming at high detection 

efficiency to avoid missing real radar events and maintaining a low level of false-alarms to 

keep storage low and, hence, accelerating the offline processing of the stored data.

6 .4 .1  H 0: C h irp  S ign al A b s e n c e

We assume the Gaussian noise samples ui have a zero mean, are independent and 

identically distributed, and have a variance of =  1. Thus, one can deduce that the 

corresponding elements of the TF-space matrix S are exponentially distributed [52]. Hence, 

the probability of each element of S exceeding the TF-threshold 7  is obtained as

Pn =  P ( s >  7 )
r 1

=  e~sds
Jj

=  e~Y, 0 <  7  <  1  (6.11)

Here, the subscript “n” is to signify that the probability term arises from noise only. Each 

time-frequency point exceeding 7  contributes to a number of cells in the HT-space. We 

denote the maximum number of time-frequency points that can participate in a given cell 

in the HT-space as L j, where j  is the cell index. We note that Lj varies from one cell to 

another.

6 .4 .1 .1  S in g le  C e ll

First, we focus our interest on studying a given cell in the HT-space that corresponds 

to an arbitrary chirp intercept with index n0 and chirp rate with index k0. In this case, Lj 

equals L0. Consider the case where l seed points out of L0 to have exceeded the TF-threshold 

and use si to denote the corresponding elements of S. The accumulated cell value in the 

HT-space is then given by

ao =  X  si • (6.12)si
i= 1

Next, we note that

Lo
P (ao >  ( |Ho) =  X  P(Vi : si >  7 |Ho)P(ao >  C|{Vi : si >  7 }) (6.13)

1=1

where, here, Vi is the shorthand notation for “for all values of i in the range of 1 to l.” 

Using (6.11), the first probability on the right-hand side of (6.13) is calculated as
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P(Vi : Si >  y |Ho) =  P j (1 — Pn)L 0  (6.14)

The second probability term on the right-hand side of (6.13) can be evaluated as

/1
P(ao|{Vi : Si >  y }) . (6.15)

Since all the sis are independent random variables then the probability distribution of their 

sum, a0, is the result of convolving the probability distributions of individual si . The 

probability density function (PDF) of a single random variable si given that si exceeded y 

is

p (s i|si >  Y) =  p(P (>  ) , S i 2 [Y, l )P(Si >  y )

-  P(Si) - ( S i  — Y)P(si >  y )
=  e-(si-Y)u(si — y ) (6.16)

where u(-) denotes the unit step function. We note that the convolution of l exponential 

variates leads to a chi-squared distribution with 21 degrees of freedom [53]. Hence,

P(ao|{Vi : Si >  y }) =  (° (  —̂ — e- ( “0-l7)u(ao — 1y ). (6.17)

Using the PDF in (6.17), one will obtain the following result

P(ao >  C|{Vi : Si >  y }) =  J  (° (  — — e- ( “0-l7)u(ao — 1y) dao

=  j 1  (ao — lY )l-i e-(ao-z7) dao
W ,  l7) (1 — 1)! o

=  [ 1  z (l-i) d
8max((C-i7),o) (1 — 1)!

1, C <*Y
r(i ,  C — h )

(1 — 1)!

u(1Y — C )+ ((1 — 1 ) / ) u(C — ^ ) . (6.18)

Substituting (6.14) and (6.18) in (6.13), we get

Lo
P  (ao >  C H o) =  P j (1 — Pn )L° (  u(lY — C)

:i, c — i  
(1 — 1)!

+  T(ln C ^  u(C — *y)) (6.19)
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where r (x,y)  is the incomplete gamma function, defined as, ([43], pp. 899, Eq. (8.352))
x-1 k

r (x , y) — (x -  1)! e-y  X  f ,  (6.20)
k=0

6 .4 .1 .2  H T -s p a c e  M a tr ix

In the actual problem, a number of cells out of the whole accumulator-matrix are 

compared against the HT-threshold C. A false-alarm is declared if the amplitude of any of 

these cells, aj , exceeds C. We denote the number of cells of interest as Ns, and assume that 

they are indexed from 1 to Ns. This leads to the following equation for the probability of 

false-alarm:
Ns

PFA — 1 -  P(aj  <  C|H) (6.21)
j = 1

where

P (a j <  C|H) — 1 -  P (a j >  C|H). (6.22)

Next, we need to evaluate Lj  for each cell j  in the accumulator-matrix to be able to obtain 

P (aj <  C|H0) for each. In order to do so, we follow a numerical method similar to the one 

introduced in [54].

Consider all points in the TF-space (Nb x M ) to be equally weighted (unit amplitude) and 

to have exceeded TF-threshold. Each TF-space point is then transformed into K  cells in the 

HT-space. Without loss of generality, we consider our radar application as an appropriate 

example to understand and visualize the variation of Lj  along the accumulator-matrix. 

For the echoes being reflected from cosmic ray induced air showers, the chirp rates of 

interest belong to the interval K — [-3 ,0 ] MHz/^s. Also, the expected chirp intercept 

lies in the interval [55, 70] MHz. In applying STFT, we consider 256-point DFT size 

with rectangular windowing and no overlapping between windows. Fig. 6.4 depicts the 

corresponding accumulator-matrix for the case of five nonoverlapping data blocks ( M  — 5) 

and Nb — 17. As observed, the contributions received by accumulator-matrix cells vary as 

the chirp slope varies, as well as the chirp intercept. We can see that accumulator-matrix 

cells receive less contributions as the chirp slope increases or the chirp intercept decreases, 

where for both cases less collinear points constitute the linear chirp in the TF-space.
As observed, this contribution varies from 1 to M . The cells that receive minimum 

contribution, aj — 1, correspond to lines in TF-space that cannot exist so contribution 

results from one point. However, cells that receive maximum contribution, aj — 5, correspond 

to lines with maximum number of collinear points in the TF-space. This is the number of 

time-blocks (M ) per a single TF-space matrix.
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Figure 6.4: Accumulator-matrix for all points transformed from 
TF-space. Chirp intercept lies in the interval [55, 70] MHz and 

chirp rates of interest belong to the interval K =  [-3 ,0 ] MHz/^s.
Two hundred and fifty six (256)-point DFT is used in generating

the STFT.

For our detection system, as well as in other real-time applications, system user is more 

interested in evaluating the false-alarm rate (FAR) instead of the probability of false-alarm. 

FAR defines the average number of false detections, under chirp signal absence, per unit of 

time. Since we assume nonoverlapping TF-space matrices, FAR can be directly evaluated 

through the knowledge of probability of false-alarm simply by multiplying PFA and the 

number of processed TF-space matrices per second.

6 .4 .2  Hi'. C h irp  S ign al P re se n ce

In our analysis, we consider a particular chirp signal with known start and end frequencies 

/h  and f L, respectively, and known chirp slope kc. We assume the time length of the 

TF-space matrix to be approximately the same as the chirp duration. Also, for a given 

range of the frequencies / l  to / h , and the specified DFT length, the corresponding frequency 

indices assumed to be ki to k2.

First, we wish to study the PDF of the amplitude peaks in the TF-space. Using a



52

rectangular window, the squared spectrum amplitude for the mth data block is

N-1
|Xn|2 =  | X  Xi,me- j2™ N \2, n  =  ki,ki  +  1 , . . . ,k2 (6.23)

i=0

where x i,m contains the chirp signal ci,m and the additive noise vi;TO. Let Cn denote the 

DFT output due to ci,m and ^n denote the DFT output due to vi;TO, hence, X n =  Cn +  Vn. 

To arrive at a simple expression that facilitates the subsequent analysis of this section, we 

note that

E{|Xn|2} =  E{|Cn +  Vn\2}

=  |Cn|2 +  E{|^n|2} (6.24)

where E{- }  denotes expectation. We replace the terms with the expectation sign on them 

by their instantaneous values. This leads to the approximation

|Xn|2 ~  |Cn|2 +  |̂ n|2, n  =  ki ,ki  +  1, . . . ,k2.  (6.25)

We note that |Cn|2 is determined by the known chirp signal. For a chirp signal, this is 

approximately a constant over the duration of the chirp [23]. We denote this constant by d. 

We also note that |^n|2 is a random variable with an exponential distribution, as discussed 

in Section 6.4.1.

Now we need to calculate the probability of a single-point’s amplitude exceeding the 

TF-threshold, 7 . For any given point of TF-space that is impacted by both noise and a 

chirp signal, one finds that

Pd =  P  ( s >  Y)

=  P ((v  +  d) >  y)

e- v dv, y >  d
J y—d
1 , otherwise.

\ e-(Y -d), y >  d .=  (6.26) 
1 , otherwise.

In the TF-space matrix, of the M  points that are affected by the chirp, l of them may 

exceed y , in amplitude, and thus each is transformed to a line in the HT-space and, 

accordingly, accumulated. The location of the peak in the HT-space is determined through
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the knowledge of the chirp intercept f H and rate kc. The probability of the corresponding 

accumulator-matrix cell ac exceeding C defines PCD and is evaluated as

PCD =  P(ac >  C)
M

=  X P ( V i  : Si >  Y|Hi) P(ac >  C|{Vi : Si >  y }). (6.27)
z=i

Similar to (6.14), the first probability term can be written as

P(Vi : Si >  y |Hi) =  ( M ) P d (1 — Pd)M -l. (6.28)

The second probability term can be evaluated as

/1
P(ac|{Vi : Si >  y }). (6.29)

As in (6.16), the PDF of a single random variable Si given that it has been affected by a 

chirp signal and exceeds y may be written as

P  (Si |Si >  y ) =  P  ) , Si 2 h , i )

( e-(s i-7 )u(Si — y ), Y > d  
=  S _ ( _ d) (6.30)

[ e (Si d)u(Si — y ), otherwise.

For ac, similar to the noise analysis, we evaluate the convolution of l exponential variates 

which leads to a chi-squared distribution with 2l degrees of freedom.

8 (aC( / 1 1 )! e_(“c-l7)u(ac — ^  Y > d 
P (ac|{Vi : Si >  Y}) =  (a( _ J l - i  (6.31)

I ^—  e (ac ld)u(ac — 1y ), otherwise.
V. (1 — 1)!

Using the calculated PDF, the second probability term can be also computed as
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ri  | (0c(1 —  e (“c 1y)u(oc -  Iy) dac, Y >  d 
P(Oc >  C|{8i : si >  y }) =  /  ( (l_ ld );_1

C 1 fl------^—  e_(“c—id)u(oc -  Iy ) doc, otherwise.
(l -  1)!

(Oc(l- - lY)| 1 e " (“c—y) doc, y >  d

x(Ĉ Y) | (oc -  ld) e“ (“c—id) doc, otherwise.
(l -  1)! c ’

„Z-1

=  < ' max
roc

(C—7,0) (l -  1)!
l - l

„ imax(C—1d,0) (l 1)!

=  u(Y -  d) ( u(lY -  C) +  u(C -  lY) -  1)l!Y) 1 +

r(l ,  C -  ld)
u(d -  y ) I u(ld -  C) +  u(C -  ld)

(l -  1)!

Substituting (6.28) and (6.32) in (6.27), we get

PCD
( T ) Pd(1 -  Pd) u(Y -  d ^ u (lY  -  C) +  u(C -  lY)r ( l ! C - /.Y) I +

u(d -  y H u(ld -  C) +  u(C -  ld)

(l -  1)! 
r(l ,  C -  ld) 

(l -  1)!

(6.32)

(6.33)

6.5 Numerical Analysis
Our objective in this section is to demonstrate the detection performance of the proposed 

detector. In addition, we present numerical results that confirm the validity of our formulated 

analytical expressions by comparing them with simulation results. In our study, two separate 

tests are performed. First, we evaluate the performance of the proposed detector under 

white-Gaussian noise. The goal from this test is to measure the probability of false-alarm 

acquired by the HT-based detector. Second, we measure the detection performance of the 

detector for different expected linear chirp signals versus SNR under a certain probability 

of false-alarm.

Before we proceed with the presentation of our numerical results, we make the following 

observations. It is clear from (6.21) and (6.33) that the detection performance of the 

proposed detector is a function of the pair of thresholds (y ,C). In designing our detector, we 

follow the constant false-alarm rate (CFAR) criterion by using an adaptive pair of thresholds 

(Y,C) that keep track of noise variations. Accordingly, (y ,C), in (6.21) and (6.33) expressions, 

can be replaced by their normalized pair (yo,Co). Basically, a detection is declared, either

CO

z
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due to noise only or signal plus noise, whenever the accumulation sum of an HT-space’s cell 

exceeds the defined HT-threshold C, while at least one TF-space cell has to have exceeded 

the defined TF-threshold y .

System parameters are chosen as follows. The sample rate is 250 mega samples per 

second (MSPS). The choice of window length of the spectrogram is crucial as it provides a 

compromise between temporal and frequency resolution: a shorter window size means more 

temporal localization but less spectral discrimination. For a linear chirp signal of constant 

amplitude, using a rectangular window, the optimal window length is given by [51]

I 2
Tw =  \ seconds. (6.34)

V |k|

In order to relate the mentioned formula to our application, we define the expected range of 

chirp slopes through the physical simulation of our radar target. We focus our interest on 

the most probabilistic interval [-3,-1] MHz/^S. Hence, replacing k by its average value in 

(6.34). This leads to Tw =  10-6 . Given the sampling rate of 250 MSPS, this corresponds to 

250 samples, which we round to 256 (the nearest power of 2). We consider the full frequency 

range for the intercept [0,125] MHz and [-3,-1] MHz/^S for the chirp slope with a step size 

of 0.2 MHz/^S. In addition, we consider signals of interest with fixed bandwidth 5 MHz, 

centered at 62.5 MHz. We present results of PFA and PCD for different SNR values in the 

range of [-25,10] dB.

6 .5 .1  P r o b a b il ity  o f  F a lse -A la rm  (PFA )

Equation (6.21) provides an expression for the overall probability of false-alarm. As 

seen, it is a function of the maximum number of time-frequency points, L j , TF-threshold

Y =  Yo ,̂ and HT-threshold C =  CoY. Since Lj varies from one cell to another, probability 

of false-alarm per cell is cell dependent.

We plot probability of false-alarm for a single-cell case, which can be directly extended 

to the cell-matrix case or the whole accumulator-matrix. Fig. 6.5 shows the simulated and 

analytical result of PFA for a single-cell that corresponds to chirp intercept 65 MHz and 

chirp slope —1 MHz/^S. We see that the simulation results match the theoretical results 

perfectly for the single-cell case.

6 .5 .2  P r o b a b il ity  o f  C o r r e c t  D e te c t io n  ( PCD)

We start by looking at the detection efficiency of chirp signals with different chirp slopes. 

Fig. 6.6 presents the probability of detection versus SNR, for two distinct chirp slopes: 

—1 MHz/^S and —1.6 MHz/^S. Simulation results are plotted along with theoretical results
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Norm alized TF -th resho ld  ( |Q)

Figure 6.5: Probability of false-alarm for a single cell in the accumulator-matrix versus a 
range of TF-threshold values under two different HT-threshold values. Simulated and 

analytical results are plotted over white-Gaussian noise.

Signal-to-noise ratio (dB)

Figure 6 .6 : Probability of correct detection versus SNR for two distinct chirp slopes, 
where (k 1 , k2) equals (-1,-1.6) MHz/^s, respectively, under 70 equals 12 and (0 equals 10. 

Simulated (dotted line) and analytical (solid line) results are plotted over AWGN.
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based on the expression given in (6.33). These results clearly prove the validity of our 

theoretical calculations. Furthermore, we observe that PCD decreases as the chirp slope 

increases. This observation can be understood by noting that the higher the chirp slope 

is, the less will be the seed points that contribute to formation of the local peak in the 

accumulator-matrix.

Next, we perform two separate tests to understand the effect of varying the TF-threshold 

and the HT-threshold on the detection performance. First, we evaluate the detection 

performance of a linear chirp signal with a fixed slope (-1 .6  M Hz/^s) under different 

TF-threshold levels and a fixed HT-threshold level. The goal here is to estimate the expected 

deterioration in detection performance by raising the TF-threshold value. Fig. 6.7 presents 

PCD plots as a function of SNR for TF-threshold levels (7q,10q,13q) and fixed HT-threshold 

level (10y ). Again, these results show that theoretical calculations can perfectly track 

simulation results. As observed, the curves shift to the right 2 dB for each 3q units increase 

in the TF-threshold.

On the other hand, we evaluate the detection performance of a linear chirp signal with 

a fixed slope (-1 .6  M Hz/^s) under different HT-threshold levels and a fixed TF-threshold 

level. Fig. 6.8 presents PCD plots as a function of SNR for HT-threshold levels (7y ,10y ,13y ) 

and fixed TF-threshold level (10q). As observed, the curves shift to the right only 1 dB for

Signal-to-noise ratio (dB)

Figure 6.7: Probability of correct detection versus SNR for three different TF-threshold 
levels (7q,10q,13q) and fixed HT-threshold level (10y ). Simulated (dotted line) and 

analytical (solid line) results are plotted over AWGN.
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Signal-to-noise ratio (dB)

Figure 6.8: Probability of correct detection versus SNR for three different HT-threshold 
levels (7y,107 ,13y) and fixed TF-threshold level 10q. Simulated (dotted line) and 

analytical (solid line) results are plotted over AWGN.

each 3y units increase in the HT-threshold. These results show that the TF-threshold has 

a larger effect on PCD than the HT-threshold.

6 .5 .3  R e c e iv e r  O p e ra t in g  C h a ra cte r is t ic

Fig. 6.9 shows the receiver operating characteristic (ROC) curves for the proposed 

detector. This set of curves show the calculated PCD of a linear chirp signal, with the rate 

of -1 .6  MHz/^s, versus the FAR of the HT-based detector for a number of low received 

SNR values (—6 d B ,-7 d B , -8 dB). Each point on each of the ROC curves corresponds 

to a specific pair of TF-threshold and HT-threshold values. In the plotted curves, the 

HT-threshold is fixed to 57 and the TF-threshold is varied within [3q,15qj.

As depicted in the figure, we can find a range of TF-threshold values [4.5q,6.5q] where 

FAR is in order 10-3 few events per hour or less, and at the same time, we can achieve 

complete probability of detection for the transmitted chirp at SNR of —7 dB.

6.6 Radar System Performance
Fig. 4.1 shows the basic elements of our bistatic radar system, located in Delta county, 

Utah. In building the transmitter station, we make use of analog television transmitters 

donated to University of Utah by Salt Lake City’s KUTV Channel 2 and ABC4 [5]. The
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Figure 6.9: Empirical receiver operating characteristic (ROC) curves. Probability of 
correct detection is plotted versus false-alarm rate for different numbers of signal-to-noise

ratio (SNR) levels.

transmitter station, operating under FCC license, broadcasts a continuous 54.1 MHz carrier 

signal with a 40 kW of power above the Telescope Array surface detectors. Also, our radar 

receiver station is placed at Long Ridge, 40 km distant from the transmitter site. We utilize 

the NI-5761 adapter module with a sample rate (Fs) equals 250 million samples per second 

(MSPS). Our system-on-chip design is implemented over the high performance Virtex-5 

FPGA which is integrated with the fast PXIe interface for host connectivity. In our study, 

we consider experimental data acquired at the field using our bistatic radar receiver. We 

compare the performance of the proposed detector to our previously introduced rake-like 

receiver. For the rake-like receiver, we use an amplitude limiter to get rid of the impulsive 

noise. The amplitude limiter clips the amplitude of the received signal to a factor of k to its 

root mean square (RMS) value before clipping. This would allow us to bring the detection 

threshold of the LRT detector lower and thus, challenge the detection performance of the 

proposed HT-based detector.

For radar system testing, we conduct two basic performance tests through a series of 

radar measurements. First, we evaluate the performance of the proposed detector under the 

existing non-Gaussian environment. The goal from this test is to measure the probability 

of false-alarm (PFA) acquired by the HT-based detector. Second, we assess the detection 

performance of the proposed detector for a typical chirp signal versus SNR under a specified
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pair of thresholds (7 ,() that corresponds to a reasonable level of PFA.

As we noted before, our radar system receives multiple undesirable frequency tones that 

might originate from different sources around the receiver unit, including the powerful radar 

carrier signal (54.1 MHz). Using the smart features of our detector, these persistent tones 

can be filtered out. In addition, since we know the band of interest, we apply a digital 

band-pass filter (60-65) MHz at the input stage of our detector for noise reduction and 

carrier suppression. Fig. 6.10 depicts the probability of false-alarm versus the TF-threshold 

7  for various HT-threshold values. In our second test, and due to rarity of radar echoes, we 

alternatively placed artificially-generated chirp signals in the same background for evaluating 

the detection performance. Fig. 6.11 depicts a sample of the acquired data after embedding 

a linear chirp signal of a typical slope (—1 MHz/^s) and -1 0  dB SNR value. For a fair 

comparison, we compare the detection performance of both detectors under PFA equals 10-3 

and for a fixed bandwidth (5 MHz) chirps with center frequency, f c , equal to 62.5 MHz. 

Fig. 6.12 shows performance comparison of both detectors. As depicted in Fig. 6.12, the 

minimum SNR for which complete detection is achieved is -4 dB for the HT-based detector 

and 8 dB for the LRT detector. This implies that HT significantly enhances detection by a 

factor of 14 dB. Using the amplitude limiter, the detection performance of the LRT detector 

is enhanced to a great extent, yet the HT-based detector outperforms by 2 dB.

Normalized TF-threshold (y0)

Figure 6.10: HT detector: probability of false-alarm versus relative TF-threshold (70 
units of the averaged standard deviation of the entries in the TF-space matrix).



61

3 0

2 0

>

1 0
It'

3

n 0
i -

<

- 1 0

- 2 0

1 2 0

1 0 0

-n
|  8 0  

1 "  6 0

ch irp

DU~ . _
4 0

u.

2 0
:

0
8 0  9 0  1 0 0  

R e la t iv e - t im e  ( | j,s )
8 0  9 0  1 0 0  

R e la t iv e - t im e  ( | j,s )

Figure 6.11: Linear chirp signal added to background noise.
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Figure 6.12: Probability of correct detection for HT-based detector and LRT detector 
with and without amplitude limiter under PFA equals 10-3 .



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this final chapter, we present a summary for the contributions of this dissertation 

then we discuss future research directions that could provide the next steps along the path 

of this project.

7.1 Conclusions
Bistatic radar is a promising candidate as a remote-sensing technique for the observation 

of the highest energy cosmic-rays. These air showers are characterized by their wide bands 

(serveral tens of MHz), short duration (~  10 ^s), and scarcity. This dissertation focuses on 

the problem of detection of reflected chirp echoes from the air showers. In this dissertation, 

we presented our research contributions.

We presented the detection of expected radar echoes using a rake-like receiver that 

consists of a bank of matched filters, matched to different chirp rates, in the range of 

interest. We also developed a mathematical framework for the design and analysis of the 

proposed detector. The noise background of the receiver is observed to be impulsive; this is 

considered a major source of positive false-alarms. In this regard, we introduced adding an 

amplitude limiter before the bank of matched filters to filter out the high amplitude spikes 

and thus, enable us to bring the threshold lower for an enhanced detection. Our results 

show that the system gains 6 dB of detection performance for a false-alarm rate of 2 Hz, 

by decreasing the amplitude limiter level by a factor of 3.

In addition, we presented a second detection method, based on Hough transform for 

detecting our radar received echoes that can also deal with the existing receiver environment 

which contains different spurious noises and nonstationary sources. We examined the 

detection capability of the detection structure through theoretical and numerical analysis.

Our introduced detection algorithms were implemented over a Virtex-5 FPGA. National 

Instruments modules were used as a high-performance custom hardware. Due to rarity of 

received echoes, we emulated the expected radar echoes to evaluate the system performance.
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The detection performance of the emulated echoes was examined using the implemented 

receiver at the field. Also, we compared the resulting performance of both detectors.

As a member of TARA collaboration, I participated in the construction of the world’s 

first bistatic radar observatory for Ultra-High Energy Cosmic Rays (UHECR). The TARA 

project represents the most ambitious effort to date to detect the radar signature of cosmic 

ray induced atmospheric ionization. The TARA detector is designed to search for unique 

cosmic ray radar echoes with very small radar cross sections (RCS). Specifically, the following 

key characteristics strongly reduce the minimum detectable RCS: high transmitter power 

(40 kW), high gain transmitting antenna, low noise radio frequency environment, broadband 

receiver antenna, and robust detection technique (rake-like receiver) that permits detection 

of signals 7 dB below the noise.

7.2 Future Work
A number of open problems still remain in our project. These problems suggest a variety 

of research directions that can be pursued in the context of the bistatic radar, which we are 

developing for remote sensing of cosmic ray induced air showers.

7 .2 .1  T ra n sien t B a ck g ro u n d

Background noise at the receiver site turns out to be impulsive and thus of a non-Gaussian 

nature. The main reason for this is that signal background may get disturbed by external 

interference sources with an impulsive nature that is well above the background level. These 

sources could be either natural such as lightening strikes, or man-made such as power-line 

communications or electric motors. In radar applications, the detection threshold may be 

raised in order to avoid the excess false-alarms that deteriorate the detection performance 

of the radar receiver. In this dissertation, we tackled this problem by either alleviating 

the effect of the transient background using an amplitude limiter or efficiently remove them 

from background using Hough transform. However, up till this point, we have not identified 

the source of the transient background which can help us in characterizing the nature of 

the major source of false-alarms. This future aspect could help us in achieving a lower level 

of false-alarms to keep storage low (from several gega bytes a day to several mega bytes a 

day) and thus, speed up offline processing of stored events.

7 .2 .2  R e m o te  R e c e iv e r  S ta tion

In our bistatic radar application, remote receiving stations at several kilometers from 

the main primary receiver site are required. These remote sites would add stereoscopic
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measurement capabilities which theoretically allow unique determination of air shower 

geometry and its core location. One of the major challenges when designing a remote 

station is power consumption, specifically when power stations may not be available. A 

typical solution is using solar energy which is expensive and may not even be feasible for 

higher power consumption systems. The current receiver DAQ system draws an average 

of 150 Watts which is relatively high and thus, cannot be used as a basis for building a 

remote receiver station. This would lead us to use a less efficient receiving units with lower 

power consumption, which shall degrade the efficiency of radar echoes detection. One future 

direction is power optimization of the current receiver DAQ system and probably moving 

towards a simpler embedded system that can help us in deploying remote stations.

7 .2 .3  C h irp  P a ra m e te r  E stim a tio n

In the current phase of this project, we focus our interest on the detection of the received 

chirp echoes produced by cosmic ray induced air showers. However, once radar echoes 

are identified, the estimation of their parameters should be tackled. Since the related 

parameters of the received echoes are tied to the physical parameters of the air showers, 

this would give us an understanding to the air showers characteristics and the physics behind 

this high energy astrophysical phenomena.



APPENDIX A 

FAR DERIVATION

By rearranging terms in (3.19), we get

, ,  , , sin(Kt (Tk — |t|)) ,
r(t) =  cos ( 2 / c t )  ( ^  1 l ) ) . (A.1)

Since we evaluate the second derivative of r(t) around zero, (A.1) can be approximated as 

follows

r(t) «  cos (2^ / o t) (A .2)

Using Taylor series expansion, (A.2) can be written as

• « = t k )  (■ — K +■■■)  ( “ ' ■ — K  *■■■)  « »

Hence, we are interested in evaluating the second derivative, higher order terms are neglected

r(t) =  1 — (2J /C  )2 — (tK 6T“ )2 +  ■■■ (A.4)

Thus

r"(t) =  —(2tt /ct)2 — +  ••• (A.5)

where B =  |k|Tk.



APPENDIX B

GENZ INTEGRATION METHOD

Alan Genz [45] provided an integration method that simplifies the integral in (3.27). 

We follow his integration steps to transform the integration region to a unit hypercube 

[0,1]2N01. We quote the integration steps from [45] and present it here in the text.

Since R  is a covariance matrix, we can use Cholesky decomposition factorization R  =  

LLt  and apply the change of variable u =  L -1 z to simplify (3.27) as

PMD =
1 e u—No/2. Ĉ N0 2

e-Ujvo /2du (B.1)
(2^) ~ " ~'«-v0 J&v0

where du is the shorthand notation for duN0 ■ ■ ■ du0 ■ ■ ■ du-N0. L is a lower triangular matrix, 

and can be expressed as

L =  ^i j ] , i  =  —N0, . . . , 0, ■■■ ,N 0; j  =  —N0, . . . , 0, ■■■ ,N 0. (B.2)

Also

and

where

i - 1
—7 — yc,i — ^ ^  k,juj I /h,i, i =  —N0 +  1, . . . , 0, ••• ,N0

j=-N0

i -  1
A  =  I 7 — yc,i — î>juj I Ai, i, i  =  — N0 +  1 , . . . , 0, ,N 0

j=-N0

(B.3)

(B.4)

«-N0 =  ( - Y -  yc,-N0) A-N0,-N0 (B.5)

and

^-N0 =  (Y -  yc,-N0) A -N 0,-N0. (B.6)

Letting

Si =  $(Ui) =
V2 k J-c

_c2/2d ( , i =  - N 0 , . . . , 0 ,  ■ ■ ■ ,N0. (B.7)
u

e
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and using the Leibniz integral rule [55], we obtain

1 2
dsi =  .__e-ui /2d u i , i  =  —No, . . . ,  0, ••• , N0.

Using (B.7) and (B.8) in (B.1), we get

Cb-No Cb-No + 1(s-No ) CbNo (s-N0 ,••• ,sNo-1)
PMD =  / ■■■ ds

■Ja-N0 ■'a-No + 1(s-No) -'aN0 (s-N0 >••• ,sNo-1)

where ds is the shorthand notation for dsNo ■■■ ds0 ■ ■ ■ ds-No. Also,

a  =  $
i-1

-7 — yc,i — ^  li,j $  1(sj )
j=-No

/ l i,i ) , i  =  —N0 +  ^ . ^  > 0,

and

bi =  $
i-1

7 — yc,i — li’j $  1(sj )
j=-No

/ li,i A , i  =  —N0 +  1 , . . . , 0,

where

and

a-No =  $  ( (—Y — Vc-No) / l -No -No)

b—No =  $  ((Y — Vc,-No) / l -No -No)

(B.8)

(B.9)

■■ ,No (B.10)

■ ,No (B.11)

(B.12)

(B.13)

Finally, in order to put the integrals into a constant limit form, the change of variable 

si =  bi +  (ai — bi)ci is introduced. This reduces (B.9) to (3.28).



APPENDIX C

MONTE CARLO INTEGRATION 
METHOD

The numerical computation of a multivariate normal probability is considered as a 

difficult computational problem. The reason behind the complexity of computation is 

attributed to dimensionality of the multivariate integral. In order to simplify the multivariate 

integral, we use Genzs integration methods [45]. These methods simplify the integration 

region and transform it to a unit hypercube, as we show in Appendix B.

Let us consider an integral I  in N  dimensions over volume V where V is an N-dimensional 

unit hypercube [0,1]N. The basic premise is generating M  random vectors x  from flat 

distribution (0 <  Xj <  1), where Xj is an N-dimensional vector that samples the 

hypercube space. As M  goes to 1

V M
-  X  f  (Xi) !  1 (C.l)

i= 1

In our analysis, we use the subregion adaptive numerical integration algorithm, where a 

random vector x  is generated for each loop iteration for a maximum number of iterations M  

or until the error of the Monte Carlo integration achieves a predefined tolerated value. The 

choice of M  is a tradeoff between the integration accuracy and the computation time. Based 

on this method, the error is proportional to (1 /\ /M ) and independent of the dimensionality 

of the integral. The steps of the algorithm are presented in Table 3.1.



APPENDIX D

TARA RECEIVER ANTENNA

TARA expects signal with frequency less than 100 MHz. Due to noise below 30 MHz 

and the FM band above 88 MHz, the effective band is reduced to 30 to 88 MHz. This will 

be received by dual-polarized log periodic dipole antennas (LPDA). Each antenna channel 

is comprised of a series of five A/2 dipoles. The ratio of successive dipole lengths is equal 

to the horizontal spacing between two dipoles (the defining characteristic of LPDA units), 

with the longest elements farthest from the feed-point to mitigate large group delay across 

the passband. Fig. D.1 shows a schematic of the receiver LPDA.

Receiver antenna gain is a factor in the bistatic radar equation that affects detection 

threshold. Numerical Electromagnetic Code was used in simulating the radiation pattern 

of the antenna to confirm directionality (see Fig. D.2). Simulated forward gain is 12.6 dBi 

and the vertical beam width is 23° at the carrier frequency, 54.1 MHz.

F igure D .1: Dual polarized TARA log periodic dipole antenna.
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Figure D .2: Simulated horizontal (left) and vertical (right) radiation patterns of a 
horizontally polarized TARA LPDA at the transmitter sounding frequency of 54.1 MHz. 

Beamwidths (3 dB below peak gain) are shown with red lines. Peak gain is 12.6 dBi.



APPENDIX E

TARA RF FRONT-END

There are three dual-polarization antennas at the receiver site, two of which are currently 

connected to the DAQ. RF signal from the antennas pass through a bank of filters and 

amplifiers. The components include an RF limiter (VLM-33-S+; Mini-Circuits), broad 

band amplifier, low pass filter (NLP - 100+; Mini-Circuits), high pass filter and an FM band 

stop filter (NSBP-108+; Mini-Circuits). Both polarizations from one antenna are filtered 

(41 MHz High Pass Filter, SHP-50+; Mini-Circuits) and amplified (40 dB, ZKL-1R5+; 

Mini-Circuits) at the antenna, where a bias tee (ZFBT-4R2G+; Mini-Circuits) is used 

to bring DC power from the control room. The second antenna’s channels are filtered 

(27.5 MHz High Pass Filter, NHP-25+; Mini-Circuits) and amplified (30 dB, ZKL-2R5+; 

Mini-Circuits) inside the control room. The lightning arrestor (LSS0001; Inscape Data) 

minimizes damage to sensitive amplifiers by electric potentials that accrue during thunderstorms. 

The RF limiter prevents damage by transient high amplitude pulses.

Signal conditioning in the amplifier/filter banks is characterized by the transmission 

coefficient (Fig. E.1), known as S21. Impedance mismatch relative to a 50 Q transmission 

line, insertion loss for the various devices and gain from the amplifiers are combined in 

the S21 data. Of note in Fig. E.1 is the flat, high-gain (30 dB), broadband ( '  40 MHz) 

pass-band necessary for Doppler-shifted radar echoes.
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S21 of filterbank 3

Frequen cy(M H z)

Figure E.1: S21 of Filterbank 3. Filterbank 3 is connected to the triggering channel of
the FlexRIO.



APPENDIX F

RADAR ECHOES OF COSMIC RAY AIR 
SHOWERS

Cosmic rays (CR) with energies per nucleon in excess of «  1014 eV [56,57] create cascades 

of particles with electromagnetic and hadronic components in the atmosphere, known as 

extensive air showers (EAS). Conventional cosmic ray experiments detect events through 

coincident shower front particles in an array of surface detectors or through fluorescence 

photons in the sky that radiate from the shower core [58-60].

As the shower core ionizes the atmosphere, liberated charges form a plasma with plasma 

frequency vp =  (2^)-1 nee2/m ee0, where ne is the electron number density, e is the charge 

of the electron, and me is the electron mass. A shower is denoted under-dense or over-dense 

relative to the sounding frequency v depending on whether ne corresponds to vp >  v or 

vp <  v . The radar cross-section (RCS) of the under-dense region is expected to be greatly 

attenuated due to collisional damping [61]. Therefore, we expect the dominant contribution 

to EAS RCS to be the over-dense case, which is modeled as a thin-wire conductor [62]. 

Fig. F.1 displays a typical EAS echo from simulation, where standard shower models of 

particle production and energy transport have been assumed.

The mechanism of radar echo detection of EAS differ from other radio applications. 

The target is small, and moving near the speed of light. Fig. F.2 depicts the bistatic radar 

geometry. We see that the radar echo has a phase shift because the total path length 

L =  Rt  +  Rr evolves slowly with time. The time-dependence of the path length causes 

the phase of the echo to evolve, while the transmitter maintains a constant frequency. The 

result is an echo that has a time-dependent frequency -  a chirp signal [63] (Fig. F.1).

Chirp signals are ubiquitous in nature, although CR radar echos have very unique 

signatures. A simulation [64] has been designed that inputs CR energy, geometry and 

transmitter and receiver details, and which evolves an EAS while tracking the phase and 

amplitude of the radar echo. The simulation indicates that CR radar echoes are short
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Figure F.1: Spectrogram of a chirp signal produced by the radar echo simulation for an 
EAS located midway between the transmitter and receiver with a zenith angle of 30° out 
of the transmitter-receiver plane. A weighted fit of this signal gives a -2.3 MHz/^s chirp 

slope. Color scale is power spectral density (PSD) given as dBm/Hz.

in duration (comparable to the shower life-time, «  10 ^s), have large chirp rates ( «  

—1 MHz/^s) and span a bandwidth of tens of MHz (see Fig. F.3 and Fig. F.4).

The energy and geometry of a distribution of 10000 cosmic rays detected at the TA 

surface detector array have been simulated. Fig. F.3 and Fig. F.4 show distributions of the 

chirp rate and duration for these events. Data obtained from the simulation have been used 

to guide the design of the receiver system, transmitter system and receiver antennas.
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Figure F.2: Bistatic geometry of a radar sounding wave interrogating an EAS. Rt  and 
Rr are the distances from transmitter (TX) to shower and shower to receiver (RX), 

respectively. The T X /R X  antenna symbols represent location only. Actual antenna sizes 
are smaller than a pixel if represented to scale.
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Figure F.3: Simulated chirp rate distribution from a set of 10000 TA cosmic ray events.
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Figure F.4: Chirp duration distribution from a set of 10000 simulated radar echoes from 
TA cosmic ray events. Duration is defined as d =  t1 —10, where t0 is the time when the 
maximum power is received and t1 is the later time when the received power drops by 

20 dB below the maximum, which approximates the end of the shower.



APPENDIX G

TARA RECEIVER DAQ

The receiver data acquisition (DAQ) system is a part of the Telescope Array RAdar 

(TARA) bistatic radar observatory for Ultra-High-Energy Cosmic Rays (UHECR). TARA 

is co-located with the Telescope Array, the largest conventional cosmic ray detector in 

the Northern Hemisphere, in radio quiet Western Utah. TARA employs an 8 MW  effective 

radiated power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data 

acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced 

atmospheric ionization.

The National Instruments FlexRIO system provides an integrated hardware and software 

solution for a custom software defined radio DAQ. It is composed of three basic parts: 

adapter module, FPGA module and host controller (as shown in the lower box of Figure G.1). 

A description of each of these subsystems follows.

• Adapter Module

The NI-5761 RF adapter module is a high-performance digitizer that defines the 

physical inputs and outputs of the DAQ system. It digitizes four analog input channels 

at a rate of 250 MS/s with 14-bit resolution. Eight TTL I/O  lines are available for 

additional control, some of which are used in custom DAQ triggering schemes.

• FPGA Module

The NI-7965R FPGA module is based on the PXI express platform that uses a Xilinx 

Virtex-5 FPGA with 128MB on board DRAM. FPGA design provides accurate timing 

and intelligent triggering. The PXI-express platform has a high-speed data link to 

the host controller.

• Host Controller

The host controller is connected to the development machine, a Windows based 

computer, that uses the LabVIEW environment to design and compile FPGA code.



78

Arbitrary LMR TX
W aveform Dipole

cableGenerator A ntenna

Radar Target Echoes Emulator

Trigger

Bistatic-Radar Receiver Station

Figure G . l :  Elements of the radar receiver station.

A host controller application, also designed in LabVIEW, runs on the development 

machine. It provides communication between the user space and the FPGA. In 

addition, a control application acquires data whenever received from FPGA and stores 

the data on disk.

G .l DAQ implementation
The DAQ is designed to detect chirp echoes and confront the problem of nonstationary 

noise environment. Two antennas feed the DAQ’s four input channels. Each antenna is a 

dual-polarized LPDA with one output channel each for horizontal and vertical polarization. 

Data are collected simultaneously from each of the four analog channels with one horizontal 

channel considered the triggering channel, then each channel is sampled using a 250 MS/s 

ADC (Texas Instruments; ADS62P49). Analog to digital conversion is followed by fast 

digital memory storage on the FPGA chip, which stores the incoming samples from each 

channel sequentially, in a 131 fis (32744 sample) continuous circular buffer such that data 

in each buffer are continually overwritten. Three distinct trigger modes are implemented: 

“snapshot trigger,” “Fluorescence Detector (FD) external trigger,” and “self-trigger.” The 

details of each trigger are discussed in the following sections.

When a trigger occurs, the circular buffer information is sent to the host controller to 

be permanently stored on the computer’s disk. A 320 fis dead-time is required to account 

for FPGA-host data transfer limitations, during which the DAQ cannot accept triggers. As 

depicted in Figure G.2, pre/posttrigger acquisition is set to 95 jis and 36 /xs, respectively,
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F ig u re  G .2: Position of the triggering pulse within the data window that is written to
disk.

to allow for jitter in the FD trigger timing (which turns out to be very small) and sufficient 

posttrigger data to see an entire echo wave form. A GPS time stamp is retrieved from a 

programmable hardware module [65] and recorded for each trigger with an absolute error 

of ±20 ns.

G.1.1 Snapshot Trigger

The snapshot trigger is an unbiased trigger scheme initiated once every minute that 

writes out an event to disk. The snapshot event will likely contain background noise 

only. These unbiased triggers are crucial for background noise estimation and analysis. 

A 125 MHz onboard clock is used to synchronize the snapshot triggers.

G.1.2 FD External Trigger

During active FD data acquisition periods, the Long Ridge FD (the location of the 

TARA receiver site) emits a NIM (nuclear instrumentation module) pulse for each low level 

trigger with a typical rate of ~  3-5 Hz or much higher during FD calibration periods. 

The low level trigger is an OR of individual FD telescope mirror triggers. The FlexRIO is 

forced to trigger by each pulse received from the FD. Each FD run will result in hundreds of 

thousands of triggers which can be narrowed to ~  100 events that coincide with real events 

found in reconstructed TA data. Dead time due to high FD-t.rigger rates are as high as 

several milliseconds during calibration periods. This does not reduce data acquisition time 

significantly because these periods occur only for several minutes and less than half a dozen 

times per FD data acquisition period. Further, FD operation only amounts to 10% duty 

cycle on average. The FlexRIO is forced to trigger by each pulse received from the FD. 

Each FD run will result in many thousands of triggers which can be narrowed to several 

events that coincide with real events found in reconstructed TA data.
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G .1 .3  S e lf-T r ig g er

For this trigger, one of the two presented methods in this dissertation is used as a solution 

for the problem of detecting radar chirp echoes in the non-Gaussian receiver background.
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